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Abstract

Acoustic modeling based on Hidden Markov
Models (HMMs) is employed by state-of-the-
art stochastic speech recognition systems. In
continuous density HMMs, the state scores
are computed using Gaussian mixture mod-
els. On the other hand, Deep Neural Net-
works (DNN) can be used to compute the
HMM state scores. This leads to signifi-
cant improvement in the recognition accu-
racy. Conditional Random Fields (CRFs)
are undirected graphical models that main-
tain the Markov properties of Hidden Markov
Models (HMMs), formulated using the maxi-
mum entropy (MaxEnt) principle. It is possi-
ble to use DNN to compute the state scores
in CRFs. Using CRFs on the top of DNN
will lead to an acoustic model known as Deep
Conditional Random Fields (DCRFs). In
this paper, we present a phone recognition
task based on DCRFs. Preliminary results
on the TIMIT task show that DCRFs can
lead to good results.

1. Introduction

In hybrid ANN/HMM speech recognition systems (Re-
nals et al., 1994), (Morgan & Bourlard, 1995), Artifi-
cial Neural Networks (ANN) models are used as flex-
ible discriminant classifiers to estimate a scaled likeli-
hood. In particular, the emission probability score is
given by

bj(ot) =
PΛ(sj |ot)

P (sj)
(1)

where bj(ot) is the score of state j in the traditional
HMM framework, PΛ(sj |ot) is the posterior probabil-
ity of a phonetic state estimated by a connectionist es-
timator (Trentin & Gori, 2001),(Robinson, 1994) and
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Figure 1. HMM model for phone representation, where the
state scores are computed from a DNN.

P (sj) is estimated from the labeled data. In addition
to discriminative training, if the posterior probability
PΛ(sj |ot) is sensitive to acoustic context, bj(ot) score
may help to overcome conditional independence as-
sumption and improve the overall recognition perfor-
mance without changing the basic HMM framework.
HMM is directed graphical model and a graphical rep-
resentation of the ANN/HMM acoustic model is shown
in Figure 1.

DNNs with many hidden layers that are trained using
new methods have been shown to outperform Gaus-
sian mixture models in several tasks (Mohamed et al.,
2012), (Seide et al., 2011), (Dahl et al., 2012), (Hinton
et al., 2012). DNNs are trained in a generative way
to learn the structure in the input data. This ”pre-
training” step provides a good initialization point to
the traditional discriminative training using the back-
propagation (BP) algorithm. DNN is an active area
of research and there is a lot of efforts to improve
the training speed of the models (Kingsbury et al.,
2012),(Vinyals & Povey, 2012).

Over the last few years, there is an increased inter-
est to develop acoustic models derived from Condi-
tional Random Fields (Lafferty et al., 2001). Hid-
den Conditional Random Fields(HCRFs) was intro-
duced to score the states based on a mixture of
quadratic activation functions (Gunawardana et al.,
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2005). In (Yu et al., 2010), a multi-layer CRF
model (deep-structured CRF) in which each higher
layer’s input observation sequence consists of the pre-
vious layer’s observation sequence and the resulted
frame-level marginal probabilities. Deep extensions to
HCRFs were developed in (Yu & Deng, 2010),(Mo-
hamed et al., 2010).

In (Hifny, 2006; Hifny & Renals, 2009), a new acous-
tic modeling paradigm based on Augmented Condi-
tional Random Fields (ACRFs) is investigated and de-
veloped. ACRFs paradigm addresses some limitations
of HMMs while maintaining many of the aspects which
have made them successful. In particular, the acous-
tic modeling problem is reformulated in a data driven,
sparse, augmented space to increase discrimination.
Acoustic context modeling is explicitly integrated to
handle the sequential phenomena of the speech signal.
In the context ANN field , ACRFs can represent CRFs
with one hidden layer constructed from scoring a large
number of Gaussians.

Training CRFs on the top of a hidden layer con-
structed from scoring a large number of sigmoid
functions was introduced in (Prabhavalkar & Fosler-
Lussier, 2010). One way to improve this approach is
the compute the state scores based on a DNN that
has many hidden layers. Hence, this improvement will
lead to a deep version of CRFs (DCRFs). In this
paper, we present a phone recognition task based on
DCRFs. Preliminary results on the TIMIT task show
that DCRFs can lead to good results.

In Section 2, a mathematical formulation of DCRFs
is described. The optimization problem of DCRFs is
addressed in Section 3. Section 4 gives experimen-
tal results on a phone recognition task. Several issues
about the implementation of DCRFs are discussed in
Section 5. Finally, a summary of the presented work
is given in the conclusions.

2. Deep Conditional Random Fields

Linear chain CRFs can be thought as the undirected
graphical twins for HMMs regardless of their training
(generative or discriminative) (Lafferty et al., 2001).
DCRF acoustic models are a particular implementa-
tion of linear chain CRFs where the state scores are
computed based on a DNN that has many hidden lay-
ers. The feed-forward phase updates the output value
of each neuron. Starting from the first hidden layer,
each neuron output is computed as a weighted sum of

inputs and applying the sigmoid function to it:1

oh
tj = sigm(

n∑
i=1

λijo
h−1
ti ) (2)

where oh
t is an output of a hidden layer, n is the num-

ber of inputs, h is an index to a hidden layer, and
sigmoid function is computed as follows:

sigm(x) =
1

1 + e−x
(3)

The output of an hidden layer is passed to the next
layer until the output layer is computed as follows:

oN
tj =

n∑
i=1

λijo
N−1
ti (4)

where N is index of the output layer. Hence, the acti-
vation of hidden layers is nonlinear based on a sigmoid
function and the output layer activation is linear.

A graphical representation of the DCRF acoustic
model is shown in Figure 2. The conditional distri-
bution defining DCRFs is given by

PΛ(S|O) =
1

ZΛ(O)

T∏
t=1

exp
(
λstst−1

a(st, st−1) + bst(ot)
)

(5)

where

• PΛ(S|O) obeys the Markovian property:

PΛ(st|{sj}j 6=t,O) = PΛ(st|st−1,O)

• λstst−1
are associated with the characterizing

function a(st, st−1). a(st, st−1) is a binary func-
tion and can be used to define DCRF topology.

• bst(ot) = oN
tst is computed from Equation (4).

Hence, bst(ot) connects DNN output to CRF in-
put.

• ZΛ(O) (Zustandsumme) is a normalization coef-
ficient referred to as the partition function.

HMMs and DCRFs (in general, linear chain CRFs)
share the first order Markov assumption, which sim-
plifies the training and decoding algorithms. However,
DCRFs do not assume observation independence and
causality, as the joint event in this case is factorized
as a simple product of exponential functions. There-
fore, the observations and the characterizing functions

1The bias term is not implemented in neuron activation.
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Figure 2. DCRFmodel for phone representation, where the
state scores are computed from a DNN.

can be statistically dependent or correlated and can
depend on the past and future acoustic context. The
partition function, ZΛ(O), is given by

ZΛ(O) =
∑
S

T∏
t=1

exp
(
λstst−1

a(st, st−1) + bst(ot)
)
, (6)

and it is similar to the total probability p(O|M) in
HMMs, which can be calculated using the forward al-
gorithm (Lafferty et al., 2001).

3. DCRF Optimization

For R training observations {O1,O2, . . . ,Or, . . . ,OR}
with corresponding transcriptions {Wr}, DCRFs are
trained using the conditional maximum likelihood
(CML) criterion to maximize the posterior probabil-
ity of the correct word sequence given the acoustic
observations:

FCML(Λ) =

R∑
r=1

logPΛ(MWr |Or)

=

R∑
r=1

log
P (Wr)

∑
S|Wr

exp
∑T

t Ψ(O,S, c,Λ)∑
Ŵ P (Ŵ )

∑
S|Ŵ exp

∑T
t Ψ(O,S, c,Λ)

≈
R∑

r=1

logZΛ(Or|Mnum)− logZΛ(Or|Mden), (7)

where

Ψ(O,S, c,Λ) = λstst−1
a(st, st−1) + bst(ot) (8)

The optimal parameters, Λ∗, are estimated by max-
imizing the CML criterion, which implies minimiz-
ing the cross entropy between the correct transcrip-
tion model and the hypothesized recognition model.

In other words, the process maximizes the partition
function of the correct models2 (the numerator term)
ZΛ(Or|Mnum), and simultaneously minimizes the par-
tition function of the recognition model (the denom-
inator term) ZΛ(Or|Mden). The optimal parameters
are obtained when the gradient of the CML criterion
is zero.

3.1. Numerical Optimization for DCRFs

DCRFs are can be trained using gradient based ap-
proaches. These methods rely on a locally linear or
quadratic approximation by expanding the CML non-
linear objective function FCML(Λ + δ) using Taylor’s
expansion around the current model point Λ in the
parameter space (Nocedal & Wright, 1999). Such ap-
proaches are well established in artificial neural net-
works research (Bishop, 1995; Haykin, 1998). For ex-
ample, the CRF training process has been accelerated
by using a stochastic meta-descent algorithm which
utilizes second-order information to adapt the gradi-
ent step sizes (Vishwanathan et al., 2006).

For an e-family activation function based on first-order
sufficient statistics, the gradient of the CML objective
function for the output layer parameters is given by

∇FCML(O) = Cnum
ji (O)− Cden

ji (O) (9)

where the accumulators of the sufficient statistics,
Cji(O), for the jth state and ith constraint are cal-
culated as follows:

Cnum
ji (O) =

R∑
r=1

Tr∑
t=1

γrj (t|Mnum)oN
rti (10)

Cden
ji (O) =

R∑
r=1

Tr∑
t=1

γrj (t|Mden)oN
rti (11)

where r is the utterance index and the frame-state
alignment probability γj , denoting the probability of
being in state j at some time t can be written in terms
of the forward score αj(t) and the backward score βj(t)
as in HMMs:

γj(t|M) = P (st = j|O;M) =
αj(t|M)βj(t|M)

ZΛ(O|M)
(12)

and to avoid the necessity of building lattices, the
γj(t|M) is approximated with state estimates as fol-
lows (Hifny et al., 2005):

γj(t|Mden) =
exp

(
oN
tj

)∑
s exp

(
oN
ts

) (13)

2Since a summation over potential functions is com-
monly called the partition function in undirected graph-
ical modeling, we coin the notation ZΛ(Or|Mnum) for the
summation of all possible state sequences of the correct
models.
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The delta of the output layer neuron j is given by

δNtj = γj(t|Mnum)− γj(t|Mden) (14)

and the delta of the hidden layers:

δhtj = oh
tj(1− oh

tj)
∑

k∈outputs

λh+1
kj δh+1

kt (15)

and the gradient for the hidden layers parameters is
given by:

∂FCML(Λ)

∂λhki
=

R∑
r=1

Tr∑
t=1

δhrtjo
h−1
rtki (16)

Based on equation (16) and equation (9), a gradient
based optimization can be used to estimate the pa-
rameters (Nocedal & Wright, 1999). The transition
parameters are given by:

λstst−1
= log astst−1

, (17)

where astst−1
is the transition probability in HMM

modeling and is estimated using the maximum like-
lihood (MLE) criterion.

4. Experiments

We have carried out phone recognition experiments on
the TIMIT corpus (Garofolo et al., 1990). We used the
462 speaker training set and testing on the 24 speaker
core test set (the SA1 and SA2 utterances were not
used). The speech was analyzed using a 25ms Ham-
ming window with a 10 ms fixed frame rate. In all
the experiments we represented the speech using 12th
order mel frequency cepstral coefficients (MFCCs), en-
ergy, along with their first and second temporal deriva-
tives, resulting in a 39 element feature vector. The
training data and test data features are pre-processed
to have zero mean and unit variance. Hence, acoustic
context information is integrated using a window of 9
frames (4 left + current frame+ 4 right) to construct
the final frame vector with 351 dimensions.

Following Lee (Lee & Hon, 1989), the original 61 phone
classes in TIMIT were mapped to a set of 48 labels,
which were used for training. This set of 48 phone
classes was mapped down to a set of 39 classes (Lee
& Hon, 1989), after decoding, and phone recognition
results are reported on these classes, in terms of the
phone error rate (PER), which is analogous to word
error rate.

The baseline HMMs have three emitting states and the
emission probabilities were modeled with mixtures of
Gaussian densities with diagonal covariance matrices.

The generative HMMs were trained by the maximum
likelihood criterion using the conventional EM algo-
rithm (Young et al., 2001).

A DNN with 2 hidden layers was chosen and each layer
has 512 neurons. Hence, each phone was represented
using a three state left-to-right DCRF, all parameters
of DNN were initialized to random values and the tran-
sition parameters were initialized either from trained
HMM models forcing left to right DCRFs. The train-
ing procedure accumulated theMnum sufficient statis-
tics via a Viterbi pass (forced alignment) of the ref-
erence transcription using HMMs trained using maxi-
mum likelihood criterion. Several iterations were used
to train DCRFs and the language model scaling factor
is set to 6.0 during the decoding process. All our ex-
periments used a bigram language model over phones,
estimated from the training set.

DNN parameter estimation is based on a variant of the
Resilient Propagation (RProp) algorithm (Riedmiller
& Braun, 1993), which uses a Manhattan update rule.
The Manhattan update rule does not involve the gra-
dient magnitude. Th algorithm is detailed in (Hifny,
2013) and it was shown in (Hifny, 2006) that this al-
gorithm outperforms other gradient based algorithms
for CRF parameter estimation.

In Table 1, DCRFs recognition performance is re-
ported in terms of PER on TIMIT task (core test set).
The training process is divided into two phases online
and batch. The online training phase computes an ini-
tial model that used to start the batch training phase.
A complete iteration of the online Manhattan update
implies ten loops over the training data. The phone
error rate is reduced to 42.2 % after the online train-
ing is complete. Hence, the final model of the online
training phase is used to initialize a model to start the
batch training phase. A batch Manhattan update is
used to update the models. As shown in the results,
the recognition accuracy improves when the number
of iteration is high. The batch training phase was ex-
ecuted over a computer grid of 28 cores.

5. Discussions

In this section we address several issues about the im-
plementation of DCRFs.

5.1. Training criterion

In the traditional CRFs, the conditional maximum
likelihood (CML) criterion is used to maximize the
posterior probability of the correct word sequence
given the acoustic observations. However, in Section
3, the γj(t|M) is approximated with state estimates
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Table 1. DCRF decoding results on TIMIT recognition
task in terms of PER.

Training Method #Itr PER

Online Manhattan 1 42.2%

Batch Manhattan

50 36.9%
100 35.5%
150 34.7%
200 34.4%
250 34.2%
300 33.7%
350 33.6%
400 33.4%
450 33.2%
500 33.2%
550 33.1%
600 33.0%

as shown in (Hifny et al., 2005). Hence, the effective
training criterion used to train DCRFs is frame level
conditional maximum likelihood (CML) criterion. In
addition, maximizing frame level CML is equivalent
to minimizing the frame level cross-entropy loss. This
criterion is identical to the training criterion used to
train traditional DNN in ANN/HMM hybrid systems.

5.2. Decoding speed

In hybrid ANN/HMM speech recognition systems, the
HMM state scores are computed based on equation (1).
This equation implies the calculations of a softmax ac-
tivation function for each frame to compute the state
posteriors. On the other hand, DCRFs state scores
are based on a linear activation function in the out-
put layer. Hence, a softmax activation function is not
used in DCRFs decoding. Consequently, DCRFs de-
coders are running faster than traditional DNN/HMM
decoders.

5.3. Prior work

Training CRFs on the top of a single hidden layer
constructed from scoring a large number of sigmoid
functions was introduced in (Prabhavalkar & Fosler-
Lussier, 2010). In (Mohamed et al., 2010), state scores
are computed based on DNN setup but the output
layer has a softmax activation function. In this work,
the state scores are also computed based DNN archi-
tecture but the output layer has a linear activation
function. In addition, we do not estimate state transi-
tion parameters or language model parameters within
DCRF framework. The state transition parameters
were estimated using traditional HMM framework. In
addition, Maximum Likelihood (ML) criterion is used

to estimate bigram language model. Hence, DCRF ar-
chitecture may be computationally efficient for train-
ing and decoding. During the decoding process, a lan-
guage model scaling factor is used improve the results.
On the other hand, frame level CML criterion is used
to estimate DCRFs rather than the full-sequence train-
ing.

6. Conclusions

In this paper, we present a method to construct deep
conditional random fields. In this approach, the state
scores are computed based on a DNN that has many
hidden layers. The feed-forward phase updates the
output value of each neuron. Starting from the first
hidden layer, each neuron output is computed as a
weighted sum of inputs and applying the sigmoid func-
tion to it. The output is forwarded to the next layer
until the output layer is updated as a weighted sum of
inputs. DCRF state scores are connects the DNN out-
put layer. Hence, the gradient is computed and a back-
propagation algorithm is used to compute the gradient
of each parameter in the hidden layers. Any gradient
based optimization technique can be used estimate the
parameters. Preliminary results on the TIMIT phone
recognition task show that DCRFs can lead to good
results. DCRFs parameter estimation is slow. Future
work will focus on tuning the learning parameters , the
number of neurons per hidden layer, and the number
of hidden layer.
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