
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

50 | P a g e

www.ijacsa.thesai.org

Performance Analysis of GPU compared to Single-

core and Multi-core CPU for Natural Language

Applications

Shubham Gupta

Master of Technology,

School of Computing Sciences and Engineering,

VIT University, India

Prof. M.Rajasekhara Babu

School of Computing Sciences and Engineering,

VIT University, India

Abstract— In Natural Language Processing (NLP)

applications, the main time-consuming process is string

matching due to the large size of lexicon. In string

matching processes, data dependence is minimal and hence

it is ideal for parallelization. A dedicated system with

memory interleaving and parallel processing techniques

for string matching can reduce this burden of host CPU,

thereby making the system more suitable for real-time

applications. Now it is possible to apply parallelism using

multi-cores on CPU, though they need to be used explicitly

to achieve high performance. Recent GPUs hold a large

number of cores, and have a potential for high

performance in many general purpose applications.

Programming tools for multi-cores on CPU and a large

number of cores on GPU have been formulated, but it is

still difficult to achieve high performance on these

platforms. In this paper, we compare the performance of

single-core, multi-core CPU and GPU using such a Natural

Language Processing application.

Keywords- NLP; Lexical Analysis; Lexicon; Shallow

Parsing; GPU; GPGPU; CUDA; OpenMP.

I. INTRODUCTION

In recent times, CPU supports multi-cores each supports
improved SIMD instruction sets. And recent GPU supports a
large number of cores which run in parallel, and its peak
performance outperforms CPU. In [1], comparison of
performance on CPU, FPGA and GPU is done using some
image processing applications. And in [4], performance
analysis of CPU and GPU is performed on some medical image
volume rendering application. In this paper, we compare the
performance of GPU and CPU (single-core and multi-core)

using a NLP application.

In many real-life applications in the areas such as syntactic
pattern recognition, syntactic analysis of programming
languages etc., the parser speed is an important factor. Since
large sum of data is to be processed, efficient low complexity
parsers are required. All the techniques of parsing in Natural
Language Processing involve string matching as the single
most important operation. Traditionally for many years, GPU is
just used to accelerate some stages of the graphics rendering
pipeline. However, after the programmability available on this
chip, GPU opens a door to developers to take advantage of its
ALUs besides graphics processing. Compared with CPU in
their architectures, GPU is more suitable for stream
computations; it can process data elements in parallel with
SIMD & MIMD capability. And in many cases, people gain
great performance improvement on GPU over CPU. So a
totally new technique called GPGPU (General Purpose
computation on GPU) emerges. And in recent years it became a
hot research topic, not only in computer graphics domain, but
also in other discipline areas.

II. GPU AND CPU

The graphics processing units (GPU) are highly parallel
rapidly gaining maturity as a powerful engine for
computationally demanding applications. The GPU’s
performance and potential will be the future of computing
systems. A GPU is basically designed for some particular type
of applications with the following characteristics.

 Where Computational requirements are

large: GPU must deliver an enormous amount of

compute power to cover the requirements of complex

real-time applications.

 Parallelism is significant: The graphics

Figure 1: Basic CPU and GPU Architecture

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

51 | P a g e

www.ijacsa.thesai.org

pipeline system architecture is suitable for

parallelism.

Few years ago, GPU’s were some fixed function
processors, built over the three dimensional (3D) graphics
pipeline and with very little else to offer. But now, the GPU has
evolved into a powerful programmable processor, with both
application programming interface (APIs) and the hardware
increasingly focusing on the programmability aspects of the
GPU. The result is a processor with enormous arithmetic
capability and streaming memory bandwidth, both substantially
greater than a high-end CPU. [5]

As shown in fig.1 [3], on comparing the GPU with CPU the
basic difference is; CPU has few processing units with some
cache and control unit, but in GPU there are many more
processing units with their own cache and control units with
dedicated and specific works defined for them. GPUs are
mostly with hundreds of cores which work in parallel to
process the data, but in general CPUs processing is done on
few cores with very little parallelism.

On architectural comparison with CPU, GPU are more
suitable for stream computations, they can process data
elements in parallel with SIMD & MIMD capability. So a new
technique called GPGPU (General Purpose computation on
GPU) emerged and in recent years has become a hot research
topic in not only graphics domain but in general
computations.[2][5]

III. GPGPU (GENERAL PURPOSE GPU)

GPGPU is a combination between hardware components
and software that allows the use of a traditional GPU to
perform computing tasks that are extremely demanding in
terms of processing power. Traditional CPU architectures
available on the market cannot satisfy the processing demands
for these specific tasks, and thus the market has moved on to
GPGPU in order to achieve greater efficiency.

Few benefits of using a GPU for general purpose processes

(GPGPU): [2] [5]

 Large performance benefits in many parallel coded
applications. In some situations the GPU clearly
performs better compared to a traditional CPU-based
high performance computer.

 Purchase price: the prices of GPUs are somewhat
similar to the market price of CPUs. This is a large
advantage GPGPU has. In some cases, it would take
multiple CPUs to match the performance of a
GPGPU system. This means that in terms of cost, the
GPGPU is a smarter choice.

 Technology refresh rate: GPU manufacturers develop
new GPUs with a refresh rate that is much faster
compared to that of the CPU market. The advantage
the GPU has in this case is rather obvious, as its core
technology is updated more frequently than that of
the CPUs’.

From the Fig. 2 [2], it is clear that the floating-point operations
per second on GPU very much exceed that of CPU. In other
words, the computation power of GPU is stronger than that of
CPU. The computation power is more reachable than other

hardware, and in terms of the computation cost, GPU for per
GFLOPS is much lower than CPU.

Figure 2: Floating-point operations on CPU and GPU (from NVIDIA)

IV. ARCHITECTURE OF GPU

The architecture of the GPU has progressed in a different
direction than that of the CPU. Consider a pipeline of tasks that
processes a large number of input elements, the output of each
successive task is fed into the input of the next task. Data in
multiple pipeline stages can be computed at the same time; that
is pipeline shows the task parallelisms. As data in multiple
pipeline stages can be computed at the same time; computing
more than one element at the same time is data parallelism. To
execute such a pipeline, a CPU would take a single element (or
group of elements) and process the first stage in the pipeline,
then the next stage, and so on. The CPU divides the pipeline in
time, applying all resources in the processor to each stage in
turn. GPU divides the resources of the processor among the
different stages, such that the pipeline is divided in space, not
time. The part of the processor working on one stage feeds its
output directly into a different part that works on the next stage.
In brief, there are many hundred cores on a GPU system; cache
memory but with no cache coherency. (Fig. 3)

Figure 3: GPU Architecture

V. PROGRAMMING MODEL FOR GPU

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

52 | P a g e

www.ijacsa.thesai.org

The programming over GPU follows a single instruction
multiple-data (SIMD) programming model. For efficiency, the
GPU processes many elements in parallel using the same
program. Each element is independent from the other elements,
and in the base programming model, elements cannot
communicate with each other. All GPU programs must be
structured in this way: many parallel elements each processed

in parallel by a single program.

NVIDIA has developed Compute Unified Device
Architecture (CUDA) which allows the use of the C
programming language to code algorithms to execute on the
GPU. CUDA enabled GPUs include data parallel cache.
Besides the flexible interface for programming, it also supports
memory scatter bringing more flexibilities to GPU.

CUDA (Compute Unified Device Architecture)

CUDA provides a C-like syntax for executing on the GPU
and compiles offline. CUDA exposes two levels of parallelism,
data parallel and multithreading. CUDA also exposes multiple
levels of memory hierarchy: per-thread registers, fast shared
memory between threads in a block, board memory, and host
memory. Kernels in CUDA allow the use of pointers, general
load/store to memory allowing the user to scatter data from
within a kernel, and synchronization between threads in a
thread block. However, all of this flexibility and potential
performance gain comes with the cost of requiring the user to
understand more of the low-level details of the hardware,
notably register usage, thread and thread block scheduling, and
behavior of access patterns through memory. All of these
systems allow developers to more easily build large
applications. [6][7]

VI. NLP APPLICATION

All the techniques of parsing in Natural Language
Processing involve string matching as the single most
important operation. We are using Lexical Analysis and
Shallow Parsing as the NLP application to be implemented on
single-core and multi-core CPU system (using OpenMP as

programming model) and also on GPU system (using CUDA
as their programming model).

As per the algorithm used, system performs lexical analysis
and shallow parsing on a text input file in English language. To
perform so, algorithm matches it with the knowledge base
which is having complete list of possible words in English with
their part of speech. The processing time for such input text file

is high because of the size of the knowledge base which
contains a huge amount of data to be processed for each and
every word that is encountered by the algorithm from the input
text file.

VII. PERFORMANCE ANALYSIS

For the evaluation, we use the following platforms.

 NVIDIA GeForce G210M 1024MB (800MHz

GDDR3, 16cores)

 CUDA version 2.1

 OpenMP

 Intel Core 2 Duo CPU P8600 (2.40GHz, 2CPUs) and

Intel C++ Compiler 10.0

As per the algorithm used, for some particular size of file
(in terms of number of words in a file) our system processes
input file (performs lexical analysis and shallow parsing) and
finally provide us with the number of matches and number of
part of speech in the provided input file.

TABLE I. TABLE OF EXPERIMENTAL RESULTS (IN SECONDS)

no. of

Words

Time Taken

Single-Core Multi-Core GPU

9 1.4538 0.9125 0.2662

49 8.945 5.684 1.5735

Figure 4: Performance Comparison Graph

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 2, No. 5, 2011

53 | P a g e

www.ijacsa.thesai.org

no. of

Words
Time Taken

96 16.376 9.9218 2.8652

167 29.327 15.6598 5.627

226 38.631 24.6598 6.936

275 46.561 29.3627 7.5648

414 87.871 63.4374 16.0373

602 101.6373 81.9269 18.6092

919 152.655 93.2981 27.514

1181 178.5342 102.2638 32.7635

2113 297.8587 186.8143 54.8736

4337 730.539 361.6552 117.272

Some of the results generated by the NLP algorithm used on
processing input file of certain size (in terms of number of
words) are shown in the above table (table 1).

The graph generated on some of the data generated (using
data from the table given) on the implementation of algorithm
used is displayed above (fig.4).

VIII. CONCLUTION

We have compared the performance of GPU with single-
core and multi-core CPU (2cores) for a basic NLP application
(lexical analysis and shallow parsing). The number of cores in
Nvidia GeForce G210M is 16. As the results from the table
(table 1) and the graph (fig.4) generated, shows that multi-core
CPU has better performance than the single-core CPU but a
GPU system has clearly overtaken them with much better
performance over CPU for Natural Language Processing (NLP)
applications. For the future enhancements, this algorithm can
be improved and implemented on programmable GPGPUs
more efficiently to give even improved performance.

REFERENCES

[1] Shuichi Asano, Tsutomu Maruyama and Yoshiki Yamaguchi, University
of Tsukuba, Japan; “Performance Comparison of FPGA, GPU and CPU
in Image Processing”, IEEE-FPL 2009, pp. 127-131.

[2] Enhua Wu, University of Macau; Youquan Liu, Chinese Academy of
Sciences, China; “Emerging Technology about GPGPU”, Circuit and
Systems, 2008.APCCAS 2008. IEEE.

[3] Vadali Srinivasa Murty, P.C.Reghu Raj and S.Raman, Department of
Computer Science and Engineering, Indian Institute of Technology
Madras (IITM); “Design of Language-Independent Parallel String
Matching unit for NLP”, 2003 IEEE International Workshop on
Computer Architectures for Machine Perception (CAMP).

[4] Mikhail Smelyanskiy and et al. ; “Mapping High-Fidelity Volume
Rendering for Medical Imaging to CPU, GPU and Many-Core
Architectures”, IEEE Transactions on Visualization and Computer
Graphics, Vol. 15, Dec.2009.

[5] John D. Owens, Mike Houston, David Luebke, Simon Green, John E.
Stone, and James C. Phillips; “GPU Computing”, Proceedings of the
IEEE Vol. 96, No. 5, May 2008.

[6] Nvidia CUDA; “nVIDIA CUDA C Programming Guide”, Version 4.0

[7] John Stratton et al., University of Illinois; “Compute Unified Device
Architecture Application Suitability”, Computer Science and
Engineering, University of Illinois; IEEE Computer Society & American
Institute of Physics.

AUTHORS PROFILE

Shubham Gupta is Pursuing Master of Technology in
Computer Science and Engineering (2009-11) from
VIT University, Vellore, India. He did his B.E.
(Computer Science and Engineering) from Swami
Keshwanand Institute of Technology (Rajasthan
University), Jaipur, India (2005-2009). His research
interest includes Natural Language Processing,
Multi-core Architectures and GPU programming.

Prof. M.Rajasekhara Babu a senior faculty member
at the School of Computer Science and Engineering
,VIT University ,Vellore ,India . At, present he is
pursing Ph.D from the same University in the area
of “Multi-Core Architectures and Natural Language
Processing”. He had authored a number of national
and international papers and articles in reputed

journals and conferences

