
Camouflaged Private Communication

Amir Herzberg∗, Ely Porat∗, Nir Soffer† and Erez Waisbard∗
∗ Department of Computer Science, Bar-Ilan University, Ramat-Gan, 52900, Israel

Email: {herzbea,porately,waisbard}@cs.biu.ac.il
† Independent Consultant, Givataim, 53600, Israel

Email: nirsof@gmail.com

Abstract—Communication such as web browsing is often
monitored and restricted by organizations and governments.
Users who wish to bypass the monitoring and restrictions often
relay their (encrypted) communication via proxy servers or
anonymizing networks such as Tor. While this type of solution
allows users to hide the content of their communication and
often bypass the restrictions, the mere use of a proxy may alert
authorities, placing the users at risk. We introduce a simple and
efficient construction, leveraging general purpose services, which
allows users to hide their communication from active adversaries
without relying on prior trust. Finally, we implement a proof of
concept showing that camouflaged web browsing is possible using
legitimate services such as Gmail without requiring software
installation on the client side.

I. INTRODUCTION

Many organizations and governments monitor the traffic of

their users and block access to certain web sites. This is often

done with good intentions, e.g. in the case of an organization

that wishes to protect its employees from web sites containing

viruses or malware. However it is also done by governments

who wish to block access to sites that do not align with the

government’s view.

This type of filtering has its limitations and users are able

to bypass such restrictions by using a proxy server to relay

the communication (either by setting a dedicated server or by

using public proxies). However, we note that simply relaying

the traffic through a proxy server is not enough to protect

users as monitoring tools can perform deep packet inspection

and detect which sites are being accessed. While this can be

solved by an encrypted channel, firewalls can still block the

communication based on the destination address (e.g. when

using a known anonymizing server).

Another approach for bypassing the restrictions is by using

a distributed anonymizing network such as Tor[3]. Tor works

by having users run an onion proxy on their machine. The

Tor software sets a virtual circuit, using multi-layer encryption

with each router in the route peeling one layer of encryption

until the cleartext packet is forwarded on to its original

destination. Viewed from the destination, the traffic appears to

originate at the Tor exit node. While Tor routers are dynamic

and traffic is encrypted, the protocol does not try to hide its

usage and communication to Tor routers is easily detected, for

example, by observing the certificate that they exchange when

setting the SSL session [5]. In addition, firewalls can block

the initial access to a directory server[9] and may also block

encrypted communication except to a small list of approved

sites.

The methods above provide anonymity, but do not hide

the fact that the user is using anonymized communication,

which may be enough to alert the authorities. A method for

communicating with a proxy server in a way that hides the

request in plain HTML was suggested by Feamster et.al[6].

They suggested an architecture, called Infranet, that creates

a covert tunnel between a requester and a responder which

looks like a normal communication between a user and a web

server to a passive eavesdropper. Infranet requesters install

a special software that is configured with IP addresses and

public keys of responders, encode the requests using the

keyed encoding function and get the hidden reply in a jpeg

using steganography. This works well as long as the censor

is unaware of the IP addresses of the responders, however, a

censor with access to the requester’s software can learn these

IP addresses and then either log the IP addresses of user that

connect to them or block them. Learning the identity of proxy

servers and then blocking them, was done by Wikipedia who

blocked all the Tor relays in an attempt to prevent Tor users

from anonymously defacing Wikipedia pages.

In this work we suggest a new approach to private com-

munication that avoids the above shortcomings. We introduce

the notion of Camouflaged Private Communication, a method

for hiding one communication session within another using a

general purpose service such as Gmail. Leveraging the built-

in features of such services allows us to implement secure

communication without requiring installation of any software

on the client side. This makes our solution suitable also for

people who access the internet from public locations such as

internet cafes.

The main application we see for this concept is Cam-
ouflaged Browsing that hides the fact that browsing takes

place. We implement a camouflaged browsing proof of concept

using Gmail infrastructure by sending a requested URL and

receiving a reply with the content of the requested page.

Since the communication is encrypted, to an eavesdropper the

communication appears to be a typical communication with

the Gmail server.

The main idea behind our construction is to have parties

communicate through a trusted general purpose service, such

as web mail. In the case of Gmail, all communication between

the parties and the Gmail server is encrypted and relayed

through the Gmail server. Thus, an eavesdropper cannot learn

2011 IEEE International Conference on Privacy, Security, Risk, and Trust, and IEEE International Conference on Social Computing

978-0-7695-4578-3/11 $26.00 © 2011 IEEE

DOI

1159

the usernames of the communicating parties and the communi-

cating parties are not aware of the IP addresses of each other.

In addition to the built-in anonymity, using a central service

gives us an easy way to detect who is currently connected

to the service (which is typically one of the hardest things

to implement securely in a distributed system). Using this

technique we are able to efficiently achieve a secure solution,

but we rely on the general purpose service not to reveal the

private information to the censor. In section IV we discuss

why we believe that this is a reasonable assumption and why

we think it is more practical for a large scale system than prior

assumptions that were made by previously suggested solutions.

II. CAMOUFLAGED BROWSING

In this section we describe the notion of Camouflaged
Browsing. Loosely speaking camouflaged browsing refers to a

web browsing session that is hidden within another communi-

cation. The visible communication is considered as ‘allowed’

while the ‘hidden’ browsing communication goes unnoticed

by anyone who monitors this communication. We model the

scenario using two domains: one is the ‘restricted’ domain R
and the other one is the ‘free’ domain F . Parties communicate

over an open network with unauthenticated channels and all

the communication between R and F goes through a censor

A. A camouflaged browsing session takes place between a

camouflaged client C ∈ R and a camouflaged server S ∈ F ,

where F is also communicating with the web site W per

C’s request. Both C and S communicate using a legacy

infrastructure that is assumed to be honest (e.g. the Gmail

service that we use in Section III). Let S1 be a camouflaged

browsing session and let S2 be a typical session between two

legacy service’s users. We say that a camouflaged browsing

scheme is secure if no censor is able to tell which of the

sessions is a camouflaged browsing session.

Fig. 1. Camouflaged Browsing

III. GMAIL BASED IMPLEMENTATION

We now turn to describe an implementation that leverages

Gmail’s infrastructure. We use Gmail not only because of its

convenient infrastructure, but also since this is an encrypted

service that is rarely blocked. There are three main features

that are available to Gmail users when they log into their

accounts using the web interface: email, chat and the ability

to see which of their Gmail contacts is currently online, all

protected by default using HTTPS.

A typical usage by the camouflaged client would be to log

into his camouflaged Gmail account using the web interface,

pick one of the camouflaged servers that is currently online

and send it the desired URL. Upon receiving a URL from a

Gmail user, the camouflaged server, would fetch the content

of the requested web site, pack it and send it as email to the

initiating client of the session. The camouflaged client would

locally open the email containing the web page. Intuitively, if

everything is done on the client side using the web interface,

then all an eavesdropper sees are a few encrypted connections

to the Gmail server and cannot tell that the reading of an email

is really viewing a remote web page.

A. Components

• Directory Server: One of most challenging tasks in

anonymous routing is finding which anonymous router

is currently connected. When implementing camouflaged

browsing using Gmail we use the contact list as a directory

server. Naturally, users should create new usernames that

are not linked to their real identity before using this system.

In addition, in order to select a camouflaged server, the

usernames that represent these servers should first appear

on its contact list. In Gmail this is done by adding them and

that means that we need someone trusted to manage and

publish the usernames of the servers (e.g. an organization

like the EFF). If someone wishes to act both as a client

and sometimes as a server1, he should create two separate

usernames, one representing himself as client and one as

a server.

• Camouflaged Client: As we noted from the start, our

solution can work without any custom software installation

on the client side. The initiating user can simply log

into the Gmail account, view who is online and send

the requested URL using the built-in chat. The reply can

be encoded as a multipart MIME message that can be

displayed directly in the web interface or by another mail

client.

However, the above method may not be the most con-

venient, especially if one wishes to do more than read a

single static page. If one wants to follow links in the page

then the most seamless approach on the client side would

be by directing all HTTP requests to a local proxy that

runs on the user’s machine and redirects all HTTP requests

using camouflaged browsing. To accomplish this, the local

proxy logs into the Gmail account and sends the URL to

one of the usernames that acts as servers for camouflaged

browsing. This local proxy also monitors incoming emails

for the reply. Once the reply arrives the proxy extracts the

information and displays it.

• Camouflaged Server: The server needs to listen to incom-

ing URLs that may arrive either by email or by chat. Once

it receives the URL, it downloads the web page and all the

1For example a user with a laptop that is acting as a client when he is
behind the company’s firewall during the day and as a server at night when
he connect his laptop at home.

1160

files that are necessary to properly display the page and

pack them for delivery. For viewing the page in a browser

on the client side, the server can create an archive with the

page files, to be extracted in the client side. For viewing

directly in a mail client, the server can create a multipart

MIME message and embed the necessary files as MIME

parts in the message. Finally the server sends the reply to

the client.

The complete details of the implementation appear in the

full version of this paper. The full version, the source code

and the username of our camouflaged server are available on

our web site: http://nirs.freeshell.org/camouflage-browsing/.

B. Performance

In this section we analyze the performance of our Cam-

ouflaged Browsing implementation. The test machine is con-

nected to the internet through ADSL connection with a

download bandwidth of 1269KB/s and upload bandwidth of

103KB/s.

We have tested 4 different URLs (with 100 measurements

for each) of different sizes. The time it took to open these

sites with the web browser ranged from 1.78 seconds to

5.54 seconds (depending on the amount of content the site

displays). Using camouflaged browsing the time to open these

web sites ranged from 16.8 seconds to 35.32 seconds.

As can be seen in figure 2, most of the time is spent

downloading the page and sending the response to the other

user. For downloading the page we used Wget[11] which

downloads the page resources sequentially. Future implemen-

tations can speed up the download process by downloading

files concurrently (as done by browsers).

������� �	
������ �������	���� ���������
�

�

��

��

��

��

��

��

��

������������ ��!�	��"	�� #��!����������
������������� $�	�!� �!	� ����������������

��
��
��
�

Fig. 2. Camouflaged timing analysis

IV. SECURITY

In this section we analyze the security of the scheme

presented in Section III. Throughout this analysis we assume

that the Gmail server is honest. Since the Gmail server knows

the IP addresses of all who communicate with it, then there

is no anonymity in case it is compromised.

A. Leakage of Browsing Pattern

In [4] Chen et. al. showed that web applications leak

information even if they are encrypted. This is done by looking

at the communication pattern to infer the current state of the

application and the inputs of the user. For example, they show

how to infer the entered text based on the auto-completion

suggestion.

Monitoring the encrypted communication between the ini-

tiating client and the Gmail server, the adversary would look

for a special communication pattern. In the simplified form

that we discussed so far, the camouflaged client is sending

a short URL and soon after he receives an email. If the user

automatically opens the email, then we get a noticeable pattern

of sending a short encrypted message to the Gmail server,

which is followed by getting a short notification and then

opening of a web page.

In order to prevent this attack we need to break the pattern.

One suggestion to cope with this is to delay the opening of

the message and artificially create a chat session pattern to

hide the short incoming mail notification. Recall that all the

communication is encrypted so exchanging messages between

the client and the server (each of different length and after a

short random delay) creates a pattern of a real conversation

between two users. For an adversary that monitors the traffic

on camouflaged client side, the encrypted incoming mail

notification appears just like a chat message. Once the reply

is in the inbox, the user can choose how long to wait before

opening it. Naturally adding delays and changing the user

experience goes against the seamless browsing experience we

wanted to achieve, but as these are configurable, we leave it

for the user to set these parameters to achieve the best tradeoff

between performance and privacy.

Other methods for avoiding pattern detection can include

breaking of the message into smaller messages that would be

combined on the client side. If one is only interested in the text

of the page, the reply email can be much smaller (this would

also shorten the time it takes the server to get the content of

the page) and may be be transferred in chunks using XMPP.

We further note that patterns are detectable over time. If

the user only uses this technique once in a while then there

would be no noticeable pattern. However, if it is massively

used to open every web page then it would result in a very

distinguishable pattern.

B. Corrupted Server

The fact that communication is encrypted and that we are

able to prevent the pattern detection does not guarantee that

camouflaged browsing cannot be detected by an adversary that

is controlling a camouflaged server. There are timing attacks

on Tor [7] that aim to learn the identity of the communicating

party by observing latency patterns in the communication.

While these attacks were tailored to Tor like systems and are

1161

not applicable ‘as is’ to our system, the ideas in[7] could be

extended to use patterns that are noticeable in our system.

One way we suggest to cope with such an attack is by

disconnecting the client while waiting for the reply. This

allows the Gmail server to ‘absorb’ any reply pattern. When

the client finally reconnects the censor always sees a consistent

view of a client downloading the encrypted email headers.

Using this method the client is also able to spot unusual

patterns in its mailbox and blacklist the servers who originated

it.

Another way to avoid this type of attack is by avoiding

these ‘bad’ servers. This can be done for example in the case

that the camouflaged client knows the identity of a trustworthy

server2. If the camouflaged server is chosen at random, then

the probability of this attack to work is proportional to the

number of ‘bad’ servers.

The one thing that the adversary does learn when controlling

the camouflaged server is the username of the client, but since

this is a pseudonym, anonymity is preserved.

C. Secrecy of IP Addresses

That fact that we use the Google server to relay all the

communication ensures that the IP addresses of camouflaged

clients and servers are known only to the Google server. The

only thing that the client and server know about each other

is the Gmail username and that is the most that an adversary

can learn. We note that this particular feature is unique to

Gmail and other web based mail services often disclose the

IP address from which a user connected to the mail service.

D. Authenticating the Gmail Server

Recall that our underlying assumption is that the Gmail

server is honest and that all communication to it going through

a secure authenticated channel using HTTPS. This holds as

long as no one can impersonate the server. A Recent work

by Soghoian and Stamm [8] discussed the possibility of

government agencies to compel certificate authority to issue a

false SSL certificate that can be used to hijack individual’s

secure web based communication. They proposed using a

browser add-on to notice such an event that can be useful

in the present context.

E. Coercing Google

So far we described our scheme under the assumption

that the Gmail server is secure, however one should not

build the entire security on the foundation of a sole service

provider. Clearly, the ideas that we presented are not limited

to Gmail and this work should be extended to support similar

infrastructure such as the ones provided by Yahoo, Microsoft

and Skype. This would ensure that we do not rely on a single

service provider that may be coerced to collaborate with the

government. The more services we can use, the smaller the

chances they would be blocked.

2An organization like the EFF may choose to post a list of trusted usernames
on its site.

While companies such as Google may be willing to disclose

the identity of individuals in response to a court order, they

are unlikely to be willing to actively monitor and disclose the

identities of all the users who communicate with camouflaged

servers. Since our scheme does not allow a censor to learn the

identity of the communicating parties from monitoring traffic,

the censor is unable to track these users and then produce

individual orders for disclosure.

We stress that some trust is required in order to allow secure

communication between clients and servers. We believe that

for a large scale system, trusting a general purpose service

such as Gmail is more practical than establishing this trust

out-of-band or assuming that the censor cannot play the part

of the client and obtain the IP address of the servers.

V. FUTURE WORK

We have introduced the concept of Camouflaged Private
Communication and presented an efficient and secure scheme

for Camouflaged Browsing that is based on Gmail, but as

noted before, the implementations should also support similar

infrastructure such as the ones provided by Yahoo, Microsoft

and Skype. In addition to improving security, implementing

camouflaged communication using various services would also

improve the usability.

Our proof of concept made use of the encrypted connections

that Gmail offers. However, it can be extended to use infras-

tructures that do not offer encrypted connections by combining

ideas from public key cryptography along with steganography

[1], similarly to what was done in [2], [6]. This would open

the door to a wide range of infrastructures such as Facebook

and other social networks and online gaming sites (where lots

of data can be hidden in the massive data they exchange).

REFERENCES

[1] L. von Ahn, N. J. Hopper: Public-Key Steganography. In EURO-
CRYPT 2004. pages 323–341

[2] S. Burnett, N. Feamster, S. Vempala: Chipping Away at Censorship
Firewalls with User-Generated Content. In USENIX Security Sympo-
sium 2010. pages 463–468

[3] R. Dingledine, N. Mathewson and P. Syverson. Tor: The Second-
Generation Onion Router. In Proceedings of the 13th USENIX
Security Symposium 2004, pages 303–320.

[4] S. Chen, R. Wang, X. Wang, K. Zhang. Side-Channel Leaks in
Web Applications: A Reality Today, a Challenge Tomorrow. In IEEE
Symposium on Security and Privacy 2010, pages 191–206

[5] Detecting Tor on your Network.
[6] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, D. Karger:

Infranet: Circumventing Web Censorship and Surveillance. In
USENIX Security Symposium 2002, pages 247–262 Available at
http://blog.vorant.com/2005/01/detecting-tor-on-your-network.html

[7] N. Hopper, E. Y. Vasserman, E. Chan-Tin: How much anonymity
does network latency leak? In ACM Transactions on Information and
System Security 2010 Volume 13(2)

[8] C. Soghoian, S. Stamm: Certified Lies: Detecting and Defeating
Government Interception Attacks Against SSL (2010). Available at
SSRN: http://ssrn.com/abstract=1591033

[9] Tor partially blocked in China. InTor Blog. Available at: https://blog.
torproject.org/blog/tor-partially-blocked-china

[10] D. Wendlandt, D. G. Andersen, A. Perrig: Perspectives: Improving
SSH-style Host Authentication with Multi-Path Probing. In USENIX
Annual Technical Conference 2008. pages 321–334

[11] GNU Wget. Available at http://www.gnu.org/software/wget/

1162

