
ar
X

iv
:1

20
5.

55
27

v1
  [

m
at

h.
L

O
] 

 2
4 

M
ay

 2
01

2

COMBINATORIAL REALIZABILITY MODELS OF TYPE THEORY

PIETER HOFSTRA AND MICHAEL A. WARREN

Abstract. We introduce a new model construction for Martin-Löf intensional type theory, which
is sound and complete for the 1-truncated version of the theory. The model formally combines
the syntactic model with a notion of realizability; it also encompasses the well-known Hofmann-
Streicher groupoid semantics. As our main application, we use the model to analyse the syntactic
groupoid associated to the type theory generated by a graph G, showing that it has the same
homotopy type as the free groupoid generated by G.
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1. Introduction

This paper is a contribution to the study of the compelling connections between homotopy theory
and Martin-Löf’s intensional type theory (see [1] for a description of this programme). We present
a new class of models for intensional type theory which allows us to gain insight into the homotopy-
theoretic behaviour of the type theory in a way which is not possible with other models such as
the syntactic model or the Hofmann-Streicher groupoid models.

We call these models combinatorial realizability models, because they associate to the syntactic
data of the theory notions of realizer, and because realizers of terms of higher type are defined in
terms of realizers of lower type, much in the same way as Kleene realizability defines realizers of
universally quantified formulae in terms of functions sending realizers to realizers. (The extension of
the notion of realizer to higher types is also closely resemblant of —and indeed inspired by— Tait’s
technique of logical predicates, see [7].) Unlike in classical realizability however, realizers have, a
priori, nothing to do with computable functions; rather, realizers in our models are generally of a
more combinatorial nature. Indeed, in our motivating example, realizers will be edges in a suitable
graph; they can also be purely syntactical entities. In the limiting case where realizers are trivial
(i.e. where every derivable term is trivially realized) the model reduces to the syntactic model, or
rather a one-dimensional version thereof.

The type theories for which the model construction primarily is designed are dependent type
theories having dependent sums and products with identity types which are 1-truncated (in the
sense that higher identity proofs are forced to be definitional equalities, see below). The model
also works for 0-truncated (i.e., extensional) type theories. The theories may further be assumed
to have a natural number type with the usual recursion principle, and may further be extended
by axioms postulating new basic types and terms. However, adding axioms involving non-basic
types voids the warranty. We also have not investigated whether the model works in the presence
of W-types and universes.

1.1. Motivating problem: homotopy types of ML-complexes. Let us describe in some detail
the questions which prompted the investigations reported on here. Let G be a (directed, reflexive)
graph and consider the theory T1[G] obtained by augmenting ordinary intensional Martin-Löf type
theory with the following data:

• A new basic type pGq;
• A new basic term paq : pGq for each vertex a of G;
• A new basic term pfq : pGq(paq, pbq) for each edge f with source a and target b;
• Axioms

r(a) = p1aq : pGq(paq, paq)

for each vertex a in G; and
• The 1-truncation rule which states that iterated identity types are trivial:
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p : A(a, b)(f, g)

f = g : A(a, b)

for any type A and terms a, b : A.

(We use the notation A(a, b) rather than IdA(a, b) to denote the identity type at a, b : A in order
to stress the category-theoretic intuition and to make notation for iterated identity types more
palatable.)

It follows from [6] that each closed type A in this theory has an associated groupoid |A| with
(definitional equality classes of) closed terms of type A as objects and where the hom-set |A|(a, b)
consists of closed terms of type A(a, b). The composition, identities and inverses of this groupoid
are given by type-theoretic operations; by virtue of the 1-truncation rule the groupoid laws hold
on the nose, and not just up to higher identity terms.

In particular, we may consider the syntactic groupoid |pGq| (which we simply write as |G| from
now on). Sending a graph G to the underlying graph of |G| constitutes the object part of a monad
T on the category Graph of (directed, reflexive) graphs; following [2], the algebras are called
1-truncated Martin-Löf complexes . Understanding the behavior of these algebras is a first step in
the project initiated in ibid of modeling homotopy types using the higher-categorical structures
arising from type theory.

The first observation is that the theory T1[G] admits an interpretation using the Hofmann-
Streicher groupoid semantics: in order to specify such an interpretation, it suffices to interpret the
basic data generating the theory. In principle, we can use any groupoid H and any graph morphism
G→ H to do this, but an obvious choice of H is of course the free groupoid F(G) on the graph G.
For the interpretation of the basic terms of the theory we then may use the inclusion of generators
G→ F(G). This completely determines the model.

By virtue of the interpretation of elimination terms for identity types, this yields in particular a
functor

Ψ : |G| → F(G).

There is also a functor Φ : F(G) → |G| in the other direction, induced by the universal property
of the free groupoid. It sends an object of F(G), i.e. a vertex a of G, to the basic term paq : pGq,
and a formal composite of edges of G to the type-theoretic composite. By the universal property
of F(G), Φ is actually a section of Ψ.

We next note that the syntactic groupoid |G| is, intuitively speaking, much larger than F(G).
This is due to the fact that the type theory derives many more terms than just the generating basic
terms coming from the graph G. For example, if f is a loop in the graph G on a vertex a and b is
any vertex of G, the elimination rule for identity types gives

x, y : G, z : G(x, y) ⊢ G x : G ⊢ b : G

J([x : G]b, a, a, f) : G

where the first two hypotheses are simply obtained by weakening. One would like to know that
such “duplicate” or “doppelgänger” terms do nothing homotopically harmful. For example, T (G)
should have the same connected components as G. Similarly, from a logical point of view one would
like to know that there are no non-standard terms of natural number type in T1[G] in the sense
that we would like to prove that for each term t of natural number type there exists a numeral n
and a term of type N(t, n). (Whether there exist non-standard terms of natural number type in the
presence of Voevodsky’s univalence axiom is a related question and we expect that the techniques
developed in this paper can be modified to yield a proof of Conjecture 1 from [8].)

The main application of our realizability model then, is to answer these and related questions.
More concretely, one of the things we shall show is that the comparison functor Ψ : |G| → F(G) is
in fact an equivalence of groupoids. This is done by declaring a realizer of a closed term t : G to
be a morphism t→ t in |G|, where t is a basic term, i.e. a vertex of G. These realizers fit together
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to form a natural transformation 1|G| ⇒ ΦΨ, exhibiting F(G) as a deformation retract of |G|. In
particular, this proves that the two have the same homotopy type. It is shown in [2] that the
techniques developed here can be used to prove that the category of 1-truncated ML-complexes is
Quillen equivalent to the category of groupoids, and hence that 1-truncated ML-complexes model
homotopy 1-types.

1.2. Organization of the paper. Because the actual construction of the model and the proofs
are somewhat technical and lengthy, we begin in Section 2 with an informal explanation of the
construction. In particular, we explain what we mean by realizers, and how different suitable
choices of realizers result in models which give us useful information about the syntax and the
homotopy-theoretic behaviour of the type theory. We also explain in this section the general setup
of the model using categories of families.

In Section 3 we develop various syntactical constructions which allow us to form a syntactic
model of the type theory (but in a manner different from the ordinary term model). In particular,
we show how to associate groupoids and pseudo-functors to types and contexts, and introduce some
machinery for handling weakening and substitution on the level of syntactical groupoids. The main
consequence of the technology introduced is now that the syntactic groupoids and pseudo-functors
associated to the type theory give rise to a category with families.

Section 4 contains the main material. The realizability model itself is an augmentation of the
syntactic model introduced in Section 3, and is obtained by gluing in a notion of realizability. We
describe the general structure of this category with families, and then turn to the semantic type
formers, dealing with dependent products, sums, identity types and natural numbers successively.

Details regarding some of the intuitively clear but technically involved type-theoretic construc-
tions have been collected in Appendix B; finally, for ease of reference Appendix C summarizes the
realizability clauses which can be extracted from the model construction in Section 4.

1.3. Notational Conventions. The formulation of the rules of type theory we use are listed
in complete detail in the Appendix. When it does not result in confusion, we suppress some
typing information to reduce clutter. For example, instead of the cumbersome J[x,y:A,z:A(x,y)]([x :
A]φ, a, b, f), we simply write J(φ, a, b, f) (or J([x : A]φ, a, b, f) when we wish to make clear which
variable is bound in this term).

Because we will often be dealing with lists of terms or variables it will be convenient to introduce
a notation for such lists which will not result in excess clutter. In particular, we will denote such
lists by using a bold face font. E.g., the list x1, . . . , xn of variables will be denoted by x. Similar
notation will be employed for lists of similar terms. For example, r(α) denotes the list of terms
r(α1), . . . , r(αn) where the list α is understood. Also, t[a/x] denotes the term t[a1/x1, . . . , an/xn]
and not the simultaneous substitution t[a1, . . . , an/x1, . . . , xn]. We will often also avoid displaying
variables when the context is clear.

2. Informal description of the model

This section explains the structure of the model without giving proofs. We first discuss the
parameters in the model construction, namely the notion of realizer of terms of ground type.
Various different applications of the model construction arise by choosing a suitable notion of
realizer. We then proceed to explain the categorical form which the interpretation takes, and how
terms of higher and dependent types are interpreted.

2.1. Realizers and dense terms. We focus on a theory of the form T1[G], where G is a graph.
To specify an interpretation of such a theory, it will suffice to define what is meant by a realizer of
a closed term of type G. Moreover, this assignment of realizers to closed terms has to be functorial,
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in the sense that when f : G(a, b) is a closed term of identity type, we have an operation which
sends realizers of a to realizers of b. Formally, this data amounts to a presheaf

: |G| → Set

on the syntactic groupoid |G|. We suggestively write α  t : G instead of α ∈ (t). Since the
soundness theorem for the interpretation states that every term has a realizer, we must insist
that basic terms have realizers. More precisely, for a notion of realizer  to give rise to a sound
interpretation, we must ask that there exists, for each vertex a of the graph G, a realizer αa  a : G,
such that the functorial action of  respects this, in the sense that for each edge f : a → b in G,
αa · f = αb (where we write α · f for the action of  on arrows). Once this data has been specified,
the model associates to each closed term t : G a distinguished realizer.

In our motivating example, we are concerned with the functors Φ : F(G) → |G| and Ψ :
|G| → F(G) relating the syntactic groupoid |G| on G to the free groupoid on G. The composite
ΦΨ : |G| → |G| will be referred to as the closure functor, and will be denoted t 7→ t. We shall call a
term t dense when its interpretation in the groupoid model based on the free groupoid F(G) is an
identity. In particular, a closed term f : G(a, b), regarded as a morphism in the syntactic groupoid
|G|, is dense whenever its closure is an identity f = 1a.

With this notation and terminology, we now define a realizer of a closed term a : G to be a dense
map α : a → a. We must also specify how this assignment is functorial in a: given a morphism
f : G(a, b) and a realizer α : a→ a, consider the composite

b
f−1

// a
α // a

f
// b

Since the closure of α is the identity, it is easily seen that this morphism is dense, i.e. that it is a
realizer of b. It is also clear that this is functorial.

What is not a priori obvious however is that all closed terms have realizers. Indeed, this is the
content of the soundness lemma. However, basic terms are trivially realized by the identity.

It is not necessary, for the specification of a realizability model, to state what realizers of terms
of identity types G(a, b) are. Indeed, assuming we have realizers α : a→ a and β : b→ b, we shall
simply declare a closed term f : G(a, b) to be realized when the square

a
f

//

α

��

b

β
��

a
f

// b

commutes, i.e. when β is the result of reindexing the realizer α along f .

Remark. An obvious generalization suggests itself: instead of taking realizers for identity proofs
between terms to be determined by those of the terms themselves (and the functorial action on
realizers) we could take a realizer to be a higher identity proof witnessing the fact that the above
square commutes up to equivalence. We conjecture that this is the appropriate generalization of
the model to theories without the truncation rule.

There are other notions of realizer which may be used, and in order to avoid the impression
that the above example is the only one, we briefly point out a couple of other possibilities (several
other examples can be found in [2]). First, one could consider the terminal presheaf |G| → Set

which sends each object to a fixed singleton set. In this case, realizers contain no information,
and the resulting model will simply be a 1-truncated syntactic model (i.e. a model of the theory
purely based on syntactic groupoids). Second, more general closure functors can be used. Any
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endofunctor F : |G| → |G| gives rise to a model in which a realizer for a term a is a dense map
a→ Fa, as long as basic terms have realizers.

A further generalization is possible:

Theorem 2.1. Let G be a graph, H a groupoid and let P,Q : |G| → H be two functors. Suppose

furthermore that we are given a morphism αa : P (a) → Q(a) for each basic term a such that, for

each basic term f : a→ b, the following diagram commutes:

P (a)

P (f)
��

αa // Q(a)

Q(f)
��

P (b) αb

// Q(b).

Then there exists a natural transformation α : P ⇒ Q whose component at a basic term a is αa.

Proof. We define a notion of realizability for G: let : |G| → Set be the presheaf which sends an
object t : G to the set H(P (t), Q(t)). The functorial action is by conjugation: given f : t → s and
τ  t : G, we set τ · f =def Q(f)τP (f)−1. A basic term a : A is then realized by the given αa. This
gives a realizability model, the soundness of which gives in particular that each t : G has a realizer,
and that these form a natural transformation as desired. �

An application of this more general result appears in [2], where it is used to show that the free
1-truncated ML-complex on a groupoid G (i.e. an object in the image of the left adjoint to the
forgetful functor from ML-complexes to groupoids) is equivalent to G.

2.2. The general setup of the model. We now turn to the general organization of the model,
which augments the syntactic model with the concept of realizer. We begin by sketching the
syntactic structure, and then explain how the realizers are added into this model.

As above, we shall denote the syntactic groupoid associated to a closed type A by |A|. This
can be extended to contexts and type judgements: to each well-formed context Γ we associate a
groupoid |Γ|, and to each type judgement Γ ⊢ T (x) we associate a pseudo-functor

|Γ ⊢ T (x)| : |Γ| → Gpd

which sends an object c of |Γ| to the syntactic groupoid |T (c)|. (The action on morphisms is given
by a type-theoretic version of change-of-base; details will be provided in section 3.) Then we use
the Grothendieck construction to define the syntactic groupoid of the extended context to be

|Γ, y : T (x)| =

∫

|Γ ⊢ T (x)|.

Thus we obtain a fibration of groupoids

|Γ, y : T | → |Γ|.

Suppose now that we have a term judgement Γ ⊢ t : T . Then the interpretation |Γ ⊢ t : T | of t
will be a section of the fibration |Γ, y : T | → |Γ|, namely the one which sends an object c of Γ to
the object t(c).

The realizability model will interpret the syntax in a similar way. We will denote the interpre-
tation in the realizability model by [[−]] (where it is assumed we have fixed a notion of realizer).

First, consider the basic type pGq. By definition, a notion of realizer is a functor R : |G| → Set.
Applying the Grothendieck construction to this presheaf, we obtain a groupoid

[[G]] =

∫

R
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which we take to be the interpretation of the type G. It naturally comes with a fibration

[[G]]
πG // |G|.

This will be a general pattern: the realizability interpretation of any closed type (context) Γ will
be a groupoid [[Γ]] fibred over |Γ|:

[[Γ]]
πΓ // |Γ|.

It is technically convenient to introduce an intermediate construction: to each context Γ we will
also associate a groupoid ‖Γ‖. Thus we will have three groupoids |Γ|, ‖Γ‖ and [[Γ]] which will fit
together in a commutative diagram

[[Γ]] ‖Γ‖//[[Γ]]

|Γ|

πΓ
��
❄❄

❄❄
❄❄

❄❄
‖Γ‖

|Γ|
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

(1)

such that each of the components is a fibration. With this picture in mind, the interpretation of a
judgement Γ ⊢ T is a functor

[[Γ ⊢ T ]] : ‖Γ, x : T‖ → Set

which is to be thought of as sending an object to the set of realizers of that object; then the
extended context is interpreted by Grothendieck construction as

[[Γ, x : T ]] =def

∫

[[Γ ⊢ T ]].

We will also have at each stage of the construction that

‖Γ, x : T‖ =def

∫

|Γ ⊢ T | ◦ πΓ

so that there is always a pullback diagram

‖Γ, x : T‖ |Γ, x : T |//‖Γ, x : T‖

[[Γ]]
��

[[Γ]] |Γ|πΓ

//

|Γ, x : T |

|Γ|
��

in the category of groupoids.
Putting this together with what was described in (1) above we have

‖Γ, x : T‖ |Γ, x : T |//‖Γ, x : T‖

[[Γ]]
��

[[Γ]] |Γ|πΓ

//

|Γ, x : T |

|Γ|
��

[[Γ, x : T ]]

‖Γ, x : T‖
��

[[Γ, x : T ]]

|Γ, x : T |

π(Γ,x:T )

��

The intuition to keep in mind here is that the groupoid ‖Γ, x : T‖ has objects (c,γ, t), where c

is an object of the syntactic groupoid Γ, where the γ are realizers for c, and where t is an object
of |Γ, x : T | over c. Thus in this intermediate groupoid there is no information about realizers
for t included, and this is precisely the difference between ‖Γ, x : T‖ and the full interpretation
[[Γ, x : T ]], where an object is of the form ((c,γ), t, τ), with τ a realizer for t.
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Indeed, in order to make this intuition a bit more apparent we will often write

τ c,γ t : T (c)

to indicate that τ is an object of the (discrete) groupoid [[Γ ⊢ T ]](c,γ,t). When no confusion will
result we often drop c from the subscript and simply write τ γ t : T (c). Functoriality of [[Γ ⊢ T ]]
implies that if τ is as above and (h,m) : (c,γ, t) → (c′,γ ′, t′) is a morphism in ‖Γ, x : T‖, then we
have

τ · (h,m) c′,γ ′ t′ : T (c′).

Thus, in order to give the interpretation of a type judgement Γ ⊢ T it suffices to provide the
following data:

• We must say what is a realizer

τ γ t : T (c)

for (c,γ) an object of [[Γ]] and t : T (c) a term; and
• We must give a reindexing action which sends a realizer τ γ t : T (c) to

τ · (h,m) γ ′ t′ : T (c′)

for any arrow (h,m) : (c,γ, t) → (c′,γ ′, t′) in ‖Γ, x : T‖, and we must verify functoriality
of reindexing.

2.3. Interpretation of terms. A term Γ ⊢ t : T will be interpreted as a section

[[Γ]] [[Γ, x : T ]]
[[Γ ⊢ t:T ]]

//[[Γ]]

[[Γ]]

1[[Γ]] ��
❄❄

❄❄
❄❄

❄❄
[[Γ, x : T ]]

[[Γ]]
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

satisfisfying the condition that the following diagram

[[Γ]] [[Γ, x : T ]]
[[Γ ⊢ t:T ]]

//[[Γ]]

|Γ|

π

��

[[Γ, x : T ]]

|Γ, x : T |

π

��

|Γ| |Γ, x : T |
|Γ ⊢ t:T |

//

commutes. This means that to give the interpretation of a term Γ ⊢ t : T it suffices to give, for
each object (c,γ) of [[Γ]], a realizer1

t[γ] γ t(c) : T (c),

and to prove that

t[γ] ·
(

h, t|h
)

= t[γ ′] (2)

for each arrow h : (c,γ) → (c′,γ ′) in [[Γ]]. Here, t|h : t(c) → t(c′) denotes the (second component
of) the action of t on the morphism h, see section 3 for details.

1I.e., t[γ] is the realizer part of [[Γ ⊢ t : T ]](c,γ): [[Γ ⊢ t : T ]](c,γ) = (c,γ, t(c), t[γ]).
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2.4. Categories with Families. In order to ensure that the interpretations of contexts, types
and terms is independent of derivations, we organize our semantics as a Category with Families

(see [3, 5] for precise definitions, examples, and connections to other notions of semantics for
dependent type theories). Such a model consists of a category of semantic contexts (which will serve
as interpretations of contexts) and semantic context morphisms (which will serve as interpretations
of context morphisms). In addition, to each semantic context C there is associated a set of semantic
types Ty(C) in a contravariant manner; and to each semantic type T ∈ Ty(C) there is associated
a set of semantic terms Tm(T ), again with a contravariant action by context morphisms. Finally,
one requires that this structure admits comprehension, in the usual fibrational sense.

A category with families (CwF from now on) interprets the basic calculus of type dependency;
definitionally equal entities in the type theory are interpreted as set-theoretically equal entities in
the model. We shall also need to interpret dependent products, dependent sums, natural numbers
and intensional identity types. A CwF is said to support dependent products (dependent sums,
natural numbers, identity types) if it admits the categorical counterparts of the type and term
constructors for dependent product types (resp. dependent sums, natural numbers, identity types).

We will actually construct our model in two stages. First, we show that there is a CwF of
syntactic groupoids: this we obtain by taking the syntactic model (whose underlying category is
the category of contexts) and then transfer this model along the functor which takes a context Γ
and returns its syntactic groupoid |Γ|.

Then we form the gluing of this functor and consider the full subcategory on the cloven fibrations.
An object will have the form [[Γ]] → |Γ|, and this is precisely how the realizability semantics
interprets a context Γ. Types over Γ are then defined to be extended contexts Γ, x : A, together
with a specification of realizers ‖Γ, x : A‖ → Set.

3. The syntactic structure

We now describe in detail the syntactic part of the model. First, we introduce sequential J-terms,
which are highly useful in describing the type-theoretic constructions corresponding to the iterated
Grothendieck constructions appearing in the interpretation of contexts and types. We then explain
the syntactic interpretation of types and terms and establish soundness.

3.1. Sequential J-terms. To begin, recall the type-theoretic analogue of (covariantly) reindexing
a term t : B(a) along an identity proof f : A(a, b) (where x : A ⊢ B(x)): we define the term
t ∗ f : B(b) as

x, y : A, z : A(x, y) ⊢ B(y)B(x)

x : A ⊢ λv.v : B(x)B(x)

⊢ f : A(a, b)

⊢ J(λv.v, a, b, f) : B(b)B(a) ⊢ t : B(a)

⊢ app(J(λv.v, a, b, f), t) : B(b)

Note that in the groupoid interpretation the judgement x : A ⊢ B(x) takes the form of a functor
from the groupoid interpreting the context x : A to the category of groupoids. A term f : A(a, b)
is interpreted as an arrow f : a → b in the groupoid interpreting x : A, and the term t ∗ f is then
interpreted as t · f , where we have omitted semantic brackets in order to simplify notation and
where − · f denotes the action of the functor interpreting x : A ⊢ B(x) on f .

Of course, this reindexing action does not just work for closed terms; the above derivation also
works in an ambient context; in particular, both t and a, b and f can simply be variables.

Given a context

Γ =
(

x1 : A1, . . . , xn : An

)

9



there is a new context Γ̃ which consists of variable declarations that we now describe. Thinking of
the term forming operation −∗− described above as base change the context Γ̃ should be thought
of encoding the type theoretic data corresponding to arrows in the Grothendieck construction of
the associated functor. The first part of Γ̃ has variable declarations

(

x1, y1 : A1, x2 : A2(x1), y2 : A2(y1), . . . , xn : An(x), yn : An(y)
)

.

It then consists of a variable declaration z1 : A1(x1, y1). Given such a variable declaration we have
x2∗z1 : A2(y1). As such, we may form the next variable declaration z2 : A2(y1)(x2∗z1, y2). Similarly,

given z2 we may form x3 ∗ z1 : A3(y1, x2 ∗ z1) and then (x3 ∗ z1) ∗ z2 : A3(y1, y2). Accordingly, the
next variable declaration that we add is of the form

z3 : A3(y1, y2)
(

(x3 ∗ z1) ∗ z2, y3
)

.

So far, the variables z1, z2 and z3 may be thought of as representing an arrow from x3 to y3 in
the groupoid associated to the context x1 : A1, x2 : A2(x1), x3 : A3(x1, x2). In a diagram:

|x1 : A1, x2 : A2(x1), x3 : A3(x1, x2)|

��

x3❴

��
✤

✤

✤
x3 ∗ z1 (x3 ∗ z1) ∗ z2

❴

��
✤

✤

✤

z3 // y3✸

yys
s
s
s
s
s

|x1 : A1, x2 : A2(x1)|

��

x2❴

��
✤

✤

✤
x2 ∗ z1❴

��
✤

✤

✤

z2 // y2✵

xx♣
♣
♣
♣
♣
♣
♣

|x1 : A2| x1
z1 // y1

where z3 is an arrow in the fibre over y2 and z2 an arrow in the fibre over y1.
In general, for each 1 < m ≤ n,

zm : Am(y1, . . . , ym−1)
(

(· · · (xm ∗ z1) ∗ · · · ) ∗ zm−1, ym
)

is an arrow in the fibre over ym−1. Then, Γ̃ is the collection of all of the variable declarations

x1, . . . , xn, y1, . . . , yn, z1, . . . , zn

of the types described above. Note that we have

Γ̃[x/y, r(x)/z] = Γ.

We observe that we have the following derived rule

Γ̃ ⊢ T

Γ ⊢ ϕ : T [x/y, r(x)/z]

Γ̃ ⊢ Jσ
[Γ̃ ⊢ T ]

([x]ϕ,x,y,z) : T

Here, as in the usual formulation of the elimination rule, the variables enclosed in square brackets
[x] indicate that these variables are bound in the term ϕ. When no confusion will result these and

other bits of bookkeeping (such as the subscript Γ̃ ⊢ T ) will be omitted.
Just as an ordinary J-term can be regarded as an expansion of a term along an arrow, a sequential

J-term is to be thought of as an expansion of a term along an arrow in an iterated Grothendieck
construction.

These terms satisfy the following conversion rule

Γ̃ ⊢ T

Γ ⊢ ϕ : T [x/y, r(x)/z]

Γ ⊢ Jσ(ϕ,x,y,z)[x/y, r(x)/z] = ϕ

10



The explicit definition of these terms and the corresponding parameterized versions can be found
in Section B.2. We point out that this construction is not novel: it appeared in [4].

3.2. Groupoids and pseudo-functors associated to types. We now proceed to associate to
each context Γ a groupoid |Γ|, and to each type judgement Γ ⊢ T a pseudo-functor

|Γ ⊢ T | : |Γ| → Gpd.

This will be done by induction on the length of the context Γ.
When Γ = () is the empty context, we set |()| = 1, the terminal groupoid. For a closed type

judgement ⊢ A (i.e. when A is a closed type) we set | ⊢ A| : 1 → Gpd to be the pseudo-functor
corresponding to the groupoid |A|, the syntactic groupoid of A (which, as explained earlier, has
definitional equality classes of closed terms a : A as objects and terms f : A(a, b) as its morphisms).
The context (x : A) is then interpreted as the Grothendieck construction of this pseudo-functor,
i.e. we have |x : A| =def |A|.

Next, suppose that we have already defined the groupoid |Γ| associated to a valid context Γ, and
that we are given a type judgement Γ ⊢ T . We wish to define the pseudo-functor |Γ ⊢ T | : |Γ| →
Gpd. On an object c of Γ, we define

|Γ ⊢ T |c =def |T (c)|.

That is, the object c is sent to the syntactic groupoid of the closed type T (c). To an arrow h : c → d

in |Γ| we associate the functor |T (c)| → |T (d)| given by

t : T (c) 7−→
(

· · · (t ∗ h1) · · · ∗ hn
)

: T (d)

Note that this definition makes sense because, by hypothesis,

h1 : C1(c1, d1)

h2 : C2(d1)(c2 ∗ h1, d2)

h3 : C3(d1, d2)
(

(c3 ∗ h1) ∗ h2, d3
)

...

hn : Cn(d1, . . . , dn−1)
(

(cn ∗ h1) · · · ∗ hn−1, dn
)

.

We will usually denote the action of this functor by − · h. Given h : c → d and k : d → e we
must construct the coherence natural isomorphism γ(h,k) indicated in the following diagram:

|T (c)| |T (e)|
−·(k◦h)

//|T (c)|

|T (d)|

−·h
��
❄❄

❄❄
❄❄

❄❄

|T (d)|

|T (e)|

−·k

??⑧⑧⑧⑧⑧⑧⑧⑧

��

For an object t of |T (c)| the natural isomorphism γ(h,k) has component

γ(h,k)t : t · (k ◦ h) → (t · h) · k

given by the (parameterized) sequential J-term

Jσ
(

r(u ·w), c,d,h,e,k, t
)

: T (e)
(

t · (k ◦ h), (t · h) · k
)

Because − · 1c is not just isomorphic but equal to the identity, we do not need to specify a unit
coherence isomorphism. Finally, the coherence laws follow from the 1-truncation axiom.

As a consequence of the above, we have the following explicit description of composition in the
groupoid |Γ, x : T |:

(f ′, h′) ◦
(

f , h) = (f ′f , h′ ◦ (h · f ′) ◦ γ(f ,f ′)
)

.
11



We will often denote the second component of this map by h′ ◦f ,f ′ h.

3.3. Interpretation of terms. Now that we have an interpretation of types and contexts, we
turn to the interpretation of terms. For an open term Γ ⊢ t : T , the functor |t| : |Γ| → |Γ, y : T |
sends an object c of |Γ| to the object (c, t(c)) of |Γ, y : T |. An arrow h : c → d of |Γ| is sent by |t|
to the arrow (h, t|h) : (c, t(c)) → (d, t(d)) where t|h is the term

Γ̃ ⊢ T (y)(t(x) · z, t(y))

Γ ⊢ r(t(x)) : T (x)(t(x), t(x))

Jσ(r(t(x)), c,d,h) : T (d)(t(c) · h, t(d))

For a closed term t : T we have the obvious global section |t| : 1 → |x : T |.
We need to show that |t| is actually a functor. Clearly, when h is the identity then by the

conversion rule for sequential J-terms t|h = r(t(c)). Given composable maps c
h // d

k // e ,
we need to verify that the following square commutes:

t(c) · h · k

γ

��

(t|k)·h
// t(d) · k

t|k
��

t(c) · (kh)
t|hk

// t(e).

However, there is a propositional equality between the two composites (take k to be the identity so
that we get a definitional equality t|h = r(t(d)) ◦ (t|h), and then form the appropriate sequential
J-term). Hence by 1-truncation the two are definitionally equal.

3.4. Weakening. Consider a weakening inference

Γ ⊢ A ∆ ⊢
Γ,∆ ⊢ A

Note that there exists a functor

τΓ;∆;A : |Γ,∆, x : A| → |Γ, x : A| (3)

given as follows:

On Objects: For (c,d, a) an object of |Γ,∆, x : A| we set

τΓ;∆;A(c,d, a) =def (c, a).

On Arrows: For an arrow (f ,g, h) : (c,d, a) → (c′,d′, a′) we first observe that there exists
an arrow

a†(f ,g) : a · f = |Γ ⊢ A|f (a) → a · (f ,g) = |Γ,∆ ⊢ A|(f ,g)(a)

given by the term

∆̃ ⊢ A(c′)
(

a · f , a · (f ,z)
)

∆ ⊢ r(a · f) : A(c′)(a · f , a · f)

Jσ
(

r(a · f),d,d′,g
)

: A(c′)
(

a · f , a · (f ,g)
)

.

As such, we define τΓ;∆;A(f ,g, h) =
(

f , h ◦ (a†(f ,g))
)

where h ◦ a†(f ,g) is the composite
indicated in the following diagram:

a · f a · (f ,g)
a†(f ,g)

// a · (f ,g) a′
h //

12



Clearly the term a † (f ,g) is definitionally equal to the reflexivity on a when f and g are
reflexivities; if h is also a reflexivity then this implies that τΓ;∆;A(f ,g, h) is one as well.

To see that composition is preserved, consider morphisms (f ,g, h) : (c,d, a) → (c′,d′, a′) and
(f ′,g′, h′) : (c′,d′, a′) → (c′′,d′′, a′′). First, we have

(

f ′,g′, h′
)(

f ,g, h
)

=
(

f ′f ,g′ ◦f ,f ′ g), h′ ◦(f ,g),(f ′,g′) h
)

.

Next, observe the coherence isomorphism

γ((f ,g), (f ′,g′)) : a · (f ′f ,g ◦f ,f ′ g)) → a · (f ,g) · (f ′,g′)

makes the following diagram commute

a · (f ′f)
γ(f ,f ′)

//

a†(f ′f ,g′◦f ,f ′g)

��

a · f · f ′ (a·f)†(f ′,g′)
// a · f · (f ′,g′)

(a†(f ,g))·(f ′,g′)
��

a · (f ′f ,g′ ◦f ,f ′ g)
γ((f ,g),(f ′,g′))

// a · (f ,g) · (f ′,g′)

(4)

(To see this, note that the diagram commutes on the nose when (f ′,g′) is the identity; thus there is a
sequential J-term witnessing the two composites are isomorphic, and hence equal by 1-truncation.)

Now consider the following diagram:

a · (f ′f)
γ(f ,f ′)

// a · f · f ′ a†(f ,g)·f ′

//

(a·f)†(f ′,g′)
��

a · (f ,g) · f ′ h·f ′

//

(a·(f ,g))†(f ′ ,g′)
��

a′ · f ′

a′†(f ′,g′)
��

a · f · (f ′,g′)
(a†(f ,g))·(f ′ ,g′)

// a · (f ,g) · (f ′,g′)
h·(f ′,g′)

// a′ · (f ′,g′)
h′

// a′′

The two squares commute by naturality of the operation − † (f ′,g′) (which is established by the
same standard argument again). Now one way around the diagram corresponds to the composite

τΓ;∆;A

(

f ′,g′, h′
)

◦ τΓ;∆;A

(

f ,g, h
)

=
(

f ′, h′ ◦ a′ † (f ′,g′)
)(

f , h ◦ a′ † (f ,g)
)

=
(

f ′f , h′ ◦ a † (f ′,g′) ◦ ((h ◦ a † (f ,g)) · f ′) ◦ γ(f ,f ′)
)

=
(

f ′f , h′ ◦ a † (f ′,g′) ◦ (h · f ′) ◦ (a † (f ,g) · f ′) ◦ γ(f ,f ′)
)

Moreover, the following calculation shows that the other way around the diagram corresponds
to τΓ;∆;A

(

(f ′,g′, h′) ◦ (f ,g, h)
)

:

τΓ;∆;A

(

(f ′,g′, h′) ◦ (f ,g, h)
)

= τΓ;∆;A

(

f ′f ,g′ ◦f ,f ′) g), h
′ ◦(f ,g),(f ′,g′) h

)

=
(

f ′f , h′ ◦(f ,g),(f ′,g′) h ◦ a † (f ′f ,g′ ◦f ,f ′ g)
)

=
(

f ′f , h′ ◦ (h · (f ′,g′)) ◦ γ((f ,g), (f ′,g′)) ◦ a † (f ′f ,g′ ◦f ,f ′ g)
)

=
(

f ′f , h′ ◦ (h · (f ′,g′)) ◦ (a † (f ,g)) · (f ′,g′) ◦ (a · f) † (f ′,g′) ◦ γ(f ,f ′)
)

where the last step uses the commutativity of (4). This concludes the proof that τ is functorial.
We also observe:
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Lemma 3.1. There is a pullback diagram

|Γ,∆, x : A| |Γ, x : A|
τΓ;∆;A

//|Γ,∆, x : A|

|Γ,∆|
��

|Γ,∆| |Γ|.//

|Γ, x : A|

|Γ|.
��

(5)

Proof. This is straightforward: given a groupoid H and functors L : H → |Γ,∆|,M : H → |Γ, x : A|
making the outer diagram commute, we define K : H → |Γ,∆, x : A| by K(u) = (c,d, a), where
L(u) = (c,d) and M(u) = (c, a). For an arrow l : u→ v in H, define

K(l) = (f ,g, h ◦ (a † (f ,g))−1)

where L(l) = (f ,g) and M(l) = (f , h). �

3.5. Generalized form. We shall have the need for a slightly more general form of weakening
than the one described above, namely:

Γ,Θ ⊢ ∆ ⊢

Γ,∆,Θ ⊢

In this situation, we wish to define a functor

τΓ;∆;Θ : |Γ,∆,Θ| → |Γ,Θ|

which fits into a pullback square

|Γ,∆,Θ| |Γ,Θ|
τΓ;∆;Θ

//|Γ,∆,Θ|

|Γ,∆|
��

|Γ,∆| |Γ|.//

|Γ,Θ|

|Γ|.
��

(6)

This is done by induction on the length of Θ, where the base case has been addressed in the
previous section. For the inductive case, we assume that we have defined τΓ;∆;Θ : |Γ,∆,Θ| → |Γ,Θ|
(fitting into the appropriate pullback square) and now need to define τΓ;∆;Θ,A : |Γ,∆,Θ, x : A| →
|Γ,Θ, x : A|. This is done, mutatis mutandis, in much the same way as the simpler case in the
previous section: on objects, the functor sends an object (c,d,e, a) to (c,e, a). For a morphism
(f ,g,k, h) : (c,d,e, a) → (c′,d′,e′, a′), we note first that by inductive hypothesis we are given

e † (f ,g) : e · f → e · (f ,g).

Then there is a canonical term

a † (f ,g,k) : a · (f ,k · e † (f ,g)) → a · (f ,g,k)

(which is defined by an appropriate J-term). Then the action of τΓ;∆;Θ,A : |Γ,∆,Θ, x : A| →
|Γ,Θ, x : A| on the morphism (f ,g,k, h) is defined to be (f ,k · e † (f ,g), h · a † (f ,g,k)), and we
obtain a pullback square

|Γ,∆,Θ, x : A| //

��

|Γ,Θ, x : A|

��

|Γ,∆,Θ| // |Γ,Θ|

The result then follows from elementary properties of pullbacks. We note for future reference the
following special case:

14



Lemma 3.2. Let Γ and ∆ be valid contexts, and let Γ ⊢ A be a type judgement. Then the weakening

functors |∆,Γ| → |Γ| and |∆,Γ, x : A| → |Γ, x : A| fit into a pullback diagram

|∆,Γ, x : A| //

��

|Γ, x : A|

��

|∆,Γ| // |Γ|

We remark that the substitution functors satisfy a coherence principle: any diagram built up
out of these functors will automatically be commutative. On objects, this is virtually immediate
from the definition of these functors, while on arrows it is a consequence of 1-truncation.

3.6. Substitution. We next introduce a family of functors which form the categorical counterpart
of substitution. Consider a substitution instance

Γ ⊢ a : A Γ, x : A,∆ ⊢

Γ,∆[a/x] ⊢ .

Given this data, we will define a functor

σΓ;a;∆ : |Γ,∆[a/x]| → |Γ, x : A,∆|. (7)

To this end, we first recall from Section 3.3 that the judgement Γ ⊢ a : A gives a functor
|a| : |Γ| → |Γ, x : A| which sends an object c to (c, a(c) and which acts on morphisms by sending
h : c → d to (h, a|h), where a|h : a(c) · h → a(d).

Therefore to define the functor σΓ;a;∆, we set

σΓ;a;∆(c,d) =def (c, a(c),d).

To define the action on morphisms, we proceed by induction on the length of the context, first
assuming that ∆ = (v1 : B1). Consider a morphism (f , g) : (c, d1) → (c′, d′1). Of course the first
two components of σΓ;a;∆(f , g) should be f and a|f . The third component should thus be of the
form d1 · (f , a|f) → d′1.

Now d1 is an object of |B1(c, a(c))|, so that d1 · (f , a|f) is an object of |B1(c
′, a(c′))|. Note first

that there is a comparison isomorphism

d1 ‡ f : d1 · (f , a|f) → d1 · f

in |B1(c
′, a(c′))|, arising by taking the parameterized sequential J-term

Γ̃, u1 : B1(x, a(x)) ⊢ B1(x, a(x))(u1 · (z, a|z), u1 · z)

Γ, u1 : B1(x, a(x)) ⊢ r(u1) : B1(x, a(x))(u1, u1)

f : c → c′

u1 : B1(c, a(c)) ⊢ Jσ(r(u1), c, c
′,f , u1) : B1(c, a(c))(u1 · (f , a|f), u1 · f)

(where we schematically denote the variables in Γ̃ by x,y and z) and setting u1 =def d1.

Lemma 3.3. The family of morphisms − ‡ f is natural in its first argument.

Proof. Given g1 : d1 → d′1, we note that there is a propositional equality in the naturality square

d1 · (f , a|f)
g1·(f ,a|f)

//

d1‡f

��

d′1 · (f , a|f)

d′1‡f

��

d1 · f
g1·f

// d′1 · f

Thus by 1-truncation, the square commutes. �
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We now set σΓ;a;∆(f , g1) = (f , a|f , g1 ◦ d1 ‡ f), where the last component is the composite

d1 · (f , a|f)
d1‡f

// d1 · f
g1

// d′1

Lemma 3.4. As defined, σΓ;a;∆ : |Γ,∆[a/x]| → |Γ, x : A,∆| is functorial.

Proof. Consider, in addition to (f , g1) : (c, d1) → (c′, d′1), another morphism (f ′, g′1) : (c′, d′1) →
(c′′, d′′1), giving rise to a composite (f ′f , g′1 ◦f ,f ′ g1).

Consider the diagram

d1 · (f , a|f) · (f
′, a|f ′)

d1‡f ·(f ′,a|f ′)
// d1 · f · (f ′, a|f ′)

g1·(f ′,a|f ′)
//

(d1·f)‡f ′

��

d′1 · (f
′, a|f ′)

d′1‡f
′

��

d1 · (f
′f , a|f ′f)

d1‡f ′f

//

γ

OO

d1 · f · f ′

g1·f ′

// d′′1 · f
′

g′1

// d′′1

The vertical left-hand map is the coherence isomorphism for the action of |Γ, x : A ⊢ ∆|. The
right-hand square commutes by naturality of ‡. The left-hand square can also be seen to commute
using the by now familiar argument: when f ′ is a reflexivity, the square commutes, and hence there
is a propositional identity, and by 1-truncation, an identity between the two composites.

The composite starting with γ, going along the top and then down is equal to σΓ;a;∆(f
′, g′1) ◦

σΓ;a;∆(f , g1), while the bottom composite is σΓ;a;∆(f
′f , g′1 ◦f ′,f g1). �

Next, we use the same construction (but with extra parameters d1, d
′
1, g1) to get a comparison

morphism

d2 ‡ (f , g1) : d2 · (f , a|f , g1 ◦ (d1 ‡ f)) → d2 · (f , g1).

Thus we put σΓ;a;∆(f , g1, g2) = (f , a|f , g1 ◦d1 ‡f , g2 ◦d2 ‡ (f , g1)). In general we have a comparison
isomorphism

dm+1 ‡ (f ,g) : dm+1 · (f , a|f ,g ◦ (d ‡ (f ,g))) → dm+1 · (f ,g)

(where now the list g = (g1, . . . , gm)) and therefore we put

σΓ;a;∆(f ,g) =def (f , a|f ,g ◦ (d ‡ (f ,g))).

In much the same manner as in the base case we can now show that −‡ (f ,g) is natural in its first
argument, and that σΓ;a;∆, as defined, is functorial.

For future reference, we also collect the following fact about the substitution functors.

Lemma 3.5. The functor σΓ;a;∆ fits into a pullback square

|Γ,∆[a/x]|
σΓ;a;∆

//

��

|Γ, x : A,∆|

��

|Γ|
|a|

// |Γ, x : A|

Moreover, given an extended context Γ, x : A,∆,∆′, we have a pullback square

|Γ,∆[a/x],∆′[a/x]|
σΓ;a;∆,∆′

//

��

|Γ, x : A,∆,∆′|

��

|Γ,∆[a/x]|
σΓ;a;∆

// |Γ, x : A,∆|
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Proof. It is clear that the square commutes. Given a groupoid H and functors L : H → |Γ|,
M : H → |Γ, x : A,∆| making the outer diagram commute, define K : H → |Γ,∆[a/x]| by
K(u) = (c,d), where L(u) = c and M(u) = (c, a(c),d). For an arrow l : u→ v in H define

K(l) =def

(

f , a|f ,g ◦ (d ‡ (f ,g))
)

,

where L(u) = f , and K(u) = (f , a|f ,g).
The second claim is immediate from elementary properties of pullback squares. �

3.7. Syntactical groupoid CwF. Our last aim for this section is to organize the groupoids and
pseudo-functors associated to contexts and types into a genuine model of the type theory.

Write Cont for the category of contexts and context morphisms. This is the underlying cat-
egory of a CwF, the syntactic model of the 1-truncated type theory (see [5]). We shall use the
constructions from the previous section to define a functor | − | : Cont → Gpd.

To a context Γ = (x1 : T1, . . . , xk : Tk) we associate the syntactic groupoid |Γ|. Next suppose
that we are given another context ∆ and a context morphism m : ∆ → Γ, i.e., we have a sequence
of derivable term judgements

∆ ⊢ m1 : T1

∆ ⊢ m2 : T2[m1/x1]

...

∆ ⊢ mk : Tn[m1/x1, . . . ,mk−1/xk−1].

Then we wish to construct a functor

|m| : |∆| → |Γ|.

To this end, first note that the terms mi induce sections |mi| of the appropriate projections. These
fit together in the following manner (illustrated for the case k = 3):

|∆|
|m3|

//

=
''❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖ |∆, x3 : T3[m1,m2]|

��

// |∆, x2 : T2[m1], x3 : T3[m1]| //

��

|∆, x1 : T1, x2 : T2, x3 : T3|

��

|∆|

=

**❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱
|m2|

// |∆, x2 : T2[m1]| //

��

|∆, x1 : T1, x2 : T2|

��

|∆|
|m1|

//

=

++❲❲
❲❲❲❲

❲❲❲
❲❲❲

❲❲❲❲
❲❲❲

❲❲❲
❲❲❲❲

❲❲ |∆, x1 : T1|

��

|∆|

Here the squares are pullbacks (cf. Lemma 3.5). Generally, given m : ∆ → Γ, we denote by |m|
the composite

17



|∆|

|mk|
��

|∆, xk : Tk[m1, . . . ,mk−1]|

σ∆;mk−1;Tk

��

|∆, xk−1 : Tk−1[m1, . . . ,mk−2], xk : Tk[m1, . . . ,mk−2]|

��

...

��

|∆,Γ|

Then we define the functor |m| associated to the context morphism m to be the composite

|∆|
|m|

// |∆,Γ|
τ∆;Γ

// |Γ|

where τ∆;Γ is the weakening functor described in section 3.5.
Just as a single term ∆ ⊢ a : T induces substitution functors σ∆;a;Θ : |∆,Θ[a/x]| → |∆, x : A,Θ|,

a context morphism m : ∆ → Γ also induces substitution functors σ∆;m;Θ : |∆,Θ[m/x]| →
|∆,Γ,Θ| fitting into a pullback square

|∆,Θ[m]|
σ∆;m;Θ

//

��

|∆,Γ,Θ|

��

|∆|
m

// |∆,Γ|

These functors can also be defined explicitly, in a manner very similar to that of the usual substi-
tution functors; the details are left to the reader.

Proposition 3.6. The above definitions give a functor | − | : Cont → Gpd.

Proof. Given two composable context morphisms n : Θ → ∆ and m : ∆ → Γ, we have, on the one
hand, the composite functor

|Θ|
|m|

// |Θ,∆|
τΘ;∆

// |∆|
|n|

// |∆,Γ|
τ∆;Γ

// |Γ|

On the other hand, we have the functor associated to the composite context morphism m[n/x],
which has the form

|Θ|
|m[n/x]|

// |Θ,Γ|
τΘ;Γ

// |Γ|.

18



In order to show that these are equal, consider the diagram

|Θ|
|n|

//

|m[n/x]|
��

|Θ,∆|
τΘ;∆

//

|m|
��

|∆|

|m|
��

|Θ,Γ|
σΘ;n;Γ

//

��

|Θ,∆,Γ|
τΘ;∆,Γ

//

��

|∆,Γ|
τ∆;Γ

//

��

|Γ|

|Θ|
|n|

// |Θ,∆| τΘ;∆

// |∆|

(We have overloaded the notation |m|; the middle vertical arrow is the weakened version.) All
squares are pullbacks by general properties of substitution and weakening functors. Moreover, the
vertical composites are identities. The result now follows from the commutativity of

|Θ,Γ|
σΘ;n;Γ

//

τΘ;Γ

��

|Θ,∆,Γ|

τΘ;∆,Γ

��

|Γ| |∆,Γ|τ∆;Γ

oo

which is a consequence of 1-truncation. �

We next use the functor | − | : Cont → Gpd to transfer the additional CwF-structure on the
category Cont of contexts to the category of groupoids; more precisely, we shall define a CwF-
structure on the image of the functor | − |. We shall write SyntGpd for the image of the functor
| − |. Its objects and arrows will be referred to as syntactic groupoids and syntactic functors,
respectively.

Theorem 3.7. The category SyntGpd is the underlying category of a CwF, and the functor

| − | : Cont → SyntGpd →֒ Gpd induces an isomorphism of CwFs.

Since the functor | − | is faithful and injective on objects, it is immediate that its image can be
made into a CwF which is isomorphic to Cont. However, as we shall now explain, more can be said,
since the CwF structure on the image can be given directly through more intuitive constructions.

Given a syntactic context |Γ|, the collection of types over |Γ| is that of the syntactic model, i.e. it
is the set of types A in context Γ. As described in section 2, such a type gives rise to a pseudofunctor
|Γ| → Gpd, whose Grothendieck construction defines the syntactic groupoid |Γ, x : A|, with first
projection p : |Γ, x : A| → |Γ|. Then by a syntactic section of p we mean a section of p which
is actually a context morphism. It is easily seen that such a section corresponds uniquely to the
interpretation of a definitional equality class of terms Γ ⊢ t : A. We thus may define a term over
Γ ⊢ A to be such a syntactic section.

For later use we alse record the following easy lemma, the proof of which is easily extracted from
the calculations done so far:

19



Lemma 3.8. Given a context morphism m : ∆ → Γ and a term Γ ⊢ t : A we have a diagram

|∆|

t[m/x]
��

m // |Γ|

|t|
��

|∆, x : A[m/x]|

��

// |Γ, x : A|

��

|∆|
m

// |Γ|

in which the squares are pullbacks and the vertical composites are the identity.

4. The model

Throughout this section, we work with a fixed theory of the form T1[G], where G is a graph. In
the previous section, we have organized syntactic groupoids into a model in the form of a category
with families. In this section, we extend this model by adding a notion of realizer. We first explain
the general form the resulting CwF will take, and then investigate the semantic type formers one
by one.

4.1. The Realizability CwF. So far we have constructed a category with families SyntGpd of
syntactic groupoids. This is a sound and complete model of the 1-truncated type theory, but for us
it is only an intermediate step, as we shall now glue this model with a notion of realizability. This
model shall again take the form of a CwF. For clarity, we stress that the CwF SyntGpd, even
though the underlying category is a subcategory of the category of groupoids, has a CwF structure
which does not agree with the Hofmann-Streicher model on the category of groupoids.

The underlying category of the realizability CwF will be called V, and it is defined as follows:

Objects: cloven fibrations C → |Γ|, where Γ is a context and C is a groupoid.
Morphisms: are pairs (F, |m|) forming commutative squares

C //

F
��

|Γ|

|m|
��

D // |∆|

Thus, V is the full subcategory on the gluing of | − | : SyntGpd → Gpd determined by the
cloven fibrations. In what follows, we shall often denote a typical object of V by πΓ : [[Γ]] → |Γ|,
and a typical morphism from πΓ to π∆ by ([[m]], |m|). Of course, the domain of an object in V is
not necessarily determined in any way by its codomain, but the objects which arise by successive
applications of comprehension will be determined completely by their syntactic part. Anticipating
the format of the interpretation even more, we will write the objects of [[Γ]] as (c,γ), where c is an
object of the groupoid |Γ| and γ is an object in the fiber of πΓ over c.

We note that V has a terminal object, namely the identity morphism on the terminal groupoid,
written [[()]] → |()|.

The CwF we now define will be called Real(R), where R : |G| → Set is a basic notion of realizer
(see section 2 for a discussion).

Underlying category: the category V;
Semantic Types: Given a semantic context πΓ : [[Γ]] → |Γ|, a semantic type over πΓ consists

of the following data:
• A type Γ ⊢ A in context Γ.
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• A functor [[Γ ⊢ A]] : ‖Γ, x : A‖ → Set, where ‖Γ, x : A‖ is the groupoid arising in the
following pullback:

‖Γ, x : A‖ //

��

|Γ, x : A|

��

[[Γ]] πΓ

// |Γ|

We denote such a type by (Γ, x : A,), where  is the functor ‖Γ, x : A‖ → Set.
Instead of τ ∈(c,γ, a) we write

τ (c,γ) a : A(c)

or, when no confusion will result, simply τ γ a : A(c).
Comprehension: Given a semantic type (Γ, x : A,), its comprehension consists of the

fibration [[Γ, x : A]] → |Γ, x : A|, where the domain is the Grothendieck construction of the
functor . Then the fibre of the projection [[Γ, x : A]] → [[Γ]] over an object (c,γ) consists
of objects of the form (c,γ, a, α) where (c, a) is an object of |Γ, x : A| and α (c,γ) a : A.

Type Substitution: Given a semantic context morphism ([[m]], |m|) : (π∆ : [[∆]] → |∆|) →
(πΓ : [[Γ]] → |Γ|) and given a semantic type (Γ, x : A,) as above, we consider the diagram

‖Γ, x : A‖ //

��

|Γ, x : A|

��

‖∆, x : A[m]‖ //

��

σ̂m;A

77♥
♥

♥
♥

♥
♥

|∆, x : A[m]|

��

σm;A

77♦♦♦♦♦♦♦♦♦♦♦

[[Γ]] // |Γ|

[[∆]] //

[[m]]

77♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥
|∆|

|m|

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦

(8)

in which the bottom square commutes because ([[m]], |m|) is a morphism, the right-hand
square is a pullback by virtue of the properties of the substitution functors, and the front
and back squares are pullbacks by definition. Thus there is a unique mediating arrow
σ̂m;A : ‖∆, x : A[m]‖ → ‖Γ, x : A‖ making the left hand square a pullback. We then define
the composite

‖∆, x : A[m]‖
τ̂m;A

// ‖Γ, x : A‖
 // Set

to be the realizer functor associate to the reindexed type. Note that as a consequence, we
have a pullback square

[[∆, x : A[m]]]
τm;A

//

��

[[Γ, x : A]]

��

[[∆]]
[[m]]

// [[Γ]]

(9)

The functor τm;A sends an object (d, δ, a, α) to (m[d/x],m[δ], a, α), where [[m]](d, δ) =
(m[d/x],m[δ]).

Semantic Terms: Given a type (Γ, x : A,) as above, we have the induced projection fibra-
tion [[Γ, x : A]] → [[Γ]]; then a semantic term is a section [[s]] of this fibration which descends
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to a syntactic section, in the sense that there is a syntactic section |s| : |Γ| → |Γ, x : A|
making the following diagram commute:

[[Γ, x : A]] // ‖Γ, x : A‖ // |Γ, x : A|

[[Γ]]

[[s]]

ff▼▼▼▼▼▼▼▼▼▼▼▼

πΓ

// |Γ|

|s|

OO

I.e., a term is simply given by a section of the corresponding display map in the category
V. We will write

[[t]](c,γ) = (c,γ, t(c), t[γ])

to denote the action of such a section.
Term Substitution: Given a semantic term ([[s]], |s|) as above, and given a context morphism

([[m]], |m|) from (π∆ : [[∆]] → |∆|) to (πΓ : [[Γ]] → |Γ|), note first that since the diagram (9)
is a pullback, the section [[s]] induces a section of [[∆, x : A[m]]] → [[∆]]. This is easily seen
to descend to the induced section of |∆, x : A[m]| → |∆|.

We first note that while in the above formulation pullbacks are used to define substitution for
types and for terms, these are pullbacks of cloven fibrations, so there is no concern about coherence.
We have:

Proposition 4.1. Under the above definitions, Real(R) is a category with families.

The generating type G is interpreted in Real(R) using the notion of realizer R, as in

[[x : G]] =
∫

R

��

‖x : G‖
= //

��

|x : G|

��

[[()]]
= // |()|.

For future reference, we also record the following immediate consequence of the definition, which
describes the effect of term substitution in terms of realizers:

Lemma 4.2. For a context morphism [[m]] : [[∆]] → [[Γ]], a type Γ ⊢ A and an object (d, δ) of [[∆]],
we have

τ δ a : A[m] iff τ m[δ] a : A[m]

The remainder of this section is dedicated to the proof of the main result:

Theorem 4.3. Let G be a graph, and let R : |G| → Set be a notion of realizer for which basic

terms have realizers, stable under reindexing. Then the CwF Real(R) is a sound and complete

model of T1[G].

Of course, completeness is a trivial consequence of the fact that the model contains a full and
faithful copy of the syntactic model.
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4.2. Semantic product types. Consider a context [[Γ]], a type A over this context with compre-
hension [[Γ, x : A]] and furthermore a type B over this comprehension, giving a further comprehen-
sion [[Γ, x : A, y : B(x)]]. Thus we have a diagram

[[Γ, x : A, y : B(x)]] //

��

[[Γ, x : A]]

��

// [[Γ]]

��

|Γ, x : A, y : B(x)| // |Γ, x : A| // |Γ|.

We need to define the semantic dependent product type in context [[Γ]]. This we take to consists
first of the syntactic type Γ ⊢

∏

x:AB(x), giving rise to the pullback diagram

‖Γ, v :
∏

x:AB(x)‖ //

��

|Γ, v :
∏

x:AB(x)|

��

[[Γ]] // |Γ|.

Second, we must specify the realizability presheaf

‖Γ, v :
∏

x:A

B(x)‖ → Set.

To this end, consider an object (c,γ) of [[Γ]]; we have associated groupoids

[[Γ, x : A]](c,γ) and [[Γ, x : A, y : B(x)]](c,γ)

obtained as the fibres of [[Γ, x : A]] → [[Γ]] and [[Γ, x : A, y : B(x)]] → [[Γ]] over (c,γ). Given an
object (c,γ, f) of ‖Γ, v :

∏

x:AB(x)‖, we define

φ γ f :
∏

x:A(c)

B(c, x)

when φ is a section

[[Γ, x : A]](c,γ) [[Γ, x : A, y : B(x)]](c,γ)
φ

//[[Γ, x : A]](c,γ)

[[Γ, x : A]](c,γ)

=
##●

●●
●●

●●
●

[[Γ, x : A, y : B(x)]](c,γ)

[[Γ, x : A]](c,γ)
{{✇✇
✇✇
✇✇
✇✇

of the canonical projection satisfying the conditions that

φ(a, α) =
(

a, α, app(f, a), φ{α}
)

, and

φ(m) =
(

m, app(f, x)|(1c,m)
)

,

for α γ a : A(c) and m : a → a′ in |A(c)|. Thus, φ sends realizers α of a to realizers φ{α} of
app(f, a) in a functorial way. In particular, φ must satisfy the condition that

φ{α} ·
(

1c,m, app(f, x)|(1c,m)
)

= φ{α · (1c,m)} (10)

for every arrow m : a→ a′ in |A(c)| and α γ a : A(c).
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4.2.1. Reindexing. We must also define a functorial action on these realizers. To this end, sup-
pose we are given, in addition to φ as above, a morphism (h,m) : (c,γ, f) → (c′,γ ′, f ′) in
‖Γ, v :

∏

x:AB(x)‖. We must then define a realizer

φ · (h,m) γ ′ f ′ :
∏

x:A(c′)

B(c′, x).

First, if α γ ′ a : A(c′), then we have, by the functorial action on the realizer α, that
α · (h−1, 1a·h−1) γ a · h

−1 : A(c). But then

φ
{

α · (h−1, 1a·h−1)
}

γ,α·(h−1,1
a·h−1) app(f, a · h

−1) : B(c, a · h−1).

Now, we observe that the diagram

(c′,γ ′, a) (c,γ, a · h−1)
(h−1,1

a·h−1)
//(c′,γ ′, a)

(c′,γ ′, a)

1(c′,a) !!❈
❈❈

❈❈
❈❈

❈
(c,γ, a · h−1)

(c′,γ ′, a)

(h,ι(h)a)}}④④
④④
④④
④④

commutes, where we denote the coherence isomorphism (a · h−1) · h → a by ι(h)a. It follows from
this that there is a morphism

(h, ι(h)a) :
(

c,γ, a · h−1, α · (h−1, 1a·h−1)
)

→
(

c′,γ ′, a, α
)

in [[Γ, x : A]]. Moreover, in ‖Γ, x : A, y : B(x)‖ we have an arrow

ζ :

(

c,γ, a · h−1, α · (h−1, 1a·h−1), app(f, a · h−1)

)

→
(

c′,γ ′, a, α, app(f ′, a)
)

(11)

given by

ζ =def (h, ι(h)a, J(r(app(v, a)), f · h, f ′,m) ◦ Jσ(r(app(u, x)), c, c′,h, a, f))

where Jσ(r(app(u, x)), c, c′,h, a, f) is the term

Γ̃, x : A(w), u :
∏

x:A(v)B(v, x) ⊢ B(w, x)
(

app(u, x · z−1) · (z, ι(z)x), app(u · z, x)
)

Γ, x : A(v), u :
∏

x:A(v)B(v, x) ⊢ r(app(u, x)) : B(v, x)
(

app(u, x), app(u, x)
)

Jσ(r(app(u, x)), c, c′,h, a, f) : B(c′, a)
(

app(f, a · h−1) · (h, ι(h)a), app(f · h, a)
)

and J(r(app(v, a)), f · h, f ′,m) is the term

v,w :
∏

x:A(c′)B(c′, x), z :
∏

x:A(c′)B(c′, x)(v,w) ⊢ B(c′, a)(app(v, a), app(w, a))

v :
∏

x:A(c′)B(c′, x) ⊢ r(app(v, a)) : B(c′, a)(app(v, a), app(v, a))

J(r(app(v, a)), f · h, f ′,m) : B(c′, a)(app(f · h, a), app(f ′, a))

Finally, we then have that

φ
{

α · (h−1, 1a·h−1)
}

· ζ c′,γ ′,a,α app(f ′, a) : B(c′, a).

As such, we define φ · (h,m) by
(

φ · (h,m)
)

(a, α) =def

(

a, α, app(f ′, a), φ
{

α · (h−1, 1a·h−1)
}

· ζ
)

We leave to the reader the tedious but straightforward verification that this is indeed functorial.
Moreover, the construction of the dependent product types is stable under substitution: given a
context morphism ([[m]], |m|) : ([[∆]] → |∆) → ([[Γ]] → |Γ|), we must verify that the reindexing of
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[[Γ, v :
∏

x:AB(x)]] along [[m]] agrees with the dependent product of the reindexed [[∆, x : A[m], y :
B[m]]]. It suffices to show that the diagram

‖∆, v :
∏

A[m]B[m]‖ //



))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙

‖Γ, v :
∏

AB‖



��

Set

commutes. But this is an immediate consequence of the fact that the diagram

[[∆, x : A[m], y : B[m]]] //

��

[[Γ, x : A, y : B]]

��

[[∆, x : A[m]]] // [[Γ, x : A]]

is a pullback, as this guarantees, for each object (d, δ) of [[∆]], a bijective correspondence be-
tween sections of [[∆, x : A[m], y : B[m]]](d,δ) → [[∆, x : A[m]]](d,δ) and sections of [[Γ, x : A, y :
B]](m(d),m[δ]) → [[Γ, x : A]](m(d),m[δ]).

Proposition 4.4. The CwF Real(R) supports dependent products.

Proof. We have detailed the semantic type formation; what remains is to construct the appropriate
abstraction and application terms and show that these have the requisite properties.

First, consider a semantic term s of type ([[Γ, x : A]],Γ, x : A ⊢ B(x)). Then s = ([[s]], |s|), where
[[s]] : [[Γ, x : A]] → [[Γ, x : A, y : B(x)]] is the section of the appropriate projection, and |s| is the
corresponding syntactic section. We must define a term of dependent product type, i.e. a section
of the projection

[[Γ,
∏

x:A

B(x)]] → [[Γ]].

Given (c,γ) an object of [[Γ]] and (c,γ, a, α) an object of [[Γ, x : A]] we need to define λx:As[γ].
In particular, we require a realizer

(

λx:As[γ]
)

{α} γ,α app(λx:As(c), a) : B(c, a).

As such, we define
(

λx:As[γ]
)

{α} =def s[γ, α].

This satisfies the coherence condition for realizers of terms of dependent product type since [[f ]]
satisfies the corresponding coherence property. To see that [[λx:As]] is functorial note that

λx:As[γ] · (h, λx:As|h){α} = λx:As[γ]
{

α · (h−1, 1a·h−1)
}

·
(

h, ι(h)a, ζ
)

= s[γ, α · (h−1, 1a·h−1)] · (h, ι(h)a, s|(h, ι(h)a)

= s[γ ′, α]

= λx:As[γ
′]{α},

where ζ is the morphism defined in (11) and where the third equation is by functoriality of [[s]].
Finally, suppose we are given a term f :

∏

x:AB(x) and a term a : A, both in context Γ. Then
we need to give the application term. For this, suppose given (c,γ) in [[Γ]], then we have

f [γ]
{

a[γ]
}

γ,a[γ] app(f(c), a(c)) : B(c, a(c))

and so we define

app(f, a)[γ] =def f [γ]
{

a[γ]
}

.

That this definition is functorial is then immediate.
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Given these definitions, the equations which are required to hold for these application and ab-
straction terms are straightforwardly verified. �

4.3. Semantic identity types. We now turn to the interpretation of identity types. Since we
work in the 1-truncated version of the type theory, realizers of terms of identity type will be unique
when they exist, and merely serve as a characteristic function for the graph of the functorial action
on realizers, in the sense that a term f : A(a, b) is realized (relative to realizers α  a : A, β  b : A)
if and only if α ·f = β. The only complication is the elimination rule, which requires us to construct
a realizer for J-terms. This is taken care of by using the fact that there exists a morphism from
φ(a) to the elimination term J(φ, a, b, f); we may then use the functorial action on realizers to turn
a realizer of φ(a) into one of J(φ, a, b, f).

4.3.1. Identity type formation. Consider a semantic context [[Γ]] → |Γ|, and a type (Γ, x : A,) in
context Γ, giving a context extension [[Γ, x : A]]. In order to describe the identity type associated
to this data, we will first given an explicit description of the groupoid ‖Γ, x, y : A, z : A(x, y)‖.

Objects: An object is a tuple (c,γ, a, α, b, β, f) such that
• (c,γ) is an object of [[Γ]];
• a, b are objects of the groupoid |A(c)|;
• α γ a : A(c);
• β γ b : A(c); and
• f : A(c)(a, b).

Note that it is not required that α · f = β.
Arrows: An arrow (c,γ, a, α, b, β, f) → (c′,γ ′, a′, α′, b′, β′, f ′) is a tuple (h,m, n, l) such that

• h : (c,γ) → (c′,γ ′) is a morphism in [[Γ]];
• m : a · h → a′ in is a morphism in |A(c)| such that

α · (h,m) = α′
γ ′ a′ : A(c′);

• n is an arrow

b · (h,m) = |Γ, x : A ⊢ A|(h,m)(b) → b′

in |A(c)| such that

β · (h,m, n) = β′ γ ′ b′ : A(c′),

where we note that

β · (h,m, n) = [[Γ, x : A ⊢ A]](h,m,n)(β) = [[Γ ⊢ A]]τ̂Γ;x:A;A(h,m,n)(β); and

• l is a propositional equality witnessing the equation (via 1-truncation these are the
same)

f · (h,m, n) = |Γ, x, y : A ⊢ A(x, y)|(h,m,n)(f) = f ′.

Next, we define the functor [[Γ, x, y : A ⊢ A(x, y)]] assigning realizers to identity terms. Given an
object (c,γ, a, α, b, β, f), we set

γ,α,β f : A(c)(a, b) iff α · (1c, f) = β.

Thus, regarded as a presheaf, this functor is a subterminal presheaf, i.e. a subpresheaf of the
presheaf with constant value 1. When we need a name for the (by definition unique) realizer of f
we shall use the symbol ⋆. Note that when f is realized, then in particular

(1c, f) : (c,γ, a, α) → (c,γ, b, β)

is an arrow in [[Γ, x : A]].
We must check functoriality, which in this case amounts to showing that for an arrow
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(h,m, n, l) : (c,γ, a, α, b, β, f) → (c′,γ ′, a′, α′, b′, β′, f ′)

in ‖Γ, x, y : A ⊢ A(x, y)‖,

γ,α,β f : A(c)(a, b) implies γ ′,α′,β′ f ′ : A(c′)(a′, b′).

So assume that γ,α,β f : A(c)(a, b) holds. First, we observe that the diagram

(c,γ, a) (c′,γ ′, a′)
(h,m)

//(c,γ, a)

(c,γ, b)

(1c,f)

��

(c,γ, b) (c′,γ ′, b′)
τ̂Γ;x:A;A(h,m,n)

//

(c′,γ ′, a′)

(c′,γ ′, b′)

(1c′ ,f ·(h,m,n))

��

(c′,γ ′, a′)

(c′,γ ′, b′)

(1c′ ,f
′)

��

=

in ‖Γ ⊢ A‖ commutes. Thus, to see that γ ′,α′,β′ f ′ : A(c)(a′, b′) we reason as follows:

α′ · (1c′ , f
′) =

(

α · (h,m)
)

· (1c′ , f
′)

=
(

α · (1c, f)
)

· τ̂Γ;x:A;A(h,m, n)

= β · τ̂Γ;x:A;A(h,m, n)

= β′.

Finally, we must verify that this construction is stable under reindexing along context morphisms.
This amounts to verifying that, for a context morphism [[m]] : [[∆]] → [[Γ]], the diagram

‖∆, x, y : A[m], z : A[m](x, y)‖ //



,,❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
‖Γ, x, y : A, z : A(x, y)‖



��

Set

commutes. This, however, is an immediate consequence of the definition of the realizability relation
and the fact that the horizontal map induced by the context morphism [[m]] preserves the functorial
action on the realizers.

4.3.2. Introduction rule. Consider next the term formation rule

Γ ⊢ A

Γ, x : A ⊢ r(x) : A(x, x)

Given an object (c,γ, a, α) of [[Γ, x : A]] we must show that

γ,α r(a) : A(c)(a, a).

This holds if and only if

γ,α,α r(a) : A(c)(a, a)

which holds if and only if α · (1c, r(a)) = α. But the latter is trivially true.
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4.3.3. Elimination rule. Next, we treat the elimination rule

Γ, x, y : A, z : A(x, y) ⊢ B(x, y, z)

Γ, x : A ⊢ ϕ : B(x, x, r(x))

Γ, x, y : A, z : A(x, y) ⊢ J(ϕ, x, y, z) : B(x, y, z)

We assume given the interpretation of the judgement Γ, x, y : A, z : A(x, y) ⊢ B(x, y, z), and, given
an object (c,γ, a, α, b, β, f, ⋆) of [[Γ, x, y : A, z : A(x, y)]], a realizer ϕ[γ, α] γ,α ϕ(a) : B(a, a, r(a)).

We need to define a realizer ξ γ,α,β,⋆ J(ϕ, a, b, f) : B(a, b, f). Actually, we shall define a functor
which sends realizers ϕ[γ, α] to realizers ξ as above.

So consider an object (c,γ, a, α, b, β, f, ⋆) of [[Γ, x, y : A, z : A(x, y)]]. We begin by constructing
a map

(c,γ, a, α, a, α, 1a, ⋆) → (c,γ, a, α, b, β, f, ⋆)

in [[Γ, x, y : A, z : A(x, y)]]. For this, observe that there is a term

J(r(r(x)), a, b, f) : A(c)(a, b)
(

1a · (1a, f), f
)

and therefore a morphism

(1c, 1a, f, J(r(r(x)), a, b, f)) : (c,γ, a, α, a, α, 1a) → (c,γ, a, α, b, β, f)

in ‖x, y : A, z : A(x, y)‖, where we have used the fact that

α · (1c, 1a, f) = α · τ̂Γ;x:A;A(1c, 1a, f)

= α · (1c, f)

= β.

So we have constructed a morphism

(1c, 1a, f, J(r(r(x)), a, b, f)) : (c,γ, a, α, a, α, 1a, ⋆) → (c,γ, a, α, b, β, f, ⋆).

Then we observe that

J
(

r(ϕ(x)), a, b, f
)

: B(a, b, f)
(

ϕ(a) ·
(

1c, 1a, f, J(r(r(x)), a, b, f)
)

, J(ϕ, a, b, f)
)

,

and therefore we have an arrow

f ⊲ ϕ : (c,γ, a, α, a, α, 1a , ⋆, ϕ(a)) → (c,γ, a, α, b, β, f, ⋆, J(ϕ, a, b, f))

in ‖Γ, x, y : A, z : A(x, y), v : B(x, y, z)‖ given by

f ⊲ ϕ =def (1c, 1a, f, J(r(r(x)), a, b, f), J(r(ϕ(x)), a, b, f)).

Therefore,

ϕ[γ, α] · (f ⊲ ϕ) γ,α,β,⋆ J(ϕ, a, b, f) : B(c, a, b, f)

and we define

J(ϕ, a, b, f)[γ, α, β, ψ] =def ϕ[γ, α] · (f ⊲ ϕ).

It remains to be seen that this is functorial. Suppose given an arrow

θ = (h,m, n, l) : (c,γ, a, α, b, β, f, ⋆) → (c′,γ ′, a′, α′, b′, β′, f ′, ⋆).

Then to show functoriality we need to prove that

J(ϕ, a, b, f)[γ, α, β, ⋆] ·
(

θ, J(ϕ, a′, b′, f ′)|(h,m, n, l)
)

= J(ϕ, a′, b′, f ′)[γ ′, α′, β′, ⋆]. (12)
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Well, we first observe that there is a commutative square

(c, a, a, 1a, ϕ(a)) (c′, a′, a′, 1a′ , ϕ(a
′))

(h,m,m′,m′′,ϕ|(h,m,m′,m′′))
//(c, a, a, 1a, ϕ(a))

(c, a, b, f, J(ϕ, a, b, f))

f ⊲ ϕ

��

(c′, a′, a′, 1a′ , ϕ(a
′))

(c′, a′, b′, f ′, J(ϕ, a′, b′, f ′))

f ′ ⊲ ϕ

��

(c, a, b, f, J(ϕ, a, b, f)) (c′, a′, b′, f ′, J(ϕ, a′, b′, f ′))
(θ,J(ϕ,a,b,f)|θ)

//

(13)

where m′ is the composite, arising via weakening,

a · (h,m) a · h
a†(h,m)

// a · h a
m //

and similarly m′′ is

1a · (h,m,m
′) 1a · (h,m)
1a†(h,m,m′)

// 1a · (h,m) 1a′ .

Then, writing θ′ = (h,m,m′,m′′), we calculate

J(ϕ, a, b, f)[γ, α, β, ⋆] ·
(

θ, J(ϕ, a, b, f)|θ
)

= ϕ[γ, α] · (f ⊲ ϕ) · (θ, J(ϕ, a, b, f)|θ)

= ϕ[γ, α] · (θ′, ϕ|θ′) · (f ′ ⊲ ϕ)

= ϕ[γ, α] · (h,m, ϕ|(h,m)))

= ϕ[γ ′, α′] · (f ′ ⊲ ϕ)

= J(ϕ, a′, b′, f ′)[γ ′, α′, β′, ⋆].

Here, the first and last equalities are by definition of the realizers; the second equality is by
virtue of the fact that (13) commutes; the third equality is by the definition of weakening, and the
fourth is by functoriality of the action on realizers.

4.3.4. Conversion. The conversion rule

Γ, x : A ⊢ J(ϕ, x, x, r(x)) = ϕ

is trivially seen to be satisfied using the definitions given above.
This concludes the proof of:

Proposition 4.5. The CwF Real(R) supports identity types.

4.4. Semantic dependent sums. Consider a context [[Γ]], a type A over this context with com-
prehension [[Γ, x : A]] and furthermore a type B over this comprehension, giving a further compre-
hension [[Γ, x : A, y : B(x)]]. Thus we have a diagram

[[Γ, x : A, y : B(x)]] //

��

[[Γ, x : A]]

��

// [[Γ]]

��

|Γ, x : A, y : B(x)| // |Γ, x : A| // |Γ|.

We wish to define the semantic dependent sum type in context [[Γ]]. To this end, we first form the
syntactic type Γ ⊢

∑

x:AB(x), giving rise to the pullback diagram

‖Γ, v :
∑

x:AB(x)‖ //

��

|Γ, v :
∑

x:AB(x)|

��

[[Γ]] // |Γ|.
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We then must specify the realizability presheaf

‖Γ, v :
∑

x:A

B(x)‖ → Set.

For (c,γ) an object of [[Γ]], we define

υ γ p :
∑

x:A(c)

B(c, x)

if and only if υ is a pair (υ0, υ1) such that

υ0 γ π0(p) : A(c), and

υ1 γ,υ0 π1(p) : B(c, π0(p)).

4.4.1. Reindexing. Suppose we are given a map (h,m) : (c, γ, p) → (c′, γ′, p′) in the groupoid
‖Γ ⊢

∑

x:AB(x)‖ together with a realizer υ γ p :
∑

x:A(c)B(c, x). Then we have

υ0 · (h, ξ0) γ ′ π0(p
′) : A(c′)

where ξ0 is the composite

π0(p) · h π0(p · h)
J
σ(rπ0(v),c,c′,h,p)

// π0(p · h) π0(p
′)

J(rπ0(x),p·h,p′,m)
//

Similarly, we define ξ1 to be the composite

π1(p) · (h, ξ0)
ξ′

// π1(p · h) · (1c′ , J(rπ0x, p · h, p
′,m))

J(rπ0x,p·h,p′,m))
// π1(p

′)

where ξ′ = Jσ(rπ1(v) · (1x, J(rπ0x, v, w, u)), c, c
′, p).

Then we have that

υ1 · (h, ξ0, ξ1) γ ′,υ0·(h,ξ0) π1(p
′) : B(c′, π0(p

′))

and we define

υ · (h,m) =def

(

υ0 · (h, ξ0), υ1 · (h, ξ0, ξ1)
)

.

Functoriality of reindexing is a routine verification using the truncation rule.
Next, we must show that the formation of the dependent sum type is stable under substitution.

It suffices to show that, for a context morphism m : ∆ → Γ, the diagram

‖∆, v :
∑

A[m]B[m]‖ //


))❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙
‖Γ, v :

∑

AB‖



��

Set

is commutative. To this end, consider an object (d, δ, p) and note that we have

υ m[δ] p :
∑

x:A[m]

B[m] ⇔ υ0 m[δ] π0(p) : A[m] and υ1 m[δ],υ0 B[m](π0(p))

⇔ υ0 δ π0(p) : A and υ1 δ,υ0 π1(p) : B(π0(p))

where we have used Lemma 4.2 regarding the behavior of realizers under substitution.
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4.4.2. Introduction rule. For the introduction rule

Γ ⊢ a : A Γ ⊢ b : B(a)

Γ ⊢ pair(a, b) :
∑

x:AB(x)

we reason as follows. For an object (c,γ) of [[Γ]] we define

pair(a, b)[γ] =def (a[γ], b[γ]).

For the coherence property note that, given h : (c,γ) → (c′,γ ′), we have

pair(a, b)[γ] · (h, pair(a, b)|h) = (a[γ], b[γ]) · (h, pair(a, b)|h)

=
(

a[γ] · (h, ξ0), b[γ] · (h, ξ0, ξ1)
)

.

Since, in this case, the truncation rule gives that ξ0 = a|h and ξ1 = b|(h, ξ0), the required equation is
then immediate, and it also follows without difficulty that this term formation operation commutes
with substitution with respect to context morphisms.

4.4.3. Elimination rule. For the elimination rule

Γ, z :
∑

x:AB(x) ⊢ C(z) Γ, x : A, y : B(x) ⊢ ψ : C(pair(x, y))

Γ, z :
∑

x:AB(x) ⊢ R(ψ, z) : C(z)

we assume given (c,γ, p, υ) in [[Γ, z :
∑

x:AB(x)]]. Then

ψ[γ, υ0, υ1] γ,υ0,υ1 ψ(c, π0p, π1p) : C(c, pair(π0p, π1p)),

and so

ψ[γ, υ0, υ1] γ,υ ψ(c, π0p, π1p) : C(c, pair(π0p, π1p)).

Now, we have the term

Γ, z :
∑

x:AB(x) ⊢
∑

x:AB(x)
(

pair(π0z, π1z), z
)

Γ, x : A, y : B(x) ⊢ r(pair(x, y)) :
∑

x:AB(x)
(

pair(x, y), pair(x, y)
)

⊢ R(r(pair(x, y)), p) :
∑

x:A(c)B(c, x)
(

pair(π0p, π1p), p
)

Now, it is easily seen, by inspecting the definition of the reindexing action on realizers for dependent
sums, that in fact we have an arrow

(1c, R(r(pair(x, y), p)) : (c,γ, pair(π0p, π1p), υ) → (c,γ, p, υ)

in [[Γ ⊢
∑

x:AB(x)]](c,γ,p). Therefore,

ψ[γ, υ0, υ1] · (1c, R(rpair(x, y), p), R(rψ(c, π0z, π1z), p) γ,υ R(ψ, p) : C(c, p).

Here the term R(rψ(c, x, y), p) is constructed as follows:

z :
∑

x:A(c)B(c, x) ⊢ C(c, z)
(

ψ(c, π0z, π1z) · (1c, R(r(pair(x, y)), z)), R(ψ(c, x, y), z)
)

x : A, y : B(x) ⊢ rψ(c, x, y) : C(c, pair(x, y))
(

ψ(c, x, y), ψ(c, x, y)
)

⊢ R(rψ(c, x, y), p) : C(c, p)
(

ψ(c, π0p, π1p) · (1c, R(r(pair(x, y)), p)), R(ψ(c, x, y), p)
)

.

So we define

R(ψ, p)[γ, υ] =def ψ[γ, υ0, υ1] · (1c, R(rpair(x, y), p), R(rψ(c, π0z, π1z), p)
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4.4.4. Conversion rule. The conversion rule

Γ, x : A, y : B(x) ⊢ R(ψ, pair(x, y)) = ψ(x, y) : C(pair(x, y))

is trivial given the definitions above.
This concludes the proof of:

Proposition 4.6. The CwF Real(R) supports dependent sums.

4.5. Semantic natural numbers. Although it is in principle possible to consider different inter-
pretations of the type of natural numbers (when suitable notions of realizability are provided) we
will simply fix a uniform interpretation of natural numbers. Observe that, in the groupoid model
built over the free groupoid on G the type of natural numbers N is interpreted as the discrete
groupoid of natural numbers. In particular, in this interpretation, each t : N is sent to a genuine
(external) natural number nt. This nt can be represented by theoretically by the corresponding
number, which we denote by #(t). Thus, for t : N, we have a numeral #(t) : N. By the construction
of the groupoid model, this gives an endofunctor # : |N| → |N| and we define

τ  t : N if and only if τ : N(t,#t).

Note that for any f : N(s, t) we have #f = r(#s) since N is interpreted as a discrete groupoid under
the groupoid interpretation.

By the functoriality of # this determines the interpretation [[N]] of the type of natural numbers
in Real(R). Observe that #(n) = n when n is a numeral. The successor operation gives an endo-
functor |S| : |N| → |N| and, by inspection of the groupoid interpretation, this functor commutes with
# in the sense that # ◦ |S| = |S| ◦#. Using these facts it is possible to describe the interpretations
of the terms coming from the introduction rules. First, we take [[0]] to be given by the realizer
r(0)  0 : N. Next, given τ  t : N, we have, by the aforementioned facts, that |S|(τ)  S(t) : N. As
such, we take this term to be the realizer part of the interpretation of [[S(t)]]. The interpretation of
the elimination rule will require a little bit more care.

4.5.1. Elimination rule. We now will show that the elimination rule

Γ ⊢ b : B(0) Γ, x : N, y : B(x) ⊢ g(x, y) : B
(

S(x)
)

Γ, n : N ⊢ rec(b, g, n) : B(n)

is valid in the interpretation.
Let (c,γ, n, ν) in [[Γ, n : N]] be given. In what follows we will suppress c as much as possible in

order to avoid notational clutter.
We will construct the interpretation of the elimination term by induction on #n. In the base

case we take rec(b, g)[γ, ν] γ,ν rec(b, g, n) : B(c, n) to be given by

b[γ] ·
(

rec(b, g)|(1c, ν
−1)

)

γ,ν rec(n, b, g) : B(c, n).

When #n = S(m) for m a numeral, we have by induction hypothesis,

rec(b, g)[γ, r(m)] γ,r(m) rec(b, g, m) : B(c, m).

By the conversion rule rec(b, g, S(m)) = g(m, rec(b, g, m)) and therefore

g
[

γ, r(m), rec(b, g)[γ, r(m)]
]

γ,r(m),rec(b,g)[γ,r(m)] rec(b, g, S(m)) : B(c, S(m)),

which holds if and only if

g
[

γ, r(m), rec(b, g)[γ, r(m)]
]

γ,r(S(m)) rec(b, g, S(m)) : B(c, S(m)).

As such, we may define

rec(b, g, n)[γ] =def g
[

γ, r(m), rec(b, g)[γ, r(m)]
]

·
(

rec(b, g)|(1c, ν
−1)

)

γ,ν rec(n, b, g) : B(c, n).
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4.5.2. Conversion rule. The conversion rule rec(b, g, 0) = b is immediate. For the conversion rule

Γ, n : N ⊢ rec
(

b, g, S(n)
)

= g
(

n, rec
(

b, g, n
))

: B
(

S(n)
)

we proceed by induction on #n. In the base case, where #n = 0, we have

rec(b, g)[γ, |S|(ν)] = g
[

γ, r(0), b[γ]
]

·
(

rec(b, g)|(1c , |S|(ν)
−1)

)

= g
[

γ, r(0), b[γ]
]

·
(

g|(1c, ν
−1, rec(b, g)|(1c , ν

−1))
)

= g
[

γ, ν, b[γ] · (rec(b, g)|(1c, ν
−1))

]

= g
[

γ, ν, rec(b, g)[γ, ν]
]

,

where the penultimate equation is by functoriality of the interpretation of g and the equation

rec(b, g)|(1c, |S|(ν)
−1) = g|(1c, ν

−1, rec(b, g)|(1c, ν
−1))

is by 1-truncation. In the case where #n = S(m) for m the equation follows from the induction
hypothesis and the same reasoning as in the base case.

This completes the proof of:

Proposition 4.7. The CwF Real(R) supports the type of natural numbers.
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Appendix A. Rules of type theory

Structural rules.
Γ ⊢ J

(†)
∆,Γ ⊢ J

a : A x : A,∆ ⊢ B(x)

∆[a/x] ⊢ B(a)

a : A x : A,∆ ⊢ b(x) : B(x)

∆[a/x] ⊢ b(a) : B(a)

A
x : A,∆ ⊢ x : A

(†): J ranges over judgements and the variables declared in ∆ and Γ are disjoint.

Equality rules.
A

A = A
A = B
B = A

A = B B = C
A = C

a : A
a = a : A

a = b : A
b = a : A

a = b : A b = c : A
a = c : A

a = b : A x : A ⊢ B(x)

B(a) = B(b)

a = b : A x : A ⊢ f(x) : B(x)

f(a) = f(b) : B(a)

A = B a : A
a : B

Formation rules.
x : A ⊢ B(x)
∏

x:A
B(x)

x : A ⊢ B(x)
∑

x:A
B(x)

a, b : A

⊢ A(a, b) ⊢ N

Introduction rules.
x : A ⊢ f(x) : B(x)

λx:Af(x) :
∏

x:A
B(x)

a : A b : B(a)

pair(a, b) :
∑

x:A
B(x)

a : A
r(a) : A(a, a) 0 : N

n : N
S(n) : N

Elimination rules.
f :

∏

x:A
B(x) a : A

app(f, a) : B(a)

⊢ p :
∑

x:A
B(x) x : A, y : B(x) ⊢ ψ(x, y) : C

(

pair(x, y)
)

R
(

[x : A, y : B(x)]ψ(x, y), p
)

: C(p)

x : A, y : A, z : A(x, y) ⊢ B(x, y, z)

x : A ⊢ ϕ(x) : B
(

x, x, r(x)
)

f : A(a, b)

J
(

ϕ, a, b, f) : B(a, b, f)

n : N b : B(0) x : N, y : B(x) ⊢ g(x, y) : B
(

S(x)
)

rec
(

b, g, n
)

: B(n)

Conversion rules.
λx:Af(x) :

∏

x:A
B(x) a : A

app
(

λx:Af(x), a
)

= f(a) : B(a)

a : A b : B(a) x : A, y : B(x) ⊢ ψ(x, y) : C
(

pair(x, y)
)

R
(

ψ, pair(a, b)
)

= ψ(a, b) : C
(

pair(a, b)
)

a : A

J
(

ϕ, a, a, r(a)
)

= ϕ(a) : B
(

a, a, r(a)
)

rec
(

b, g, 0
)

= b : B(0)

3
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Appendix B. Syntactic constructions

B.1. Parameterized J-terms. We describe a parameterized version of the elimination rule for
identity types. Consider a context ∆ of the form

∆ =
(

x, y : A, z : A(x, y), v1 : B1(x, y, z), . . . , vn : Bn(x, y, z, ~v)
)

.

Then the following rule gives the parameterized terms J(ϕ, a, b, f, ~v):

∆ ⊢ T (x, y, z, ~v)

∆[x/y, r(x)/z] ⊢ ϕ(x,~v) : T
(

x, x, r(x), ~v
)

f : A(a, b)
Id elimination

∆[a/x, b/y, f/z] ⊢ J([x : A]ϕ, a, b, f, ~v) : T (a, b, f, ~v)

The construction is by induction on the length of the list of parameters ~v. When n = 0 we simply
set J(ϕ, a, b, f, ()) = J(ϕ, a, b, f). Next, assume we have constructed the terms J(ϕ, a, b, f, v1, . . . , vm)
for lists of parameters of length m < n. Assume we are given a judgement of the form

∆[x/y, r(x)/z] ⊢ ϕ(x, v1, . . . , vn) : T (x, x, r(x), v1, . . . , vn).

We may then form the term

λvn:Bn(x,x,r(x),~v)ϕ(x,~v) :
∏

vn:Bn(x,x,r(x),~v)

T (x, x, r(x), ~v)

in context
(

x : A, v1 : B1(x, x, r(x)), . . . , vn−1 : Bn−1(x, x, r(x), ~v)
)

.

Thus by induction hypothesis we have the parameterized term

x, y : A, z : A(x, y), v1 : B1(x, y, z), . . . , vn−1 : Bn−1(x, y, z, ~v) ⊢
∏

vn
T (x, y, z, ~v)

(

x : A, v1 : B1(x, x, r(x)), . . . , vn−1 : Bn−1(x, x, r(x), ~v)
)

⊢ λvnϕ(x,~v) :
∏

vn
T (x, x, r(x), ~v)

f : A(a, b)

v1 : B1(a, b, f), . . . , vn−1 : Bn−1(a, b, f, ~v) ⊢ J(λvnϕ(x,~v), a, b, f, ~v) :
∏

vn
T (a, b, f, ~v)

Hence we may apply this term to vn to obtain the desired term:

J(ϕ, a, b, f, ~v) =def app
(

J(λvnϕ(x,~v), a, b, f, ~v), vn
)

.

It is readily verified that these terms satisfy the conversion rule

⊢ a : A

∆[a/x, a/y, r(a)/z] ⊢ J(ϕ, a, a, r(a), ~v) = ϕ(a,~v) : T (a, a, r(a), ~v)

B.2. Sequential J-terms. We now turn to the construction of sequential J-terms, which arise in
the setting of repeated Grothendieck constructions. We will actually need a parameterized version
of these as well. That is, given a context

Γ =
(

x1 : A1, . . . xn : An(x1, . . . , xn−1)
)

we consider an extended context

∆ =
(

x1 : A1, . . . xn : An(x1, . . . , xn−1), ~v
)

where the variables vn are considered as parameters. Then we have the associated context

∆̃ =def Γ̃, ~v.

We wish to establish the following derived rule:
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∆̃ ⊢ T

∆ ⊢ ϕ : T [x/y, r(x)/z, ~v]

∆̃ ⊢ Jσ([x]ϕ,x,y,z, ~v) : T (x,y,z, ~v)

This is done by induction on the length of the context Γ. When Γ = (x1 : A1), the problem
reduces to the construction of the parameterized term J([x]ϕ, x, y, z, ~v), which was done in the
previous section.

Thus assume that we have constructed the parameterized sequential terms for contexts of length
n− 1. First consider the context

∆′ =def ∆[x1/y1, r(x1)/z1, . . . , xn−1/yn−1, r(xn−1)/zn−1]

=
(

x1 : A1, . . . , xn−1 : An−1, xn, yn : An, zn : An(xn, yn), ~v
)

Then we have

∆′ ⊢ T (x1, x1, r(x1), . . . , xn−1, xn−1, r(xn−1), xn, yn, zn, ~v).

Noting that ∆′[xn/yn, r(xn)/zn] = ∆, we may thus use the ordinary parameterized elimination rule
to form the judgement

∆′ ⊢ T (x1, x1, r(x1), . . . , xn−1, xn−1, r(xn−1), xn, yn, zn, ~v)

∆ ⊢ ϕ : T [x/y, r(x)/z, ~v]

∆′ ⊢ J([xn]ϕ, xn, yn, zn, ~v) : T ((x1, x1, r(x1), . . . , xn−1, xn−1, r(xn−1), xn, yn, zn, ~v))

We can now apply the induction hypothesis to this term (where the parameters are now xn, yn, zn, ~v).

Appendix C. Realizability clauses

Here we collect for easy reference the realizability clauses extracted from the interpretation of
type theory described above.

C.1. Structural rules.

Weakening. Assume we have judgements Γ ⊢ A and ∆ ⊢ . In terms of realizers, given (c,γ,d, δ)
and object of [[Γ,∆]] and a term a : A(c) we have

α γ,δ a : A(c) iff α γ a : A(c).

For reindexing, given an arrow (h,k,m) : (c,γ,d, δ, a) → (c′,γ ′,d′, δ′, a′) in ‖Γ,∆ ⊢ A‖, we have2

α · (h,k,m) = α · τ̂Γ;∆;A(h,k,m).

For terms, given Γ ⊢ a : A, we have

a[γ, δ] = a[γ].

2Explicitly, we have, in the notation of Section 3, that

α · (h,k, m) = α ·
(

h, m ◦ (a†(h,k))
)

.
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Substitution. Given

Γ ⊢ a : A Γ, x : A,∆ ⊢ B(x)

Γ,∆[a/x] ⊢ B(a)

we have

β γ,δ b : B(c, a(c),d) iff β γ,a[γ],δ b : B(c, a(c),d)

and

β · (h,k,m) = β · σ̂Γ;a;∆(h,k,m)

for (h,k,m) : (c,γ,d, δ, b) → (c′,γ ′,d′, δ′, b′).
For terms, given

Γ ⊢ a : A Γ, x : A,∆ ⊢ b(x) : B(x)

Γ,∆[a/x] ⊢ b(a) : B(a)

we have

b(a)[γ, δ] = b[γ, a[γ], δ].

Dependent products. Given Γ ⊢
∏

x:AB(x),

φ γ f :
∏

x:A(c)

B(c, x)

if and only if φ is an operation
(

α γ a : A(c)
)

7−→
(

φ{α} γ,α app(f, a) : B(c, a)
)

such that

φ{α} ·
(

1c,m, app(f, x)|(1c,m)
)

= φ{α · (1c,m)}

for m : a→ a′ in |A(c)|.

Dependent sums. Given Γ ⊢
∑

x:AB(x),

υ γ p :
∑

x:A(c)

B(c, x)

if and only if υ = (υ0, υ1) with

υ0 γ π0(p) : A(c), and

υ1 γ,υ0 π1(p) : B(c, π0(p)).

Identity types. Given Γ, x : A, y : A ⊢ A(x, y),

γ,α,β f : A(c)(a, b) iff α · (1c, f) = β.

Natural numbers. Where #(t) : N denotes the numeral associated, under the groupoid interpre-
tation built over the free groupoid, to the closed term t : N, we have

τ  t : N iff τ : N(t,#t).
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[3] P. Dybjer, Internal type theory, Proc. BRA TYPES workshop, Torino, June 1995 (Berlin), Lecture Notes in

Comput. Sci., vol. 1158, Springer-Verlag, 1996.
[4] N. Gambino and R. Garner, The identity type weak factorization system, Theoretical Computer Science 409

(2008), no. 1, 94–109.
[5] M. Hofmann, Syntax and semantics of dependent types, Semantics and Logics of Computation (P. Dybjer and

A. M. Pitts, eds.), Publications of the Newton Institute, Cambridge University Press, Cambridge, 1997, pp. 79–
130.

[6] M. Hofmann and T. Streicher, The groupoid interpretation of type theory, Twenty-Five Years of Constructive
Type Theory (G. Sambin and J. Smith, eds.), Oxford Logic Guides, vol. 36, Oxford University Press, Oxford,
1998, pp. 83–111.

[7] W. W. Tait, Intensional interpretations of functionals of finite type I, J. Symbolic Logic 32 (1967), no. 2, 198–212.
[8] V. Voevodsky, Univalent foundations project, Modified version of an NSF grant application, 2010.

Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Ave., Ottawa,

Ontario K1N 6N5 Canada

E-mail address: phofstra@uottawa.ca

School of Mathematics, Institute for Advanced Study, Einstein Dr., Princeton, New Jersey 08540

USA

E-mail address: mwarren@math.ias.edu

38


	1. Introduction
	1.1. Motivating problem: homotopy types of ML-complexes
	1.2. Organization of the paper
	1.3. Notational Conventions

	2. Informal description of the model
	2.1. Realizers and dense terms
	2.2. The general setup of the model
	2.3. Interpretation of terms
	2.4. Categories with Families

	3. The syntactic structure
	3.1. Sequential J-terms
	3.2. Groupoids and pseudo-functors associated to types
	3.3. Interpretation of terms
	3.4. Weakening
	3.5. Generalized form
	3.6. Substitution
	3.7. Syntactical groupoid CwF

	4. The model
	4.1. The Realizability CwF
	4.2. Semantic product types
	4.3. Semantic identity types
	4.4. Semantic dependent sums
	4.5. Semantic natural numbers

	Appendix A. Rules of type theory
	Appendix B. Syntactic constructions
	B.1. Parameterized J-terms
	B.2. Sequential J-terms

	Appendix C. Realizability clauses
	C.1. Structural rules
	Dependent products
	Dependent sums
	Identity types
	Natural numbers

	References

