
Lecture Notes in Computer Science 4579
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Bernhard M. Hämmerli Robin Sommer (Eds.)

Detection of Intrusions
and Malware, and
Vulnerability Assessment

4th International Conference, DIMVA 2007
Lucerne, Switzerland, July 12-13, 2007
Proceedings

13

Volume Editors

Bernhard M. Hämmerli
Acris GmbH und HTA Lucerne
Bodenhofstraße 29, 6005 Luzern, Switzerland
E-mail: bmhaemmerli@acris.ch

Robin Sommer
International Computer Science Institute
1947 Center St. Suite 600
Berkeley, CA 94704, USA
E-mail: robin@icsi.berkeley.edu

Library of Congress Control Number: 2007930209

CR Subject Classification (1998): E.3, K.6.5, K.4, C.2, D.4.6

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-73613-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73613-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12089918 06/3180 5 4 3 2 1 0

Preface

On behalf of the Program Committee, it is our pleasure to present to you the pro-
ceedings of the 4th GI International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA). Each year DIMVA brings to-
gether international experts from academia, industry and government to present
and discuss novel security research. DIMVA is organized by the special interest
group Security—Intrusion Detection and Response of the German Informatics
Society (GI).

The DIMVA 2007 Program Committee received 57 submissions from 20 dif-
ferent countries. All submissions were carefully reviewed by Program Committee
members and external experts according to the criteria of scientific novelty, im-
portance to the field and technical quality. The final selection took place at a
Program Committee meeting held on March 31, 2007, at Università Campus
Bio-Medico di Roma, Italy. Twelve full papers and two extended abstracts were
selected for presentation at the conference and publication in the conference pro-
ceedings. The conference took place during July 12–13, 2007, at the University
of Applied Sciences and Arts Lucerne (HTA Lucerne) in Switzerland. The pro-
gram featured both theoretical and practical research results grouped into five
sessions. The keynote speech was given by Vern Paxson, International Computer
Science Institute and Lawrence Berkeley National Laboratory. Another invited
talk was presented by Marcelo Masera, Institute for the Protection and Security
of the Citizen. Peter Trachsel, Deputy Head of the Federal Strategic Unit for
IT in Switzerland, gave a speech during the conference dinner. The conference
program further included a rump session organized by Sven Dietrich of Carnegie
Mellon University; and it was complemented by the third instance of the Euro-
pean capture-the-flag contest CIPHER, organized by Lexi Pimenidis of RWTH
Aachen.

We sincerely thank all those who submitted papers as well as the Program
Committee members and our external reviewers for their valuable contributions
to a great conference program.

For further details about DIMVA 2007, please refer to the conference Web
site at http://www.dimva.org/dimva2007.

July 2007 Bernhard Hämmerli
Robin Sommer

Organization

Organizing Committee

General Chair Bernhard Hämmerli (HTA Luzern)
Program Chair Robin Sommer (LBNL/ICSI)
Sponsor Chair Dirk Schadt

Program Committee

Roland Büschkes RWE, Germany
Weidong Cui Microsoft Research, USA
Marc Dacier Eurécom, France
Hervé Debar France Télécom, France
Sven Dietrich Carnegie Mellon University, USA
Toralv Dirro McAfee, Germany
Holger Dreger Siemens CERT, Germany
Mohamed Eltoweissy Virginia Tech, USA
Ulrich Flegel University of Dortmund, Germany
Felix C. Freiling University of Mannheim, Germany
Dirk Häger BSI, Germany
Bernhard Hämmerli HTA Lucerne, Switzerland
Marc Heuse n.runs, Germany
Ming-Yuh Huang Boeing, USA
Erland Jonsson Chalmers University, Sweden
Klaus Julisch IBM Research, USA
Angelos Keromytis Columbia University, USA
Hartmut König BTU Cottbus, Germany
Christian Kreibich ICSI, USA
Christopher Kruegel TU Vienna, Austria
Pavel Laskov Fraunhofer FIRST, Germany
Wenke Lee Georgia Tech, USA
Jun Li Tsinghua University, China
Javier Lopez University of Malaga, Spain
John McHugh Dalhousie University, Canada
Michael Meier University of Dortmund, Germany
R. Sekar Stony Brook University, USA
Roberto Setola Univ. CAMPUS Bio-Medico Rome, Italy
Doug Tygar UC Berkeley, USA
Giovanni Vigna UC Santa Barbara, USA

VIII Organization

External Reviewers

Periklis Akritidis Thomas Biege Matt Burnside
Michael Collins Gabriela Cretu Michael E. Locasto
Jason Franklin Jan Goebel Van Hau Pham
Thorsten Holz Engin Kirda Ulf Larson
Corrado Leita Igor Nai Peng Ning
Vern Paxson Michalis Polychronakis Maurizio Sajeva
Sebastian Schmerl Yingbo Song Olivier Thonnard
Jouni Viinikka Nicholas Weaver

Steering Committee

Chairs Ulrich Flegel (University of Dortmund)
Michael Meier (University of Dortmund)

Members Roland Büschkes (RWE)
Christopher Kruegel (TU Vienna)
Marc Heuse (n.runs)
Pavel Laskov (Fraunhofer FIRST)
Klaus Julisch (IBM Research)

DIMVA 2007 was organized by the Special Interest Group Security – Intrusion
Detection and Response (SIDAR) of the German Informatics Society (GI), in
cooperation with the IEEE Task Force on Information Assurance and the Infor-
mation Security Society Switzerland.

Support

The main sponsor of DIMVA 2007 was Secude Headquarter, Lucerne,
Switzerland. We sincerely thank them for their support.

Table of Contents

Web Security

Extensible Web Browser Security . 1
Mike Ter Louw, Jin Soon Lim, and V.N. Venkatakrishnan

On the Effectiveness of Techniques to Detect Phishing Sites 20
Christian Ludl, Sean McAllister, Engin Kirda, and
Christopher Kruegel

Protecting the Intranet Against “JavaScript Malware” and Related
Attacks . 40

Martin Johns and Justus Winter

Intrusion Detection

On the Effects of Learning Set Corruption in Anomaly-Based Detection
of Web Defacements . 60

Eric Medvet and Alberto Bartoli

Intrusion Detection as Passive Testing: Linguistic Support with
TTCN-3 (Extended Abstract) . 79

Krzysztof M. Brzezinski

Characterizing Bots’ Remote Control Behavior . 89
Elizabeth Stinson and John C. Mitchell

Traffic Analysis

Measurement and Analysis of Autonomous Spreading Malware in a
University Environment . 109

Jan Goebel, Thorsten Holz, and Carsten Willems

Passive Monitoring of DNS Anomalies (Extended Abstract) 129
Bojan Zdrnja, Nevil Brownlee, and Duane Wessels

Characterizing Dark DNS Behavior . 140
Jon Oberheide, Manish Karir, and Z. Morley Mao

Network Security

Distributed Evasive Scan Techniques and Countermeasures 157
Min Gyung Kang, Juan Caballero, and Dawn Song

X Table of Contents

On the Adaptive Real-Time Detection of Fast-Propagating Network
Worms . 175

Jaeyeon Jung, Rodolfo A. Milito, and Vern Paxson

Host Security

Targeting Physically Addressable Memory . 193
David R. Piegdon and Lexi Pimenidis

Static Analysis on x86 Executables for Preventing Automatic Mimicry
Attacks . 213

Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi

A Study of Malcode-Bearing Documents . 231
Wei-Jen Li, Salvatore Stolfo, Angelos Stavrou, Elli Androulaki, and
Angelos D. Keromytis

Author Index . 251

Extensible Web Browser Security

Mike Ter Louw, Jin Soon Lim, and V.N. Venkatakrishnan

Department of Computer Science,
University of Illinois at Chicago

{mter,jlim,venkat}@cs.uic.edu

Abstract. In this paper we examine the security issues in functionality extension
mechanisms supported by web browsers. Extensions (or “plug-ins”) in modern
web browsers enjoy unlimited power without restraint and thus are attractive vec-
tors for malware. To solidify the claim, we take on the role of malware writers
looking to assume control of a user’s browser space. We have taken advantage of
the lack of security mechanisms for browser extensions and have implemented a
piece of malware for the popular Firefox web browser, which we call BROWSER-
SPY, that requires no special privileges to be installed. Once installed, BROWSER-
SPY takes complete control of a user’s browser space and can observe all the
activity performed through the browser while being undetectable. We then adopt
the role of defenders to discuss defense strategies against such malware. Our pri-
mary contribution is a mechanism that uses code integrity checking techniques
to control the extension installation and loading process. We also discuss tech-
niques for runtime monitoring of extension behavior that provide a foundation
for defending threats due to installed extensions.

1 Introduction

The Internet web browser, arguably the most commonly used application on a network
connected computer, is becoming an increasingly capable and important platform for
millions of today’s computer users. The web browser is often a user’s window to the
world, providing them an interface to perform a wide range of activity including email
correspondence, shopping, social networking, personal finance management, and pro-
fessional business.

This usage gives the browser a unique perspective; it can observe and apply con-
textual meaning to sensitive information provided by the the user during very personal
activities. Furthermore, the browser has access to this information in the clear, even
when the user encrypts all incoming and outgoing communication. This high level of
access to sensitive, personal data warrants efforts to ensure its complete confidentiality
and integrity.

Ensuring that the entire code base of a browser addresses the security concerns of
confidentiality and integrity is a daunting task. For instance, the current distribution of
the Mozilla Firefox browser has a build size of 3.7 million lines of code (as measured
using the kloc tool) written in a variety of languages that include C, C++, Java, Java-
Script and XML. These challenges of size and implementation language diversity make
it difficult to develop a “one-stop shop” solution for this problem. In this paper, we fo-
cus on the equally significant subproblem of ensuring confidentiality and integrity in a

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 1–19, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 M. Ter Louw, J.S. Lim, and V.N. Venkatakrishnan

browser in the presence of browser extensions. We discuss this problem in the context
of Mozilla Firefox, the widely used free (open source) software browser, used by about
70 million web users [1].

Browser extensions (or “add-ons”) are facilities provided to customize the brow-
ser. These extensions make use of interfaces exported by the browser and other plug-
ins to alter the browser’s behavior. Though the build of Firefox is platform-specific
(such as one for Windows XP, Linux or Mac OS X), extensions are primarily platform-
independent based on the neutral nature of JavaScript and XML, the predominant lan-
guages used to implement them.

Even though extensions plug directly into the browser, there is no provision currently
in Firefox to provide protection against malicious extensions. One way to do this is to
disallow extensions altogether. Firefox is able to do this when started in debugging
mode, which prevents any extension code to be loaded. However, typical installation
and execution in the normal mode allow extensions to be executed. Extensions offer
useful functionality, as evidenced by the popularity of their download numbers [2],
to several thousands of users who use them. Dismissing the security concerns about
extensions by turning them off ignores the problem.

To understand the impact of running a malicious extension, we set for ourselves
the goal of actually crafting one. Surprisingly, we engineered a malicious extension
for the Firefox browser we call BROWSERSPY, with modest efforts and in less than
three weeks. Once installed, this extension takes complete control of the browser. As
further testimony, a recent attack was launched on the Firefox browser using a malware
extension known as FormSpy [8], that elicited widespread media coverage and concern
about naive users.

There are two main problems raised by the presence of our malware extension and
the FormSpy extension:

– Browser code base integrity A malicious extension can compromise the integrity of
the browser code base when it is installed and loaded. We demonstrate (by construc-
tion) that a malicious extension can subvert the installation process, take control of
a browser, and hide its presence completely.

– User data confidentiality and integrity A malicious extension can read and write
confidential data sent and received by the user, even over an encrypted secure con-
nection. We demonstrate this by having our extension collect sensitive data input
by a user while browsing and log it to a remote site.

In this paper we present techniques that address these problems. To address extension
integrity, our solution empowers the end-user with complete control of the process by
which code is selected to run as part of the browser, thereby disallowing installation
integrity threats due to malware. This is done by a process of user authorization that
detects and refuses to allow the execution of extensions that are not authorized by the
end user.

To address the second challenge of data confidentiality and integrity, we augment the
browser with support for policy-based monitoring of extensions by interposition mech-
anisms retrofitted to the Spidermonkey JavaScript engine and other means (Section 5).

A key benefit of our solution is that it is targeted to retrofit the browser. We consider
this benefit very important, and have traded off potentially better solutions to achieve

Extensible Web Browser Security 3

this benefit. Other benefits of our approach are that it is convenient, user-friendly and
poses very acceptable overheads. Our implementation is robust, having been tested with
several Firefox extensions.

This paper is organized as follows. A discussion of related work appears in Section 2.
We present the main details behind our malware extension in Section 3. We present our
solution to the extension integrity problem in Section 4 and address data confidentiality
in Section 5. We evaluate these approaches with several Firefox add-ons and discuss
their performance in the above sections individually. In Section 6 we conclude.

2 Related Work

We examined extension support in four contemporary browsers: Firefox, Internet Ex-
plorer (IE), Safari and Opera. Among the four browsers that we studied, only the Safari
browser does not support the concept of extensions. The remaining three possess ex-
tensible architecture but do not have security mechanisms addressing extension-based
threats. For instance, IE primary extension mechanism is through Browser Helper Ob-
jects (BHO). The PestPatrol malware detection website lists hundreds of malware that
use BHOs [5]. Furthermore, the integrity and confidentiality of the end-user’s private
data used in the browser is also not addressed in recent mechanisms such as “protected-
browser-mode” [4] in Windows Vista.

The problem of safely running extensions in a browser is in many ways similar to
the problem of executing downloaded untrusted code in an operating system. This is
a well known problem, and has propelled research in ideas such as signed code, static
analysis, proof-carrying code, model-carrying code and several execution monitoring
approaches. Below, we discuss the applicability of these solutions to the browser exten-
sion problem highlighting several technical and practical reasons.

Signed code. The Firefox browser provides support for signed extensions; however,
this is hardly used in practice. A search of extensions in the Firefox extensions repos-
itory addons.mozilla.org revealed several thousand unsigned extensions and only
two that were signed. In addition, we note that signed extensions merely offer a first
level of security. They only guarantee that they are from the browser distribution site
and are unmodified in transit; no assurance is provided regarding the security implica-
tions of running the extension.

Static analysis. A very desirable approach for enforcing policies on extension code is
by use of static analysis. Static analysis has been employed in several past efforts in
identifying vulnerabilities or malicious intent. The primary advantages of using static
analysis are the absence of execution overhead and runtime aborts, which are typical of
dynamic analysis based solutions.

It is difficult to employ static analysis for JavaScript code without making conserv-
ative assumptions, however. A first example is the eval statement in JavaScript that al-
lows a string to be interpreted as executable code. Without knowing the runtime values
of the arguments to the eval statement, it is extremely difficult—if not impossible—to
determine the runtime actions of the script. Another problem is tracing the flow of ob-
ject references in a prototype-based object oriented language such as JavaScript. For

4 M. Ter Louw, J.S. Lim, and V.N. Venkatakrishnan

instance, variable assignment to or from an array element or object property (when the
object is indexed as an associative array) can decisively hamper the tracking of object
reference flow as references are stored or retrieved.

Consequently, recent efforts that trace JavaScript code [11] use runtime approaches
to track references. An exception is [13] that employs static analysis for JavaScript for
detecting cross-site scripting (XSS) attacks. In their approach, scenarios like the above
are handled by a conservative form of tainting. This is suitable for their purpose of
preventing XSS attacks as evidenced by their experimental results, and the fact that
typical scripts from web pages are not expected to have complex eval constructs. This
approach is unsuitable for statically analyzing extension code in JavaScript, however.
Almost half (45%) of the extensions that we tested make heavy use of complex eval
constructs, while all generously use objects as associative arrays, making static analysis
very hard.

PCC and MCC. The difficulties for static analysis make frameworks such as proof-
carrying code (PCC) [10] unsuitable for this problem. It will be difficult to produce
proofs for extensions that make heavy use of constructs such as eval as part of their
code. The typical approach to employ PCC in scenarios that require runtime data is to:
(a) transform the original script with runtime checks that enforce the desired security
property, and (b) produce a proof that the transformed program respects this property.
The proof in this case is primarily used to demonstrate the correctness of the placement
of runtime checks.

In the browser situation, transformation needs to be made before all eval statements.
Policy enforcement would still be carried out by runtime checks, and therefore we did
not adopt this route of using PCC. Another solution is model-carrying-code [12] which
employs runtime techniques to learn the behavior of code that will be downloaded. The
difficulty in using this approach is in obtaining test suites for exhaustive code coverage
required for approaches based on runtime learning of models.

Execution monitoring. Several execution monitoring techniques [14,6,7] have pre-
viously looked at the problem of safely executing malicious code. The closest related
project to our approach is by Hallaraker and Vigna [7]. This was the first work that
looked at the security issues of executing malicious code in a large mainstream brow-
ser. Their focus is on protection against pages with malicious content rather than the
ensuring the integrity of a browser’s internal operations. For them it is not necessary to
address the problem of browser code integrity, as scripts from web pages are sandboxed
to prevent them from performing sensitive actions. In contrast we address the extension
installation integrity problem, as extension code is unmonitored and can perform many
sensitive operations.

To effectively regulate extension behavior, a runtime monitor must be able to deter-
mine the particular extension responsible for each operation. A direct adaptation of their
execution monitoring approach does not provide this ability, and is therefore not suited
for runtime supervision of extensions. To fill this void we describe two new action at-
tribution mechanisms making use of browser facilities and JavaScript interposition in
Section 5.

Extensible Web Browser Security 5

(a) Extension hiding from the browser UI. (b) Data collector receiving sensitive information.

Fig. 1. Two views of the BROWSERSPY extension in operation.

3 A Malware Extension

To gain a better understanding of the threat posed by a malware extension, we set
ourselves the task of actually writing one. The motivations for creating the malicious
software are to: (a) help us identify the scope of threats malicious extensions pose by
understanding the facilities available to an extension in a browser, (b) increase our un-
derstanding of architecture-level and implementation-level weaknesses in the browser’s
extension manager, (c) give us a practical estimate in understanding the ease with which
malware writers may be able to craft such extensions, and (d) provide a concrete imple-
mentation of a malicious extension to serve as a benchmark for malware analysis.

Extension Capabilities. BROWSERSPY, the extension we authored, is capable of har-
vesting every piece of form data (e.g., passwords) submitted by the user, including those
sent over encrypted connections. Furthermore, once the extension enters the system, it
ensures that it remains undetectable by users (Figure 1 (a)).

Once BROWSERSPY is installed, it begins collection of personal data that will ulti-
mately fall into the hands of an attacker. As a user navigates the Internet, BROWSERSPY

harvests the URLs comprising their browsing history and stores them in a cache. Any
username and password pairs that are stored in Firefox’s built-in password manager are
retrieved, along with the URL of the site they pertain to. Form data that the user submits
finds its way into the extension as well. All of this information is stored and periodically
sent over the network to a remote host.

Given enough data the spy can effectively steal the identity of the person using the
browser. Intercepted form fields can give an attacker credit card numbers, street ad-
dresses, Social Security Numbers, and other highly sensitive information. The username
/ password pairs can readily provide access to the user’s accounts on external sites. The
history items can give the attacker a profile of the victim’s browsing patterns, and serve
as candidate sites for further break-in attempts using the retrieved set of username /

6 M. Ter Louw, J.S. Lim, and V.N. Venkatakrishnan

password pairs. Figure 1 (b) shows a remote window collecting sensitive information
about the user.

To mimick a spyware attack more closely, BROWSERSPY employs stealth to prevent
the user from knowing that anything unusual is being conducted. The extension uses two
techniques to shroud itself from Firefox’s installed extensions list. First, the extension
simply removes itself from the list so that the user won’t see it. Second, it injects itself
into a (presumably benign) extension, Google Toolbar (Figure 1 (a)). The latter method
serves as a technique to guard the extension from being discovered should the user
inspect the files on her system. The injection process is even successful at infecting
code signed browser extensions,1 as the browser does not check the integrity of these
extensions following installation.

A common technique practiced by malware is covert information flow mechanisms
[9] for transmission. To mimic this behavior, our final stealth tactic deliberately delays
delivery of sensitive data to the remote host. We cache the information and send it out
in periodic bursts to offset the network activity from the event that triggers it, making
it harder for an observant user to correlate the added traffic with security sensitive op-
erations. Thus, the composite effect of some relatively easy measures employed by our
extension is alarming.

Extension entry vectors. The typical process of extension installation requires the user
to download and install the extension through a browser interface window. Though the
BROWSERSPY extension can be installed this way, this is not the only route by which
this malicious extension can be delivered to a browser. It can be delivered by preexisting
malware on the system without involving the browser. It can also be delivered outside
the browser given user account access for a short duration. These entry vectors are all
too common with unpatched systems, public terminals, and naive users who do not
suspect such threats.

Extension development effort. Very little effort was required to create this exten-
sion. The lack of any security in the browser’s Extension Manager module assisted in
its speedy creation. It only took one graduate student (who had no prior experience in
developing extensions) three weeks working part time to complete this extension. We
present this information merely to argue the ease with which this task can be accom-
plished. We note that this period of three weeks is merely an upper bound of effort for
creating malicious extensions. Malware writers have more resources, experience and
time to create extensions that could be more stealthy, perhaps employing increasingly
sophisticated covert mechanisms for information transmission.

Our implementation techniques. We started by studying the procedure of how exten-
sions are created, installed and executed in the system. Firefox extensions make use of
the Cross-Platform Component Object Model (XPCOM) framework, which provides
a variety of services within the browser such as file access abstraction. We carefully
studied interfaces to the XPCOM framework available for use by an extension, and dis-
cerned that one could easily program event observers for various operations performed

1 Case in point, the code in the Google Toolbar extension is signed by Google, Inc.

Extensible Web Browser Security 7

Table 1. The malware extension exploits the use of these XPCOM interfaces to perform attacks

XPCOM Interface Usefulness to perform malicious behavior
nsIHistoryListener By attaching an event listener of this type to each open document,

the browser notifies the malware when a new document is opened.
nsIHttpChannel By attaching an event listener to this interface, the browser grants

the malware a chance to inspect query parameters before submission.
nsIPasswordManager The malware invokes a method provided by this interface which

reveals all of the user’s stored passwords.
nsIRDFDataSource This interface provides the malware with write access to one of the

Extension Manager’s critical internal data objects.

by the browser. We implemented the spying features based on four of these event ob-
servers as itemized in Table 1.

We make unconventional use of the XPCOM framework to achieve hiding mech-
anisms in our spyware implementation. To simply disappear from the browser user
interface, we use a standard interface (Table 1) to manipulate an internal data object
belonging to Firefox’s Extension Manager. This exposes a flaw in the browser imple-
mentation, full access to an object is exported where it should remain at most read-only
to the extension code base.

Injecting the BROWSERSPY extension into another extension requires copying a
file into the target’s directory and then appending some text to the target’s chrome.
manifest (a file containing declarations instructing the browser how to load an exten-
sion). The absence of file access restrictions on extension code easily allow this injec-
tion attack. It is actually a more subtle and fundamental flaw in the implementation of
Firefox that allows such attacks to be carried out with ease. Instead of storing user pref-
erences in a data file and reading them for later use, the browser generates JavaScript
code every time the user changes her preferences, and executes this file on startup. This
is poor design from a security perspective. If the integrity of this file is compromised
the browser can easily be attacked. Our BROWSERSPY extension precisely exploits such
implementation weaknesses.

Through mostly normal use of the services Firefox provides to extensions, we have
been able to concretely demonstrate much cause for concern.

4 Our Approach to Enhance Security

Firefox’s vulnerabilities can be strengthened to make all of the BROWSERSPY attacks
unsuccessful. As mentioned in the introduction section, this requires us to enforce the
following requirements:

Requirement 1 Ensure the integrity of the browser’s code base.
Requirement 2 Protect sensitive user data from being accessed or modified by

the extension code base.

A browser that adheres to Requirement 1 prevents the BROWSERSPY extension
from injecting itself into the browser’s code base. Implicitly, this first requirement also

8 M. Ter Louw, J.S. Lim, and V.N. Venkatakrishnan

Extension
Loading

Phase

Extension
Installation
Phase

Extension Manager

User
Authorization

Authorization
and Integri ty

Check

Firefox Web
Browser

Runtime
Monitor

 XPCOM
 Framework

Network
Services

Sensitive
User Data

An Installed
Extension

A Loaded &
Executing
Extension

A New
Extension

1 *

Fig. 2. Overview of Firefox’s extensible architecture (hexagons represent functionality added to
improve security). Extensions must be user authorized and uncorrupted to get loaded into the
browser. Extension access to XPCOM is controlled by policies defined in the runtime monitor.

disallows unauthorized extensions to access sensitive data, contributing to the fulfill-
ment of Requirement 2.

A high level architecture of our solution is presented in Figure 2. Browser code base
integrity is addressed in our approach by a mechanism of user authorization which
we describe in the remainder of this section. Protection of sensitive information is ad-
dressed in Section 5 through monitoring mechanisms that control extensions’ access to
the XPCOM framework.

4.1 Extension Installation and Loading

It is important to understand a browser’s code base to clarify the issues surrounding
its integrity. Firefox and other extensible browsers, when installed in a fairly secure
fashion, have at least two components to their code base:

1. Browser core, the code directly loaded by invoking the browser executable.
2. User code base, additional program code loaded from among the user’s files as the

browser starts up.

We analyze the browser core and user code base to determine how the concepts of code
authorization apply to each.

By default the code in the browser core must be granted full privileges within the
browser, and we say that the user has authorized this by the basic act of installing the
browser. This authorization is typically enforced by making the browser core not mod-
ifiable by an ordinary (unprivileged) user account. The files that constitute the core

Extensible Web Browser Security 9

have their owner set to the superuser, and do not allow write privileges for any other
users and groups. In addition to the code directly loaded by invoking the browser exe-
cutable, there can be extensions installed as part of the browser core. For the purposes
of this paper we include them in the browser core, as they share authorization properties
with it.

The code that makes up the user code base is also authorized by the act of installation.
This typically takes the form of the user confirming the install of an extension via the
browser’s graphical user interface. As the browser runs with the privileges of the user
who invoked it, the browser is capable of installing extensions into the user code base
on behalf of the user.

A critical aspect to browser security is the integrity of user code base, given that the
browser core is well protected. If the user code base of the web browser is compromised,
the end user is vulnerable to attack by malware such as the BROWSERSPY extension.
The following two principles are fundamental to the user code base integrity:

Principle 1 Code should not be introduced into the user code base of the browser with-
out the user’s authorization.

Principle 2 Code that is part of the user code base of the browser should not be modi-
fied without the user’s authorization.

It is necessary that browsers with an extensible architecture enforce these principles.2

Integrity of the user code base can not be guaranteed unless both are upheld.
As indicated in Section 3, the Firefox web browser is vulnerable to attack against

both principles. Installing an extension outside of a browser session by emulating the
Firefox’s installation routine is one way of introducing code into the user code base.
This can be done without the user’s knowledge or consent, thus betraying Principle 1.
Furthermore, modification of the user code base of the browser can be realized by
conducting an injection attack on a trusted extension, as the BROWSERSPY extension
does. The injection is performed without the authorization of the user, which violates
Principle 2.

Code signing. One potential solution to this problem is to require all extensions to
be delivered to the user’s browser with their code signed by a trusted entity. In this
scenario, the user code base can be validated at any time to determine if its integrity has
been undermined. However, Firefox has a design flaw in its current implementation of
signed extensions that precludes the effectiveness of this solution. It only validates code
at the time an extension is installed; when the browser loads an extension for execution,
no integrity check is performed, making it easy for the BROWSERSPY extension to
inject code into signed extensions. Firefox can not uphold Principle 2 without a fix to
maintain code integrity, and a solution to this requires re-architecting the browser.

A way to detect the addition of code to the user code base is required to enforce
Principle 1, even for code that has been signed by a trusted provider. The detection
mechanism must implement an indicator of what extensions are currently part of the

2 We note that even though this threat exists for other programs that are present in the user’s
account, the threat on the browser is especially critical due to nature of sensitive information
available to it.

10 M. Ter Louw, J.S. Lim, and V.N. Venkatakrishnan

user code base, enabling newly introduced extensions to be differentiated from the set
of previously authorized ones. This indicator needs to be secure against tampering by an
agent other than the user, as the user is the sole authorizing agent with respect to what
extensions are part of the user code base. A system based simply on remotely signed
extensions does not provide these facilities, and thus can not ensure that all additions to
the user code base are user authorized.

User signed extensions. A solution aimed at providing a better protection layer for the
browser code base must certainly allow for unsigned extensions in order for it to offer
any practical benefit. As previously mentioned, an extension distributor such as Mozilla
may not be willing to provide any assurances with regard to third-party code by signing
extensions on their behalf. Yet, users still want to allow such extensions into their user
code base, as evidenced by the popularity of unsigned extension downloads. This poses
a dilemma.

Our solution to this dilemma is to empower the user with the ability to sign exten-
sions that are included in her user code base. Once the user has indicated approval for
the unsigned code to become integrated into the user code base, we provide tools for
the user to sign and suitably transform the code so that at any point its integrity can be
verified. After the conversion to a user-signed extension is accomplished, we augment
the browser with support for maintaining assurance of its user code base integrity. This
thwarts injection attacks by malicious code (e.g., BROWSERSPY). These user signed ex-
tensions thus enhance resiliency of the browser code base to unauthorized modification.

User signed extensions also enable a convenient mechanism for the user to tightly
control what is allowed into the user code base. Extensions can be allowed execution
based on whether or not they have been signed by the user.3

Implementation approach. To prevent a malicious extension from tainting the trusted
code base of Firefox, we have developed a prototype implementation of user signed
extensions. The remainder of this section describes this implementation in detail.

The default behavior of the browser core has been augmented in two places:

1. Extension installation, performed once each time an extension is installed or up-
dated to a more recent version.

2. Extension loading, occurring each time a new browser session is begun.

During installation, our solution assists the user in signing extension code so that
it can be safely incorporated into the user code base. During loading, each extension
loaded from the user code base is tested for code integrity before allowing it to be
introduced into the browser session. If an extension has not been signed by the user,
Firefox will not load it. Loading will also be denied to any extension for which integrity
verification has failed. Figure 2 displays these steps as an extension makes its way into
a browser session for execution.

Extension certificates. User extension signing is performed by generating a certificate
(Figure 3) for each installed extension which can be used for the purposes of authoriza-
tion and integrity checking. These certificates are composed of two sections:

3 They may be further monitored for confidentiality and integrity policies as described in Sec-
tion 5.

Extensible Web Browser Security 11

FILESPEC FILEHASH

CERTSIG

FILESPEC FILEHASH

Absolute file paths File hashes (SHA-256)

File signatures block
(one row per fi le)

Certif icate signature
(RSA signature of fi le signatures block)

FILESIGS

Fig. 3. A user signed extension certificate, employed to verify authorization and integrity of un-
trusted code

1. FILESIGS, used to verify the integrity of the extension’s files.
2. CERTSIG, used to verify the integrity of FILESIGS.

Every file that comprises the extension is represented by a signature in the FILESIGS

section of the certificate. Each file’s signature is composed of its absolute path (FILE-
SPEC) and a SHA-256 content hash (FILEHASH). By comparing the list of files present
in the extension at load time with FILESIGS, the browser detects if a file has been added
to or removed from the user code base without authorization. Through comparison of
each file’s hash value at load time with their respective FILEHASH, the browser notices
if one of the trusted files has been illicitly modified. Firefox will refuse to load any ex-
tension that is revealed by these detection mechanisms to have violated user code base
integrity.

The certificate signature CERTSIG is the RSA signed MD5 hash value of FILESIGS.
As an extension is loaded, the browser generates another FILESIGS corresponding to
the load-time state of the extension’s root directory. The browser is then able to deter-
mine whether the file signatures represented in the certificate are valid by computing
a hash of the extension’s load-time FILESIGS and comparing it to the hash stored in
CERTSIG. This check will fail if any of the following events have occurred subsequent
to installation:

1. a file is added to or removed from the extension
2. a file is added to or removed from FILESIGS

3. one of an extension’s files is modified
4. one of the certificate’s FILEHASH is modified

Upon detection of these forms of corruption, the browser will rule not to load the ex-
tension.

The integrity of a certificate signature is protected by having the user sign it via
RSA public-key cryptography. This signing by the user is what explicitly authorizes the
extension to become part of the user code base. If the signature is tampered with, the
browser will not be able to derive the hash value of FILESIGS, which must be decoded
from CERTSIG to validate the certificate. In such a case, the browser will refuse to load
the extension.

12 M. Ter Louw, J.S. Lim, and V.N. Venkatakrishnan

Key safeguarding. It is necessary to protect the user’s public and private keys that
are used in this solution, as they are the root of the security provided by user signed
extension certificates.

An attacker can circumvent authorization if he gains access to the private key. He
can modify user signed extensions and sign them himself by emulating the browser’s
certificate generation process. Since we expect extension based browser attacks to be
launched by a malicious agent with user level access, and the user’s private key is likely
to be stored in local file space under user control, additional security is needed to protect
the private key.

The enhanced protection is provided by encoding the private key using AES encryp-
tion. This encoded private key is made available to the browser, which prompts the
user for her AES passphrase whenever the RSA private key is needed for extension in-
stallation. As only the user knows the passphrase, the private key is not accessible to
attackers.

A different exploit is possible if an attacker is able to overwrite the user’s public key
with one of his own. In this scenario the browser is fooled into accepting extensions that
are signed by the attacker and refusing those that are signed by the user. This privilege
swap attack is possible because only the public key is used in the certificate validation
process (private key safeguards do not come into play).

To protect the public key from this attack, our solution stores the key file as part of
the browser core; writing to the key file requires administrative (root) privileges, though
reading can still be performed by the user. This makes the key invulnerable to attack by
an agent with only user level access.

Usability. It is well understood that a security solution that is invasive or difficult to use
will face resistance in user uptake. If users decide they would rather not use the security
solution then the benefits it provides can not be realized. With this concept in mind, the
solution presented here is implemented in the least intrusive way possible.

Recall that the user must provide an AES passphrase in order to decrypt the private
key needed for code signing. The browser prompts the user for this passphrase during
installation. This is the minimal burden that our integrity mechanism imposes on the
user.

The browser could require the user to authorize each extension when it is loaded,
which would require the user to authenticate every time the browser starts up. Instead,
authorization is performed only during extension installation. This way the user has
to authenticate only on rare occasion: when installing or upgrading an extension. The
system is just as secure as one which performs load-time authentication, and exhibits
greater usability.

Another usability concern is apparent during the certificate generation phase of ex-
tension installation. As the user is performing the infrequent activity of adding a new
extension, she may decide to add more than one. A multiple installation situation is
especially likely when a periodic software update is triggered by the browser. Consid-
ering that each certificate generated requires the user to authenticate, installing several
extensions could frustrate the user by repeatedly prompting for her password.

The obvious solution is to authenticate the user once, and then perform the certificate
generation in bulk. This is the approach taken by our implementation. Once the user

Extensible Web Browser Security 13

Table 2. Top 20 most popular extensions from addons.mozilla.org tested with our im-
plementation. Drawn from the top 23 as we elected to skip platform dependent and non-English
language extensions.

1. Download Statusbar 6. Forecastfox 11. Web Developer 16. Map+
2. FlashGot 7. Tab Mix Plus 12. Cooliris Previews 17. StumbleUpon
3. NoScript 8. VideoDownloader 13. DownThemAll! 18. Foxmarks
4. Adblock Plus 9. Foxytunes 14. FireBug 19. Clipmarks
5. FireFTP 10. Fasterfox 15. Torrent Search 20. Answers

has decrypted the private key needed for signing, it is used to sign all the necessary
certificates before being zeroed and deallocated.

Care must be taken when performing multiple installation based on a single authenti-
cation. It is highly important that the user always know what is signed as a result of au-
thentication. If this issue is not regarded, a malicious extension could be injected among
the other extensions to be installed without the user’s knowledge. To defend against this
attack, our implementation displays a list of all extensions that will be signed on the
user’s behalf before authentication is required. The user can decide to generate certifi-
cates for all extensions that are pending installation, or for none of them. Additionally,
authorization decisions can be made per-extension. Screen shots of our changes to the
installation mechanism can be found on the project website [3].

4.2 Install Protection Experimental Analysis

The solution was tested to determine its compatibility with popular browser extensions
and its impact on Firefox’s speed. The 20 most popular extensions for Firefox were
used as a basis for our performance evaluation (listed in Table 2).

Compatibility testing. Determining compatibility was done by running the extensions
in the test environment and exercising their core functionality. As some extensions pro-
vide a large feature set, it would have been difficult to exercise their total functionality.
In our tests, 18 out of 20 extensions performed flawlessly. The extension Forecast-
fox elected to force registration of its XPCOM components using an .autoreg file,
which the browser deletes following registration. The Foxytunes extension renamed its
platform-specific component DLL to remove the platform identifier. These two user
code base integrity violations are the result of actions taken that other extensions were
able to avoid through different approaches to the same task. We also note that in gen-
eral it is not possible for automated mechanisms to reason about the safety of these file
manipulation operations, and hence the only option is to disallow them.

Performance overheads. To evaluate performance in terms of speed, we benchmarked
the extension loading and installation phases under five conditions. For each test, we
installed from one to five extensions and measured:

1. the time needed to generate the user signed certificates during installation,

14 M. Ter Louw, J.S. Lim, and V.N. Venkatakrishnan

Table 3. Extension installation integrity system benchmarks. The system used was a modified
version of Firefox 2.0, running on Ubuntu 6.06 LTS, on an AMD Athlon 64 X2 3800+ (2GHz),
2GB RAM. The extensions tested were the top five from Table 2.

Installation / Loading performance benchmark Number of extensions installed
1 2 3 4 5

Total time spent generating certificates (s) 18.6 38.1 53.5 75.6 94.7
Average time spent per certificate generated (s) 18.6 19.1 17.8 18.9 18.9
Percent of generation time spent signing certificates 99.5 99.5 99.9 99.9 99.8
Total time spent validating certificates (s) 0.75 1.50 2.30 3.00 3.70
Average time spent per certificate validated (ms) 748 750 767 750 740
Percent of validation time spent verifying signatures 90.5 92.3 95.8 95.3 96.4

2. the time needed to validate the certificates during loading, and
3. the time spent performing RSA cryptography during items 1 and 2.

The cryptography implemented uses 128-bit passphrases for AES, 512-bit keys for
RSA, and SHA-256 for file hashing. MD5 is used to hash FILESIGS for use in gen-
erating CERTSIG.

The results of our speed tests are shown in Table 3. It takes the implementation about
18.7 seconds on average to generate a certificate. The benchmarks indicate over 99.5%
of that time is spent signing the certificate using RSA.

Extension loading takes a little longer than a stock installation of Firefox. It takes
about 751 ms for each certificate to be validated, of which there is one per extension.
For validation of the certificate signature, we again observe that over 90% of the time
is spent applying RSA cryptography.

We estimate that by using the browser’s native RSA implementation, a significant
benefit to performance would be gained. The RSA implementation we use is written
in JavaScript. Due to its nature as an interpreted language, JavaScript is slow running
for computationally intensive algorithms as present in RSA. We chose RSA in Java-
Script as it is the easiest drop-in solution for our purpose of generating a stand-alone
patch for the browser. If Firefox were modified such that its internal C++ public key
cryptography routines be made available for use by the Extension Manager, we believe
the performance of certificate generation could be greatly enhanced. Improved RSA
performance would also allow us to use greater length keys, increasing the browser’s
resilience to attack.

It is apparent that the AES and SHA-256 cryptography routines do not noticeably
impact performance. If a faster RSA implementation were employed, the significance
of the other two cryptographic functions would likely increase.

We acknowledge the importance that the solution be optimized for greater extension
load-time performance, as it is the common case when contrasted against extension
installation. When comparing the speed of loading to installation in our prototype, it is
conspicuous that the system is optimized for loading.

Extensible Web Browser Security 15

5 Extension Execution

User signed extensions disallow the user code base from unauthorized changes. How-
ever, this doesn’t address the threat of a malicious extension installed with user consent.
Once installed, it can corrupt the integrity of the user code base or even the browser core
by making changes to the runtime state of the browser. Our BROWSERSPY extension
hides itself using this mechanism; it alters the runtime state of the Extension Manager
affecting display of the list of installed extensions.

The second phase of our solution therefore involves controlling an extension’s access
to critical browser services (XPCOM) via runtime monitoring. (The XPCOM services
are discussed in length [7] along with many useful references.) Ordinarily, extensions
enjoy unrestricted access to every interface of this framework. Our focus in this sec-
tion is mainly on the mechanisms and infrastructure needed for a runtime monitoring
solution governing access to the XPCOM interface.

The default security manager for JavaScript uses policies such as the same origin pol-
icy and the signed script policy. Firefox enforces these policies for web content pages,
however does not so restrain internal JavaScript operations. Moreover, these policies
are oblivious to browser overlays (explained below), another regular feature present in
extensions. A straightforward adaptation of the use of these policies on extensions is
not suitable for these reasons.

The action attribution problem. To enforce policies on a per-extension basis, it is
necessary to identify the extension requesting each XPCOM operation. Unfortunately,
Firefox does not have sufficient mechanism in place to establish identity due to the
presence of file overlays. Extensions can provide these overlays to core portions of the
web browser, which may extend and selectively mask the browser core. This integration
is handled by Firefox in a way that does not retain means to identify the extension that
applied the overlay. Through a malicious execution of this procedure, an extension can
anonymously inject program code into the base functionality of the browser. Therefore,
our solution to the action attribution problem has two parts: for overlay and non-overlay
files.

Handling non-overlaid files. Policy enforcement mechanisms are comparatively sim-
pler for non-overlaid files. In this case, the executable statements they contain are traced
back to the extension that issued them. This data is compiled into the set of extensions
contributing to any specific operation, used for the basis of policy decisions. The proce-
dure of tracing the origin of a single operation involves getting the URL of the currently
executing script (maintained by the browser’s JavaScript interpreter Spidermonkey) and
deriving an extension identifier from it. We have implemented this action attribution
mechanism and discuss the performance later in this section.

Handling overlaid files. JavaScript statements present in overlay files require special
handling. When a command is executed from one of these files, the script filename
available to the runtime monitor points to the target of the overlay. This target is usually
part of the browser core—not part of the extension that the code originated from—
resulting in the action attribution problem explained earlier.

16 M. Ter Louw, J.S. Lim, and V.N. Venkatakrishnan

We have devised a way to provide the means of associating actions of overlay files
with their extension of origin. Our approach is based on automatic interposition of “de-
limiting statements” around blocks of code that qualify as entry and exit points. These
statements enable us to identify the executing extension for all code evaluated within
the enclosed block.

The opening statements that we interpose manipulate a stack (maintained in the
browser core) by pushing an extension identifier onto it. The interposed closing state-
ments subsequently access the stack to pop the identifier off. An indicator of which
extension is issuing the intermediate code is then found at the top of the stack. A try-
finally construct wraps the function body to ensure that we pop the stack in the event of
a return statement or thrown exception.

Spidermonkey is adapted to perform the interposition. Out of the box it provides us
with an API capable of compiling JavaScript statements into bytecode (in preparation
for execution), and another interface to decompile bytecode back into its original Java-
Script. Specifically, support was added to the decompiler so that it can do the needed
interposition.

The technique employed is to compile JavaScript into bytecode, then feed the byte-
code into the interposing decompiler. This procedure is conducted once per extension,
at the time the extension is installed. The performance of this operation is comparable
to the rewriting technique in [11] with the advantage that it does not have to run every
time the browser application is launched.

The above infrastructure is sufficient to handle overlaid code. However, a total so-
lution to the overlay problem requires stripping the JavaScript code from overlay files,
transforming it using interposition, and stitching the file back together. We are currently
adding support to our infrastructure to handle this straightforward operation, and there-
fore report the performance of this interposition mechanism on non-overlaid files later
in this section.

Analysis of interposition mechanisms. Under the interposition technique, a malicious
extension may attempt manipulation of the active extension stack to spoof its extension
ID, allowing access to XPCOM with elevated privileges and circumvention of stateful
policies. Although this attack is theoretically possible, significant effort is required to
mount it in our environment where user code base integrity is assured. Assuring a seg-
ment of code will not exploit this deficiency is difficult, stemming from the challenges
in static analysis of JavaScript code.

Protection against this attack can be provided by an additional security layer that uses
randomization. A signed, extension-specific magic number is given as an argument to
the interposed stack manipulation code. This makes it harder for a generic attack to be
constructed that is successful for more than a single targeted user. To achieve generality,
the extension must self-modify by discovering and incorporating the magic number
into its attack code. This is hard to do in our environment where extension integrity is
continually enforced, as the malware must morph prior to installation.

Policies. With infrastructure in place, we have implemented six policies on non-overlaid
extension code. They are representative of the types of policies enforceable using this
solution, and are described in Table 4.

Extensible Web Browser Security 17

Table 4. The example policies that were created and tested with the runtime monitoring solution

Policy name What it does Granularity
XPCOM-ALLOW Allow all access to a XPCOM interface per extension
XPCOM-DENY Deny all access to a XPCOM interface per extension
SAME-ORIGIN Allow access to same-origin domains per extension
XPCOM-SAFE Deny all access to XPCOM while SSL is in use. per extension
PASS-RESTRICT Deny access to the password manager all extensions
HISTORY-FLOW Prevent URL history leaks via output streams all extensions

Table 5. Performance micro-benchmarks for the default browser behavior and two different ac-
tion attribution methods. The execution time of selected functions within the top five most popular
extensions is measured over 1000 runs. The same test platform described at Table 3 was used.

Extension Function Stock File Lookup Overhead Interposition Overhead
(ms) (ms) (%) (ms) (%)

Adblock Plus abp init() 14.1 14.5 2.8 15.4 9.2
Download Statusbar init() 4.5 4.7 4.4 5.0 11.1
FireFTP changeDir() 26.4 29.4 11.4 32.6 23.5
FlashGot getLinks() 4.2 4.4 4.8 4.6 9.5
NoScript nso save() 14.2 16.7 17.6 18.7 31.7
Average 8.2 17.0

The first four policies are extension specific. Complex policies can be composed of
these rules to allow only the level of access an extension needs to function. The policies
XPCOM-SAFE and PASS-RESTRICT are conservative policies that disallow access to
sensitive data. PASS-RESTRICT and HISTORY-FLOW are enforced globally. HISTORY-
FLOW is unique in that it is stateful. If any extension is detected accessing Firefox’s
URL history interface, that extension will be disallowed further access to interfaces of
type nsIOutputStream. This protects writes to files and network sockets over a single
session.

Performance. To evaluate the performance of our approach to action attribution, we
wrapped functions within the five most popular Firefox extensions with benchmarking
code. One thousand iterations of each function were performed in: (a) an unmodified
browser, and (b) a browser using the filename lookup mechanism, and (c) a browser
using the interposition technique on overlay files.

We observed a modest overhead of 8.2% on average to apply our policies using file-
name lookup. The interposition mechanism was slightly slower, imposing an overhead
of 17.0% on average. The additional impact is not detrimental considering that overlay
code is typically short, thus causing minimal difference in the overall user experience.
Our experience in operating the browser with active runtime monitoring and policy
enforcement did not indicate perceivable overhead.

18 M. Ter Louw, J.S. Lim, and V.N. Venkatakrishnan

6 Conclusion

We authored a malicious extension as proof-of-concept that security concerns exist in
modern extensible web browsers. We selected the open source browser Firefox as our
target platform, because it suffers many of these flaws.

The threat of malicious extensions was addressed using two mechanisms: (1) a mech-
anism by which the installation integrity of extensions is validated at load-time, and (2)
infrastructure for runtime monitoring and policy enforcement of extensions to further
prevent attacks on browser core integrity and sensitive data confidentiality.

Our changes to Firefox insure that the browser allows only extensions installed by the
user to be loaded, and detects unauthorized changes made to installed extensions. This
modification seals the outside installation vector for malicious extensions by disallow-
ing standard and injection type installations external to a browser session. We enabled
the browser to monitor a significant portion of extension code at runtime and effect pol-
icy on a per-extension basis. The monitoring infrastructure and the set of policies that
we have created represent only a starting point. More research is needed for designing
a comprehensive suite of policies that can be enforced on extensions with acceptable
overheads on usability.

We are currently pursuing efforts to integrate our extension integrity checking pro-
totype into the Firefox browser main source tree. Our malicious extension is available
through private circulation for malware researchers.

References

1. Information from http://en.wikipedia.org/wiki/Mozilla Firefox
2. Information from http://addons.mozilla.org
3. Project website. http://research.mike.tl/view/Research/

ExtensibleWebBrowserSecurity
4. Protected mode in vista ie7.

http://blogs.msdn.com/ie/archive/2006/02/09/528963.aspx
5. eTrust Pest Patrol. Pests detected by pestpatrol and classified as browser helper object

http://www.pestpatrol.com/pestinfo2005
6. Goldberg, I., Wagner, D., Thomas, R., Brewer, E.A.: A secure environment for untrusted

helper applications: confining the wily hacker. In: USENIX Security Symposium (1996)
7. Hallaraker, O., Vigna, G.: Detecting Malicious JavaScript Code in Mozilla. In: Proceed-

ings of the IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS), pp. 85–94, Shanghai, China (June 2005)

8. Kirk, J.: Trojan cloaks itself as firefox extension. Infoworld magazine (July 2006)
9. Lampson, B.W.: A note on the confinement problem. Communications of the ACM 16(10)

(1973)
10. Necula, G.C.: Proof-carrying code (ACM SIGACT and SIGPLAN). In: ACM Symposium on

Principles of Programming Languages (POPL), pp. 106–119. ACM Press, New York (1997)
11. Reis, C., Dunagan, J., Wang, H., Dubrovsky, O., Esmeir, S.: Browsershield: Vulnerability-

driven filtering of dynamic html. In: USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (2006)

12. Sekar, R., Venkatakrishnan, V.N., Basu, S., Bhatkar, S., DuVarney, D.C.: Model carrying
code: A practical approach for safe execution of untrusted applications. In: ACM Symposium
on Operating Systems Principles (SOSP) (2003)

http://en.wikipedia.org/wiki/Mozilla_Firefox
http://addons.mozilla.org
http://research.mike.tl/view/Research/ExtensibleWebBrowserSecurity
http://research.mike.tl/view/Research/ExtensibleWebBrowserSecurity
http://blogs.msdn.com/ie/archive/2006/02/09/528963.aspx
http://www.pestpatrol.com/pestinfo2005

Extensible Web Browser Security 19

13. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross site script-
ing prevention with dynamic data tainting and static analysis. In: Network and Distributed
System Security Symposium (NDSS), San Diego (2007)

14. Wahbe, R., Lucco, S., Anderson, T., Graham, S.: Efficient software-based fault isolation. In:
Proceedings of the Symposium of Operating System Principles (1993)

On the Effectiveness of Techniques to Detect

Phishing Sites

Christian Ludl, Sean McAllister, Engin Kirda, and Christopher Kruegel

Secure Systems Lab, Technical University Vienna
{chris2,sean,ek,chris}@seclab.tuwien.ac.at

Abstract. Phishing is an electronic online identity theft in which the
attackers use a combination of social engineering and web site spoofing
techniques to trick a user into revealing confidential information. This
information is typically used to make an illegal economic profit (e.g., by
online banking transactions, purchase of goods using stolen credentials,
etc.). Although simple, phishing attacks are remarkably effective. As a re-
sult, the numbers of successful phishing attacks have been continuously
increasing and many anti-phishing solutions have been proposed. One
popular and widely-deployed solution is the integration of blacklist-based
anti-phishing techniques into browsers. However, it is currently unclear
how effective such blacklisting approaches are in mitigating phishing at-
tacks in real-life. In this paper, we report our findings on analyzing the
effectiveness of two popular anti-phishing solutions. Over a period of
three weeks, we automatically tested the effectiveness of the blacklists
maintained by Google and Microsoft with 10,000 phishing URLs. Fur-
thermore, by analyzing a large number of phishing pages, we explored
the existence of page properties that can be used to identify phishing
pages.

1 Introduction

Online services simplify our lives. They allow us to access information ubiqui-
tously and are also useful for service providers because they reduce the opera-
tional costs involved in offering a service. For example, online banking over the
web has become indispensable for customers as well as for banks. Unfortunately,
interacting with an online service such as a banking web application often re-
quires a certain degree of technical sophistication that not all Internet users
possess. For the last couple of years, such naive users have been increasingly
targeted by phishing attacks that are launched by miscreants who are aiming
to make an easy profit by means of illegal financial transactions. Phishing is a
form of electronic identity theft in which a combination of social engineering and
web site spoofing techniques are used to trick a user into revealing confidential
information with economic value. In a typical attack, the attacker sends a large
number of spoofed (i.e., fake) e-mails to random Internet users that appear to
be coming from a legitimate business organization such as a bank. The e-mail
urges the recipient (i.e., the potential victim) to update his personal informa-
tion. Often, the e-mail also warns the recipient that the failure to comply with

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 20–39, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Effectiveness of Techniques to Detect Phishing Sites 21

the request will result in the suspending of his online banking account. Such un-
grounded threats are common in social engineering attacks and are an effective
technique in persuading users.

When the unsuspecting victim follows the phishing link that is provided in the
e-mail, he is directed to a web site that is under the control of the attacker. The
site is prepared in a way such that it looks familiar to the victim. That is, the
phishers typically imitate the visual corporate identity of the target organization
by using similar colors, icons, logos and textual descriptions. In order to “update”
his personal information, the victim is asked to enter his online banking login
credentials (i.e., user name and password) to access the web site. If a victim
enters his valid login credentials into the fraudulent web site, the phisher can
then impersonate the victim. This may allow the attacker to transfer funds
from the victim’s account or cause other damage. Because victims are directly
interacting with a web site that they believe they know and trust, the success
rate of such attacks is very high. Note that although phishing has been receiving
wide media coverage (hence, causing the number of Internet users who have
heard of phishing to increase), such attacks still remain effective as phishers
have been adapting their social engineering attempts accordingly. For example,
many phishing e-mails now ask the victims to validate their personal information
for “security purposes”, supposedly because the targeted organization would like
to protect them against the phishing threat.

According to the Anti-Phishing Working Group [2], the phishing problem has
grown significantly over the last years. For example, the number of unique phish-
ing web sites has exploded from 7,197 in December 2005 to 28,531 in December
2006. Also, financial losses stemming from phishing attacks have risen consider-
ably, to more than $2.8 billion in the last year according to Gartner Inc. [8].

The phishing problem has become so serious that large IT companies such as
Microsoft, Google, AOL and Opera have recently started announcing browser-
integrated, blacklist-based anti-phishing solutions. However, one important ques-
tion that still remains is how effective such blacklist-based solutions are in dealing
with the phishing problem.

In this paper, we report our findings on analyzing the effectiveness of two
popular blacklist-based anti-phishing solutions. We automatically tested the ef-
fectiveness of the blacklists maintained by Google and Microsoft over a three
week period. During this time, we tested the blacklists with 10,000 phishing
URLs. Furthermore, by analyzing a large number of phishing pages, we experi-
mentally explored the existence of page properties that can be used to identify
phishing pages.
The contributions of this paper are as follows:

– We show that blacklist-based solutions are actually quite effective in protect-
ing users against phishing attempts. In our experiments, Google recognized
almost 90% of the malicious URLs at the time of the initial check.

– By analyzing a large number of phishing pages, we built a classification model
that attempts to use the properties of a page (e.g., number of password
fields, number of external links, etc.) to distinguish between malicious and

22 C. Ludl et al.

legitimate pages. We believe our model can be used to improve existing anti-
phishing approaches (e.g., such as the built-in phishing detection heuristics
used by IE 7).

2 Related Work

A number of anti-phishing solutions have been proposed to date. Some ap-
proaches attempt to solve the phishing problem at the e-mail level. That is, they
try to prevent phishing e-mails from reaching the potential victims by means
of filters and content analysis. Obviously, such techniques are closely related to
anti-spam research. In fact, anti-spam techniques (e.g., such as Bayesian filters)
have proven to be quite effective in also intercepting phishing e-mails. Unfortu-
nately, the effectiveness of anti-spam techniques often depends on many critical
factors such as regular filter training and the availability of anti-spam tools.
Furthermore, filtering, no matter how efficient, is not perfect and some phishing
e-mails may manage to get through the filters and reach potential victims (i.e.,
strengthening the belief that the e-mail is legitimate).

Microsoft and Yahoo have also defined e-mail authentication protocols (i.e.,
Sender ID [16] and DomainKeys [32]) that can be use to verify if a received
e-mail is authentic. The main disadvantage of these solutions, however, is that
they are currently not used by the majority of Internet users.

Several academic, browser-integrated solutions (i.e., client-side techniques)
have been proposed to date to mitigate phishing attacks. Well-known solutions
in literature are SpoofGuard [3, 26] and PwdHash [24, 23]. SpoofGuard looks for
phishing symptoms (e.g., obfuscated URLS) in web pages and raises alerts. Pwd-
Hash, in contrast, creates domain-specific passwords that are rendered useless
if they are submitted to another domain (e.g., a password for www.gmail.com
will be different if submitted to www.attacker.com). Our anti-phishing tool,
AntiPhish [11] takes a different approach and keeps track of where sensitive in-
formation is being submitted. That is, if it detects that confidential information
such as a password is being entered into a form on an untrusted web site, a
warning is generated and the pending operation is canceled.

An interesting solution that has been proposed by Dhamija et al. [5] involves
the use of a so-called dynamic security skin on the user’s browser. The technique
allows a remote server to prove its identity in a way that is easy for humans to
verify, but difficult for phishers to spoof. The disadvantage of this approach is
that it requires effort by the user. That is, the user needs to be aware of the
phishing threat and check for signs that the site he is visiting is spoofed. In fact,
in a later study [6], Dhamija et al. report that more than 20% of the users do
not take visual cues into consideration when surfing and that visual deception
attacks can fool even the most sophisticated users.

Lui et al. [30] analyze and compare legitimate and phishing web pages to define
metrics that can be used to detect a phishing page. A web page is classified as
a phishing page if its visual similarity value is above a pre-defined threshold.

On the Effectiveness of Techniques to Detect Phishing Sites 23

The most popular and widely-deployed techniques, however, are based on the
use of blacklists of phishing domains that the browser refuses to visit. For ex-
ample, Microsoft has recently integrated a blacklist-based anti-phishing solution
into its Internet Explorer (IE) 7 browser. The browser queries lists of blacklisted
and whitelisted domains from Microsoft servers and makes sure that the user
is not accessing any phishing sites. Microsoft’s solution is also known to use
some heuristics to detect phishing symptoms in web pages [27, 15]. Obviously,
to date, the company has not released any detailed public information on how
its anti-phishing techniques function.

Other browser-integrated anti-phishing tools include Google Safe Browsing
[25], NetCraft tool bar [18], eBay tool bar [7] and McAfee SiteAdvisor [12].
Similar to the Microsoft IE 7 anti-phishing protection, Google Safe Browsing
uses blacklists of phishing URLs to identify phishing sites. The disadvantage
of the approach is that non blacklisted phishing sites are not recognized. In
contrast, NetCraft assesses the phishing probability of a visited site by trying
to determine how old the registered domain is. The approach partially uses a
database of sites that are maintained by the company. The downside of the
approach, hence, is that new phishing sites that are not in the database might
not be recognized. Similarly, SiteAdvisor is a database-backed solution that is,
however, mainly designed for protection against malware-based attacks (e.g.,
spyware, Trojan horses, etc.). It includes automated crawlers that browse web
sites, perform tests and create threat ratings for each visited site. Unfortunately,
just like other blacklist or database-based solutions, SiteAdvisor cannot recognize
new threats that are unknown and not in the database. The eBay solution is
specifically designed for eBay and PayPal and involves the use of a so-called
“Account Guard” that changes color if the user is on a spoofed site.

Verisign has also been providing a commercial anti-phishing service [28]. The
company is crawling millions of web pages to identify “clones” in order to de-
tect phishing web sites. Furthermore, just like other large companies such as
Microsoft, McAfee and Google, blacklists of phishing web sites are maintained.

Note that one problem with crawling and blacklists proposals could be that the
anti-phishing organizations will find themselves in a race against the attackers.
This problem is analogous to the problems faced by anti-virus and anti-spam
companies. Obviously, there is always a window of vulnerability during which
users are susceptible to attacks. Furthermore, listing approaches are only as
effective as the quality of the lists that are maintained. Hence, one interesting
research question is how effective such blacklists are in mitigating attacks.

In late 2006, two studies appeared that compared the effectiveness of the
Google and Microsoft blacklists. One study, which was paid for by Microsoft,
unsurprisingly concluded that the Microsoft blacklist is superior [19]. The other
study, initiated by Mozilla, drew the opposite conclusion [17]. Thus, we felt that
a third, independent evaluation would be valuable. In addition, the two studies
mentioned above only consider whether a phishing URL was blacklisted at one
point in time. However, no attempt was made to assess whether phishing URLs

24 C. Ludl et al.

were added at a later time, or whether they were never added at all. Hence, a
key difference of our study is that we take these questions into account.

Also, independently and concurrently from our work, Zhang et al. [33] have
also performed a similar study that investigates the efficiency of anti-phishing
solutions. The authors have created an automated test-bed with which they have
tested the detection rates of mostly blacklist-based anti-phishing solutions. An
important difference of our work is that our tests and experimental data include
10,000 phishing URLs collected over a three week period lasting from December
2006 to January 2007. In comparison, Zhang et al.’s dataset includes 100 phishing
URLs collected over a period of three days in November 2006. Furthermore,
in our work, besides investigating the efficiency of popular blacklists, we also
experimentally explored the existence of page properties that can be used to
identify phishing pages.

3 Scope of Study

The goal of this paper is to analyze the effectiveness of anti-phishing solutions.
More precisely, we are interested in assessing techniques that are capable of
classifying individual web pages. To qualify for our study, a technique must be
capable of determining whether a page is legitimate or a phishing page, given
only the URL and the page’s source code. We did not consider mechanisms that
aim to prevent users from visiting a phishing site (e.g., by recognizing phish-
ing mails). Also, we did not evaluate solutions that attempt to protect sensitive
user information from being leaked to the phishers (e.g., by replacing passwords
with site-specific tokens, or by using novel authentication mechanisms). Cur-
rently, there are two main approaches to classify visited web pages without any
additional information. The first one is based on URL blacklists. The second
approach analyzes properties of the page and (sometimes) the URL to identify
indications for phishing pages.

Blacklists: Blacklists hold URLs (or parts thereof) that refer to sites that are
considered malicious. Whenever a browser loads a page, it queries the blacklist
to determine whether the currently visited URL is on this list. If so, appropriate
countermeasures can be taken. Otherwise, the page is considered legitimate. The
blacklist can be stored locally at the client or hosted at a central server.

Obviously, an important factor for the effectiveness of a blacklist is its cov-
erage. The coverage indicates how many phishing pages on the Internet are
included in the list. Another factor is the quality of the list. The quality in-
dicates how many non-phishing sites are incorrectly included into the list. For
each incorrect entry, the user experiences a false warning when she visits a le-
gitimate site, undermining her trust in the usefulness and correctness of the
solution. Finally, the last factor that determines the effectiveness of a blacklist-
based solution is the time it takes until a phishing site is included. This is because
many phishing pages are short-lived and most of the damage is done in the time
span between going online and vanishing. Even when a blacklist contains many

On the Effectiveness of Techniques to Detect Phishing Sites 25

entries, it is not effective when it takes too long until new information is included
or reaches the clients.

For our study, we attempted to measure the effectiveness of popular blacklists.
In particular, we studied the blacklists maintained by Microsoft and Google. We
believe that these blacklists are the ones that are most wide-spread, as they are
used by Internet Explorer and Mozilla Firefox, respectively.

Page analysis: Page analysis techniques examine properties of the web page and
the URL to distinguish between phishing and legitimate sites. Page properties
are typically derived from the page’s HTML source. Examples of properties are
the number of password fields, the number of links, or the number of unencrypted
password fields (these are properties used by SpoofGuard [3]).

The effectiveness of page analysis approaches to identify phishing pages fun-
damentally depends on whether page properties exist that allow to distinguish
between phishing and legitimate sites. Thus, for our study, we aimed to deter-
mine whether these properties exist, and if so, why they might be reasonable
candidates to detect phishing pages.

In a first step, we defined a large number of page properties that can be ex-
tracted from the page’s HTML code and the URL of the site. Then, we analyzed
a set of phishing and legitimate pages, assigning concrete values to the proper-
ties for each page. Finally, using the collected data as training input, we applied
machine-learning techniques to create a web page classifier. The resulting clas-
sifier is able to distinguish well between phishing and legitimate classifiers, with
a very low false positive rate. This indicates that the aforementioned page prop-
erties that allow one to identify malicious pages do in deed exist, at least for
current phishing pages.

It seems that Microsoft has drawn a similar conclusion, as the new Internet
Explorer browser also features a phishing page detection component based on
page properties. This component is invoked as a second line of defense when
a blacklist query returns no positive result for a visited URL. As part of our
study, we attempted to determine the features that are most relevant to the IE
for identifying phishing sites. We observed that the IE model looks different than
the one we have built, and also detects less phishing pages.

4 Experimental Setup

In this section, we first discuss the anti-phishing solutions that we chose to
examine. Then, we describe the test data that was collected to conduct our
experiments.

4.1 Anti-phishing Solutions

In the previous section, we outlined the scope of our study. In particular, we ex-
plained our focus on solutions that analyze web pages for indications of phishing,
namely blacklist-based and page analysis techniques. To evaluate the effectiveness

26 C. Ludl et al.

of these approaches, it is desirable to select solutions that are in wide-spread
use. This is important so that the results of the study are relevant. Also, a wide-
spread solution has a higher likelihood of being well-supported and maintained,
thus making the result of the study meaningful. Consider a study that evaluates
the effectiveness of a blacklist that is not updated. While this study will probably
conclude that blacklists are very ineffective, these results are not very insightful.

For this study, we decided to analyze the effectiveness of the anti-phishing
solutions used by the Microsoft Internet Explorer 7 and Mozilla Firefox 2. The
reasons for this choice are the following: First, these two applications are the
most-used web browsers on the Internet. Second, both browsers recently intro-
duced anti-phishing mechanisms, and one can assume that these mechanisms
will be the most widely deployed anti-phishing solutions in the near future. Note
that we did not include the Opera browser in our study because the company
announced a phishing filter only shortly after we started our experiments.

Internet Explorer 7: Microsoft recently introduced the version 7 of its popular
Internet Explorer (IE) browser, which was automatically deployed to millions of
computers around the world via Microsoft’s Windows update web site. One of
the most important, new features of this browser is its anti-phishing support.
To this end, the IE 7 uses both an online database of reported phishing sites
as well as heuristics that analyze web pages to determine the potential risk of
a web site [27, 15]. This makes the Internet Explorer an optimal selection for
our study, as it uses both a blacklist and page analysis approaches to identify
phishing attempts.

For the user, the anti-phishing support has the following visible effects: If a
site is a reported phishing site, the address bar of the browser turns red and the
web site turns into a full page warning about the potential dangers of the site.
The user can then choose to either proceed to the site or close the page. If the
site is not found in the blacklist of reported scam pages, but the page heuristics
detect a possible phishing attempt, the address bar turns yellow and a warning
symbol appears at the bottom of the screen.

Mozilla Firefox: Mozilla Firefox is considered the only serious competitor to the
Microsoft IE, which currently dominates the browser market. Since version 2.0,
Firefox includes anti-phishing support. The browser can connect to any available
blacklist provider, using a documented, open protocol. Currently, however, only
the Google blacklist servers1 are pre-configured. The anti-phishing approach of
Firefox is solely based on blacklists and does not use any form of page analysis to
warn the user of potential scams. By default, Firefox uses regularly downloaded
lists and does not perform blacklist lookups with each web connection. The user,
however, can also choose to use live blacklists. When a visited URL is on the
blacklist, Firefox turns the web page into a black-and-white version and displays
a warning message.

1 Google’s blacklist is also used by the Google safe browsing toolbar [9].

On the Effectiveness of Techniques to Detect Phishing Sites 27

4.2 Test Data

For our study, a large number of phishing pages were necessary. We chose
phishtank.com as a source of phishing URLs. The information from this site is
freely available and the amount of reported phishing sites is very large (approxi-
mately five hundred new phishing reports every day). There are other providers
of blacklist data, but their feeds are typically only available for a fee, and their
reports tend to focus on particular phishing incidents [4] (for example, a large
scale phishing attack towards a particular institution, with multiple site mirrors
and copies of spoofed emails), whereas the phishtank datasets focus on the URL
itself, thereby making it more appropriate to our goals. The free availability of
this information is also a very important aspect to our research, as phishtank
is neither affiliated with Microsoft nor with Mozilla, making the results more
objective. The URLs were extracted from a XML feed [20] of verified and (then)
online phishing sites. In addition to saving the URLs we made local copies of
each site. This was important, as most phishing sites are only online for a short
period of time and the page source was needed later for evaluating the effective-
ness of page analysis techniques. Note that even when attempting to download
phishing sites immediately, a significant fraction of these sites was already down
(and thus, no longer available for further analysis).

Table 1. (a) Domains that host phishing sites. (b) Popular phishing targets.

(a)

No domain (numerical) 3,864

.com 1,286

.biz 1,164

.net 469

.info 432

.ws 309

.jp 307

.bz 256

.nz 228

.org 156

.de 111

.ru 106

.us 105

(b)

paypal 1,301

53.com 940

ebay 807

bankofamerica 581

barclays 514

volksbank 471

sparkasse 273

openplan 182

Total 5,069

Note that phishtank is a community-driven site that lives from submissions
made by its users. Hence, this approach has the disadvantage that some reported
sites may not be phishing sites. Phishtank uses a system based on verification by
other users, who can vote whether a page is a phishing page or not. These votes
are weighted by the experience and the rank the user has within the community.
Nevertheless, it is possible that even a page that is verified by phishtank users
to be malicious is in fact legitimate. Therefore, we cannot completely rule out

28 C. Ludl et al.

the possibility that some samples are false positives. Also, note that we were not
able to investigate how often phishes reported by Google and Microsoft appeared
on phishtank. This is because we do not have access to the full blacklist used at
Microsoft (which is queried via SOAP requests) and because we believe that the
Google blacklist that is available online is not complete (i.e., we suspect that the
Google blacklist does not include IPs that have been taken down or that are not
relevant anymore).

We started the collection of phishing pages on 15. December 2006, with the
goal of gathering 10,000 URLs. This goal was reached after about three weeks,
on 4. January 2007. During this time a webcrawler periodically checked the
collected URLs and when possible downloaded the sites to our local repository.
If the download failed the crawler checked the site again on its next run and
continued doing so for 48 hours after the site was first added to our database.
For the 10,000 URLs that we collected, we were only able to download the page
sources of 4,633 sites. This clearly underlines the short time span that many
phishing pages are online. In Table 1(a), the leading top level domain names of
the phishing sites are listed. Note that the largest fraction of pages is not hosted
under any domain, but uses only numerical IP addresses. Among the remaining
sites, a large variety of domains can be observed.

We also analyzed the sites that were spoofed most often by checking for host-
names of legitimate sites in the phishing sites URL. This is also a property we
checked for in the page analysis (see section 6.1). The results are shown in Ta-
ble 1(b). Not surprisingly, both paypal and ebay were among the top three.
Most other frequently targeted victims are online portals of banks. The eight
most targeted victims alone account for more than 50% of the phishing URLs
that we observed. Further analysis of current phishing targets based on Google’s
blacklist can be found at [13].

5 Study of Blacklist Effectiveness

To study the effectiveness of the blacklists provided by Microsoft (used by the In-
ternet Explorer) and Google (used by Firefox), we periodically checked whether
our most recently collected URLs from phishtank.com were already blacklisted.
Depending on the initial response, we either saved the positive answer (i.e., the
site is blacklisted) and stopped to check the URL, or we continued to send re-
quests with not-yet blacklisted URLs. In the latter case, we stopped after the
first positive response and saved the received data together with a timestamp.

Automated analysis: Because of the large amount of data that needed to be
processed, an automated solution to check URLs was necessary. Hence, we had
to exchange data with the two blacklist servers directly, without going through
the browser. This task was quite easy for the Google blacklist server because the
blacklist protocol and the specifications of the request and response formats are
public [25, 21].

Of course, the situation is different for Microsoft’s blacklist server, for which no
public protocol information is available. The first problem that we faced was that

On the Effectiveness of Techniques to Detect Phishing Sites 29

the information between the IE and Microsoft is exchanged over an encrypted
SSL connection. To discover more details about the protocol, we first set up
an Apache SSL server. Then, we created a self-signed certificate and stored this
certificate in our Internet Explorer. In addition, we added an entry for Microsoft’s
blacklist server urs.microsoft.com to the hosts file of the machine that the
Internet Explorer was running on. The idea was to let the Microsoft blacklist
server URL point to our SSL server. As a result, the browser contacted our server
for each blacklist request. At this point, we were able to decrypt the messages
that were arriving at our server, and we discovered that the communication was
implemented via SOAP messages. We could then forward these messages to the
real Microsoft server, and received responses that we could further analyze.

Analyzing the blacklist protocol, we observed that the URL of each visited
page is stripped from any GET data at the end of the URL and then sent to the
server for checking. This is different from the Google protocol, which always in-
cludes the complete URL. On sites that include iframes, a single request was sent
for each iframe. This can lead to performance problems and was subsequently
changed by Microsoft [29]. That is, before the change was introduced, an HTML
page with an embedded iframe that linked to a known phishing site was reported
as being a phishing site itself. After the change, we observed that the browser
ignored iframe links. Hence, if we created a “phishing” page that used iframes
and linked to a known phishing site, our phishing page would not be detected.
During our experiments, we also noticed that the request and response pairs to
the blacklist server often included lookup strings and responses for domains such
as microsoft.com. Unfortunately, we were not able to determine the reason for
these lookups. However, we could confirm that the browser version and the IP
address of the computer that the browser is running on is sent to the Microsoft
servers with each request (which is indicated in the privacy statement in [14]).

Analysis results: When checking the results of our test run, we recognized that
for the 10,000 different URLs that we sent to both servers, only Google returned
appropriate answers for all of them. However, we received only 6,131 responses
from the Microsoft server. After further analysis of the data, we had to draw
the conclusion that the Microsoft server was using some sort of rate limiting and
locked us out because of too many requests. As a result, we unfortunately have
less comprehensive data from the Microsoft blacklist. Nevertheless, we believe
that we still have sufficient data to provide meaningful statistics for the Microsoft
blacklist.

The results of the experiment are shown in Table 2. Initially, when we first
requested the status for a URL, Google had 6,414 URLs on its blacklist. Dur-
ing the remaining time, 108 additional URLs were added to the blacklist. Thus,
Google had blacklisted a total of 6,522 URLs (out of the 10,000 analyzed) at
the end of our experiment. Microsoft sent a positive result for 3,095 URLs ini-
tially, and 331 later, which yields a total of 3,426 blacklisted pages. Because of
the different absolute numbers of checked URLs, the table also shows the rela-
tive values. Given our results, we observe that Google’s blacklist appears to have

30 C. Ludl et al.

Table 2. Blacklist responses for phishing URLs

Google Microsoft

Sites 10,000 (100.00%) 6,131 (100.00%)

BL initially 6,414 (64.14%) 3,095 (50.48%)
BL delayed 128 (1.28%) 331 (5.40%)

BL total 6,522 (65.22%) 3,426 (55.88%)

more coverage, although the fraction of malicious pages that are detected are
not too encouraging in both cases.

One problem with the results above is that they do not differentiate between
phishing sites that are online (and thus, present a danger for users) and those
that are offline. Many phishing sites have a very short lifetime, and as described
in Section 4.2, we were only able to download the source for 4,633 of the 10,000
URLs we collected. Of course, maintainers of blacklists cannot include a URL
when they cannot check the page that the URL is referring to. Thus, it is fairer to
check the blacklist responses only for those pages that could be accessed. To this
end, for the next experiment, we only considered those URLs for which both the
Microsoft server and the Google server returned a response, and which could be
successfully downloaded. For this, the data set contained a total of 3,592 URLs.
The results are shown in Table 3. Interestingly, the hit rate is significantly higher
in this case, suggesting that there are probably many URLs reported that are
never considered for blacklisting because they are offline. Also, one can be seen
that the gap between Google’s blacklist and the one by Microsoft has increased,
showing that Google delivers significantly better results.

Table 3. Blacklist responses for live phishing sites

Google Microsoft

Sites 3,595 (100.00%) 3,592 (100.00%)

BL initially 3,157 (87.89%) 2,139 (59.55%)
BL delayed 84 (2.34%) 274 (7.63%)

BL total 3,241 (90.23%) 2,413 (67.18%)

For the next experiment, we analyzed the response times for URLs that were
not initially blacklisted, but were entered into the list after some delay. More
precisely, we considered all URLs that have not initially been blacklisted by a
server, and measured the time until we first received a positive blacklist response.
The fasted addition to the Microsoft blacklist occurred after 9:07 minutes, while
it took 9 days and almost 6 hours for the slowest. Google’s fastest addition took
19:56 minutes, the slowest 11 days and 20 hours. On average, it took Microsoft
6.4 hours to add an initially not blacklisted entry (with a standard deviation of
6.2 hours). For Google, it took somewhat longer (on average 9.3 hours, with a
standard deviation of 7.2 hours). Note that due to our test setup, we are not able

On the Effectiveness of Techniques to Detect Phishing Sites 31

to precisely measure the shortest listing times. This is because we do not con-
tinuously check URLs, but perform lookups periodically every 20 minutes. The
shortest amount of time that passed between receiving the URL from phishtank
and checking it for the first time was 7:33 minutes (for both servers). The longest
period until checking Google’s blacklist were 1:43 hours, and 2:10 for Microsoft’s
(due to unexpected problems with our scripts). In general, the results show that
adding new entries to the blacklist often takes a considerable amount of time.
However, only few entries were added overall, and the responses received from a
server for a URL rarely changed over time.

Discussion: Looking at our results for two widely-used blacklists, we can con-
clude that this approach is quite successful in protecting users, especially when
considering only URLs that refer to sites that are online. Especially Google,
which has correctly recognized almost 90% of the malicious URLs at the time
of the initial check, appears to be an important and powerful component in the
fight against phishing.

Finally, it is worth pointing out that blacklist approaches may sometimes
be defeated by simple obfuscation tricks, as reported in [1]. The basic idea of
this attack is to replace single slashes with double slashes in phishing URLs,
thereby defeating a simple blacklist string comparison. Both Firefox and Internet
Explorer 7 were vulnerable to this kind of evasion.

6 Study of Page Analysis Effectiveness

To study the effectiveness of page analysis techniques, we first wish to answer
the more basic question of whether page properties actually exist that allow one
to distinguish between malicious (phishing) pages and legitimate (benign) ones.
To answer this basic question, we define a number of properties that can be
extracted from the source and the URL of web pages (described in Section 6.1).
Once we define the page properties that we are interested in, we extract them
from a set of phishing and normal (legitimate) pages. Based on the extracted
properties, we use machine learning techniques to attempt to build a model to
distinguish between malicious and legitimate pages. When such a model can
be built, this implies that the properties must reflect some difference between
phishing pages and normal ones. However, when such a classification model
cannot be built, we have to conclude that the properties that we have defined
do not allow to distinguish between phishing and legitimate pages. Our efforts
of classifying web pages are discussed in Section 6.2. Finally, in Section 6.3, we
use our properties to analyze the effectiveness of the page analysis heuristics
implemented by Microsoft Internet Explorer 7.

6.1 Page Properties

As mentioned previously, we need to define appropriate properties to characterize
a web page before it can be analyzed for indications that might reveal it as a

32 C. Ludl et al.

phishing site. Not all of these properties have the same significance towards
the probability of being a phishing site, but those that do not matter are then
considered irrelevant by the data mining tool and therefore not included in the
final decision tree. The following is the list of 18 properties that we consider. Our
features are mostly extracted from the HTML source of a page. Two features
are derived from the page’s URL.

– Forms: Phishing pages aim to trick users into providing sensitive informa-
tion. This information is typically entered into web forms. Thus, the number
of forms (which is counted by this property) might provide an indicator to
distinguish between phishing and legitimate pages, because some phishing
sites ask the user to enter more than just his username and password (TAN
numbers in banking applications and similar).

– Input fields: Because of the importance and prevalence of web forms on
phishing pages, we aimed to define additional properties that characterize
their structure in more detail. We specified properties that count the number
of input fields, text fields, password fields, hidden fields, and other fields. The
category other fields summarizes all input elements that are not member
of any of the four more specific classes. Examples for other fields are radio
buttons or check boxes.

– Links: Another important, general characteristic of every web page is its
link structure. This not only takes into account links to other web pages, but
also includes links to embedded images. Interestingly, many phishing pages
contain links to the site they spoof, often to include original page elements
from the victim page. To recognize such pages, we include properties that
count the number of internal links to resources located in the page’s domain
as well as external links to resources stored on other sites. These links are
extracted from a page by looking for <a> tags in the HTML source. By
scanning for tags, we extract links to internal images and external
images. In addition, there is a category called other links, which counts the
number of links included by other HTML tags (such as links to style sheets
or JavaScript code, using the <link> tag). Furthermore, we explicitly count
the number of (internal and external) links over a secure connection (i.e.,
by specifying an https target), using the secure links property. The same
is done for images (secure images). Finally, to underline the importance of
external links for finding phishing pages, we also define the category external
references, which holds the sum of the number of external links and external
images.

– Whitelist references: As mentioned previously, phishing pages often con-
tain references to resources on their victims’ sites. This fact is partly captured
by the properties that count the number of external references. However, we
can go one step further and analyze all external references for the presence
of links that are particularly suspicious. An external reference is suspicious
when it points to a resource on a site that is a frequent target of phish-
ing. To find such links, we check whether any of the links on a page refer
to a resource on a trusted site. Trusted sites are those that appear on a

On the Effectiveness of Techniques to Detect Phishing Sites 33

whitelist. More precisely, we used a whitelist compiled by Google [10] that
at the time of writing (February 2007) contained 2,431 entries that were
considered trusted. This whitelist is freely available, in contrast to a similar
whitelist maintained by Microsoft, which is stored in encrypted form in the
Windows registry.

– Script tags: To distinguish between sites that make ample use of JavaScript
and plain text pages, we count the number of JavaScript tags on a page and
store it in the script tags property.

– Suspicious URL: This and the following property are derived from the
URL of the page that is analyzed, and not from the page’s source.
An important goal of phishers is to make the phishing page appear as similar
as possible to the spoofed one. Phishers often include parts of the URL they
spoof into the URL of their phishing pages (for example, as part of the
hostname, or in the path field). To capture such behavior, we search the
URL for appearances of fragments of trusted pages. More precisely, we make
use of the domains stored in Google’s whitelist, and we check whether any
of the trusted domains appear in the URL of the page that is currently
analyzed. Hence, we perform a simple string search and determine whether
any of the domains on the whitelist appear as a substring in the current URL.
For example, www.ebay.com is on Google’s whitelist. To check whether the
current URL is suspicious, we check it for the presence of the substring ebay.
Unfortunately, this approach can raise false positives, especially when trusted
domains are very short. To mitigate this problem, we decided to only check
for the appearance of domain names that have five or more characters. In
addition, we manually added a few shorter domain names (such as ebay or
dell) that are known to be frequently targeted by phishers. The remaining
whitelist then contained 1,830 domains.

– Uses SSL: Another characteristic that was analyzed for each page is whether
it is accessed over SSL (https) or not. In our preliminary studies, we observed
that not many phishing sites make use of a secure server. One explanation
could be that it is not straightforward to obtain a trustworthy certificate.
Hence, not having such a certificate causes the browser to display a warning
message, thereby alerting the user.

Of course, we are aware of the fact that our properties might not be complete.
Furthermore, determined attackers could evade defense systems based on these
properties (for example, by making use of Flash). However, the aim of our study
is to understand whether current phishing pages can be identified based on page
properties. Thus, we believe that our selection is reasonable and reflects the
structure and methods that phishers use today. Also, our property list covers
most page attributes that are checked by SpoofGuard [3], a tool that analyzes
pages for phishing indicators. One property that is used by SpoofGuard, but
that we have not included are checks for techniques that attempt to obfuscate
links. These techniques are already handled (checked) by browsers, which raise
appropriate warning (Firefox 2) or error messages (Internet Explorer 7). As a
result, they are no longer effective and, as a consequence, no longer used by
phishers.

34 C. Ludl et al.

6.2 Classification Model

Based on the properties defined in the previous section, we built a classification
model that attempts to use these properties to distinguish between malicious
and legitimate pages.

As the set of phishing sites, we used the 4,633 pages that were successfully
downloaded during our experiments (as discussed in Section 4.2) plus about
1100 pages that we collected before starting the blacklist analysis, resulting in
5751 analyzed sites. To obtain a set of legitimate pages, we had to collect a
reasonable amount of comparable benign sites. Since the targets of phishers are
mostly login pages, we used Google’s inurl: operator to search for login pages.
More precisely, we used Google to search for pages where one of the following
strings login, logon, signin, signon, login.asp, login.php and login.htm
appears in the URL. After downloading 5,124 pages, we manually removed from
our data set all pages that were the result of a 404 error (indicating the the page
was not found) as well as pages that were obviously no login pages (e.g., blog
entries that just happened to contain the string login in the URL. This left us
with 4,335 different benign web sites for further analysis.

To prepare the data for the following classification process, we extracted one
feature vector for each page in the sets of phishing and legitimate pages. Every
feature vector has one entry for each of the 18 properties that we have defined.
When analyzing the feature vectors, we observed that there were many vectors
that had identical values, especially in case of the phishing pages. This was the re-
sult of certain, identical phishing pages that appeared under several URLs (some-
times, an identical phishing page appeared under a few hundred different URLs).
To prevent a bias in the classification model, focusing on the properties of certain
phishing pages that appear frequently, we decided to include into the classification
process only unique feature vectors. That is, when a number of different pages are
characterized by the same feature vector, this vector is only considered once by
the classification process. As a result, we ended up with 680 feature vectors for
the set of phishing pages, and 4,149 for the set of legitimate pages.

Using the input data described above, we applied the J48 algorithm to ex-
tract a decision tree that can classify pages as legitimate or phishing. J48 is
an implementation of the classic C4.5 decision tree algorithm [22] in Weka [31],
a well-known data mining tool. We selected the C4.5 classifier for two reasons.
First, we believe that a decision tree provides intuitive insight into which features
are important in classifying a data set. Second, the C4.5 algorithm is known to
work well for a wide range of classification problems.

Without stripping down our data to unique feature vectors, Weka created
decision trees with a bias towards the properties of the most frequently appearing
sites, thus delivering different results. The root node (i.e., whitelist references)
stays the same. However, the count of external links gains far more importance,
as it is the first node of the right subtree.

The runtimes for generating a decision tree with Weka heavily depend on
the size of the input set. With our above mentioned data sets, the building of
the models took 0.54 seconds for the IE data, respectively 1.29 seconds for the

On the Effectiveness of Techniques to Detect Phishing Sites 35

Table 4. Confusion matrix for page classifier

Classified as legitimate Classified as phishing

Legitimate page 4,131 18

Phishing page 115 565

phishing/legitimate pages. The generation of the decision trees took about one
second for the Internet Explorer tree and about ten seconds for the other one.

Running the J48 algorithm on our input data, using a ten-fold cross validation
(which is set as default in Weka), the resulting decision tree has 157 nodes, 79
of which are leaves. The classification quality (confusion matrix) is shown in Ta-
ble 4. It can be seen that the qualifier is quite successful in identifying phishing
pages (more than 80% are correctly recognized), raising only a very small num-
ber of false alerts (18 out of 4,149 pages are incorrectly classified as phishing).
This supports the hypothesis that page properties can be used to successfully
distinguish between (current instances of) malicious and legitimate pages. As a
result, page analysis techniques can in principle be effective in distinguishing be-
tween malicious and legitimate sites. The following Section 6.3 examines to what
extent the Internet Explorer heuristics are capable of exploiting these differences
to detect phishing pages.

When examining a reduced2 version of the complete decision tree in Figure 1,
it can be seen that the nodes that appear close to the root of the tree are
predominantly related to a few page attributes. In particular, these are the

whitelist

suspicious
URL

internal
links

32 / 3

<= 5 > 5

text fields

internal
links

suspicious
URL

hidden
fields

21 / 256 5 / 1618 / 5

<= 5

<= 16

> 5

> 16 false true

11 / 17 62 / 8

false

<= 1 > 1

20 / 94

password
fields

2401 / 32523 / 56

<= 6

internal
links

external
references

1017 / 9539 / 98

= 0 > 0

<= 14 > 14 <= 4 > 4

true

> 6

Fig. 1. Decision tree for phishing and legitimate pages

2 The tree was ”compressed” by manually truncating subtrees for which there was
a significant fraction of sites in only one class (either phishing or legitimate), or a
small number of total sites.

36 C. Ludl et al.

number of whitelist references, the number of external and internal links, and
the property that captures suspicious URLs. The fact that these page proper-
ties are close to the root indicates that they are most effective in discriminating
between phishing and legitimate sites. Indeed, when analyzing the paths that
lead to the leaves with the largest fraction of phishing pages, one can observe
that the presence of many external and few internal references is evidence of
a malicious site. This is even more so when these external references point to
sites that are common phishing victims (that is, URLs on the whitelist). Also,
a suspicious URL is a good indication of a phishing page. When looking for
strong evidence of legitimate pages, one will typically find many internal links
and internal images (and the absence of a suspicious URL).

6.3 Analysis of Internet Explorer Heuristics

In the next step, we attempted to determine those features that the Internet
Explorer page analysis heuristics considers most important to identify phishing
pages. Of course, since we were only able to do black-box testing, we can only
make assumptions about the inner workings of the phishing filter and how it
determines the “phishiness” of a webpage.

We first used the Internet Explorer to classify our sets of legitimate and phish-
ing pages. The process of analyzing web pages was automated, due to the large
amount of data. We developed a Browser Helper Object (BHO) (i.e., IE plug-in)
that was visiting pages and reporting on the results of the page analysis heuris-
tics. After each page was visited, the BHO was used to delete all temporary
files (such as browser history and cookies). This was to ensure that the next
site visited would not be treated differently because of any cached information
from previous pages. In addition, we had to work around the problem that the
Internet Explorer offers no possibility to turn off the communication with the
blacklist server. Fortunately, we could reuse the server that we previously set up
to analyze the protocol between the browser and the Microsoft blacklist server.
More precisely, we intercepted all blacklist requests by the browser during this
analysis run and provided a response that indicated that the visited site was not
blacklisted, thereby forcing IE to resort to its page analysis heuristics.

Examining the results, we observed that the Internet Explorer raised no false
warnings (that is, all legitimate sites were recognized as such). This is better than
the model that we introduced in the previous section. However, the browser
was also less successful in identifying phishing pages (only 1,867 of the 4,633
original phishing pages, or slightly more than 40% were correctly classified).
This is likely the result of a design decision to suppress false alarms as the
most important goal. In any case, even a 40% classification accuracy is valuable
when considering that no false positives are raised. This is particularly true
when page analysis techniques are employed as a second line of defense with a
blacklisting approach. When only using page heuristics to detect phishing sites,
good coverage is probably only achievable when a few false positives are tolerated
(as shown in the previous sections).

On the Effectiveness of Techniques to Detect Phishing Sites 37

whitelist

whitelist

internal
images

internal
links

password
fields

secure
images

internal
images

325 / 24

19 / 7 7 / 26

11 / 0

12 / 213

0 / 8

16 / 0 6 / 6

<= 14

> 3

> 11<= 11

<= 10 > 10

> 14

> 0 = 0

> 20

> 5

<= 3

Fig. 2. Decision tree for Internet Explorer

Once the classification effectiveness of the Internet Explorer was analyzed
quantitatively, we attempted to understand which properties were most impor-
tant for the decision process. To this end, we used the Weka J48 algorithm to
build a decision tree based on the set of phishing pages only. More precisely,
as input data set, we used the 680 unique feature vectors and the labels that
IE assigns to the corresponding pages. That is, the set contained on one hand
284 feature vectors of pages that were correctly identified as malicious, and 396
feature vectors of phishing pages that were incorrectly classified as benign. The
idea was to extract a model that would indicate which properties (together with
the properties’ values) are most important for the Internet Explorer to label a
phishing site as malicious. Figure 2 shows a reduced version of the decision tree
for this experiment. Note that the number of references that are in the whitelist
plays a central role for classification. When the number of such references is less
than four, the page is almost always classified as benign. The fact that there are
nine pages with less than three whitelist references might very well be attributed
to the fact that our whitelist (which is from Google) is slightly different that the
one used by Microsoft. Other indicators are less significant, but one can see that
the number of links to pages and images also seem to be taken into account.

7 Conclusion

In this paper, we reported our findings on analyzing the effectiveness of two
popular anti-phishing solutions. We tested the anti-phishing solutions integrated
into the Firefox 2 (i.e., Google blacklists) and Microsoft’s Internet Explorer 7
over a period of three weeks. We fed these blacklists 10,000 phishing URLs
to measure their effectiveness in mitigating phishing attacks. Furthermore, by
analyzing a large number of phishing pages, we report page properties that can
be used to identify phishing pages and improve existing solutions. Our findings
show that blacklist-based solutions are actually quite effective in protecting users

38 C. Ludl et al.

against phishing attempts and that such solutions are an important and useful
component in the fight against phishing.

Acknowledgments

This work has been supported by the Austrian Science Foundation (FWF) under
grants P-18764, P-18157, and P-18368.

References

[1] Firefox 2.0.0.1 Phishing Protection Bypass (2007)
https://bugzilla.mozilla.org/show bug.cgi?id=367538

[2] Anti-Phishing Working Group (APWG). APWG Homepage (2007)
http://www.antiphishing.org/

[3] Chou, N., Ledesma, R., Teraguchi, Y., Boneh, D., Mitchell, J.: Client-side defense
against web-based identity theft. In: 11th Annual Network and Distributed System
Security Symposium (NDSS ’04), San Diego (2005)

[4] Utter, D.: Sites Want To Hook And Gut Phishers (2006)
http://www.securitypronews.com/insiderreports/insider/
spn-49-20061114SitesWantTo HookAndGutPhishers.html

[5] Dhamija, R., Tygar, J.D.: The battle against phishing: Dynamic security skins.
In: Proceedings of the 2005 symposium on Usable privacy and security, pp. 77–88.
ACM Press, New York (2005)

[6] Dhamija, R., Tygar, J.D., Hearst, M.: Why Phishing Works. In: Proceedings of
the Conference on Human Factors In Computing Systems (CHI) 2006, Montreal,
Canada, ACM Press, New York (2006)

[7] eBay. eBay tool bar (2007) http://pages.ebay.com/ebaytoolbar/
[8] Gartner Press Release. Gartner Says Number of Phishing E-Mails Sent to U.S.

Adults Nearly Doubles in Just Two Years (2006)
http://www.gartner.com/it/page.jsp?id=498245

[9] Google. Google Toolbar for Firefox (2006)
http://www.google.com/tools/firefox/toolbar/FT3/intl/en/

[10] Google. Google Whitelist (2007) http://sb.google.com/safebrowsing/update?
version=goog-white-domain:1:-1

[11] Kirda, E., Kruegel, C.: Protecting Users against Phishing Attacks. The Computer
Journal (2006)

[12] McAfee. McAfee SiteAdvisor (2007) http://www.siteadvisor.com
[13] Sutton, M.: A Tour of the Google Blacklist (2007)

http://portal.spidynamics.com/blogs/msutton/archive/2007/01/04/
A-Tour-of-the-Google-Blacklist.aspx

[14] Microsoft. Microsoft Internet Explorer Privacy Statement (2006),
http://www.microsoft.com/windows/ie/ie7/privacy/ieprivacy 7.mspx

[15] Microsoft. Phishing Filter FAQ (2007) https://phishingfilter.microsoft.com
/faq.aspx

[16] Microsoft. Sender ID Home Page (2007) http://www.microsoft.com/mscorp/
safety/technologies/senderid/default.mspx

[17] Mozilla. Firefox 2 Phishing Protection Effectiveness Testing (2006)
http://www.mozilla.org/security/phishing-test.html

https://bugzilla.mozilla.org/show_bug.cgi?id=367538
 http://www.antiphishing.org/
http://www.securitypronews.com/insiderreports/insider/spn-49-20061114SitesWantTon HookAndGutPhishers.html
http://www.securitypronews.com/insiderreports/insider/spn-49-20061114SitesWantTon HookAndGutPhishers.html
http://pages.ebay.com/ebay toolbar/
http://www.gartner.com/it/page.jsp?id=498245
http://www.google.com/tools/firefox/toolbar/FT3/intl/en/
http://sb.google.com/safebrowsing/update?version=goog-white-domain:1:-1
http://sb.google.com/safebrowsing/update?version=goog-white-domain:1:-1
http://www.siteadvisor.com
http://portal.spidynamics.com/blogs/msutton/archive/2007/01/04/A-Tour-of-the-Google-Blacklist.aspx
http://portal.spidynamics.com/blogs/msutton/archive/2007/01/04/A-Tour-of-the-Google-Blacklist.aspx
http://www.microsoft.com/windows/ie/ie7/privacy/ieprivacy_7.mspx
https://phishingfilter.microsoft.com/faq.aspx
https://phishingfilter.microsoft.com/faq.aspx
http://www.microsoft.com/mscorp/safety/technologies/senderid/default.mspx
http://www.microsoft.com/mscorp/safety/technologies/senderid/default.mspx
http://www.mozilla.org/security/phishing-test.html

On the Effectiveness of Techniques to Detect Phishing Sites 39

[18] NetCraft. Netcraft anti-phishing tool bar (2007) http://toolbar.netcraft.com
[19] Robichaux, P., Phishing, G.: Evaluating Anti-Phishing Tools for Windows (2006),

http://www.3sharp.com/projects/antiphishing/gone-phishing.pdf
[20] Phishtank. Phishtank feed: validated and online (2007)

http://data.phishtank.com/data/online-valid/index.xml
[21] Provos, N.: Phishing Protection: Server Spec: Lookup Requests (2007)

http://wiki.mozilla.org/Phishing Protection: Server Spec#Lookup
Requests

[22] Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-
cisco (1993)

[23] Ross, B., Jackson, C., Miyake, N., Boneh, D., Mitchell, J.C.: A Browser Plug-In
Solution to the Unique Password Problem (2005)
http://crypto.stanford.edu/PwdHash/

[24] Ross, B., Jackson, C., Miyake, N., Boneh, D., Mitchell, J.C.: Stronger Password
Authentication Using Browser Extensions. In: 14th Usenix Security Symposium
(2005)

[25] Schneider, F., Provos, N., Moll, R., Chew, M., Rakowski, B.: Phishing Protection
Design Documentation (2007)
http://wiki.mozilla.org/Phishing Protection: Design Documentation

[26] SpoofGuard. Client-side defense against web-based identity theft (2005)
http://crypto.stanford.edu/SpoofGuard/

[27] Sharif, T.: IE Blog: Phishing Filter (2005),
http://blogs.msdn.com/ie/archive/2005/09/09/463204.aspx

[28] Verisign. Anti-Phishing Solution (2005) http://www.verisign.com/verisign
-business-solutions/anti-phishing-solut%ions/

[29] W3C. IEBlog:IE7 Phishing Filter Performance Update is Now Available
(2007) http://blogs.msdn.com/ie/archive/2007/01/31/ie7-phishing-filter
-perform%ance-update-is-now-available.aspx

[30] Wenyin, L., Huang, G., Xiaoyue, L., Min, Z., Deng, X.: Detection of phishing
webpages based on visual similarity. In: 14th International Conference on World
Wide Web (WWW): Special Interest Tracks and Posters (2005)

[31] Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

[32] Yahoo. Yahoo! AntiSpam Resource Center (2007)
http://antispam.yahoo.com/domainkeys

[33] Zhang, Y., Egelman, S., Cranor, L., Hong, J.: Phinding Phish: Evaluating Anti-
Phishing Tools. In: Network and IT Security Conference: NDSS 2007, San Diego,
California (2007)

http://toolbar.netcraft.com
http://www.3sharp.com/projects/antiphishing/gone-phishing.pdf
http://data.phishtank.com/data/online-valid/index.xml
http://wiki.mozilla.org/Phishing_Protection:_Server_Spec#Lookup_Requests
http://wiki.mozilla.org/Phishing_Protection:_Server_Spec#Lookup_Requests
http://crypto.stanford.edu/PwdHash/
http://wiki.mozilla.org/Phishing_Protection:_Design_Documentation
http://crypto.stanford.edu/SpoofGuard/
http://blogs.msdn.com/ie/archive/2005/09/09/463204.aspx
http://www.verisign.com/verisign-business-solutions/anti-phishing-solut%ions/
http://www.verisign.com/verisign-business-solutions/anti-phishing-solut%ions/
http://blogs.msdn.com/ie/archive/2007/01/31/ie7-phishing-filter-perform%ance-update-is-now-available.aspx
http://blogs.msdn.com/ie/archive/2007/01/31/ie7-phishing-filter-perform%ance-update-is-now-available.aspx
http://antispam.yahoo.com/domainkeys

Protecting the Intranet Against

“JavaScript Malware” and Related Attacks�

Martin Johns and Justus Winter

Security in Distributed Systems (SVS)
University of Hamburg, Dept of Informatics

Vogt-Koelln-Str. 30, D-22527 Hamburg
{johns,4winter}@informatik.uni-hamburg.de

Abstract. The networking functionality of JavaScript is restricted by
the Same Origin Policy (SOP). However, as the SOP applies on a doc-
ument level, JavaScript still possesses certain functionality for cross do-
main communication. These capabilities can be employed by malicious
JavaScript to gain access to intranet resources from the outside. In this
paper we exemplify capabilities of such scripts. To protect intranet hosts
against JavaScript based threats, we then propose three countermea-
sures: Element Level SOP, rerouting of cross-site requests, and restrict-
ing the local network. These approaches are discussed concerning their
respective protection potential and disadvantages. Based on this analysis,
the most promising approach, restricting the local network, is evaluated
practically.

We’re entering a time when XSS has become the new Buffer Overflow
and JavaScript Malware is the new shellcode.

Jeremiah Grossman [6]

1 Introduction

Web browsers are installed on virtually every contemporary desktop computer
and the evolution of active technologies like JavaScript, Java or Flash has slowly
but steadily transformed the web browser into a rich application platform. Fur-
thermore, due to the commonness of Cross Site Scripting (XSS) vulnerabilities
[3] the number of XSS worms [25] is increasing steadily. Therefore, large scale
execution of malicious JavaScripts is a reality nowadays. Additionally, if no XSS
flaw is at hand, a simple well written email usually suffices to lure a poten-
tial victim into visiting an innocent looking web page that contains a malicious
payload. For all these reasons, the browser was recently (re)discovered as a con-
venient tool to smuggle malicious code behind the boundaries of the company’s
firewall. While earlier related attacks required the existence of a security vulner-
ability in the browser’s source code or libraries, the attacks which are covered in
� This work was supported by the German Ministry of Economics (BMWi) as part of

the project “secologic”, www.secologic.org.

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 40–59, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 41

this paper simply employ the legal means that are provided by today’s browser
technology.

Within this context, the term “JavaScript Malware” was coined by J. Gross-
man [6] in 2006 to describe this class of script code that stealthy uses the web
browser as vehicle for attacks on the victim’s intranet. In this paper we exemplify
capabilities of such scripts and propose first defensive approaches.

1.1 Definitions

This paper focuses on web browser based attacks that target intranet resources.
Therefore, we frequently have to differentiate between locations that are either
within or outside the intranet. For this reason, in the remainder of this paper
we will use the following naming conventions:

Local IP-addresses: The specifier local is used in respect to the boundaries of
the intranet that a given web browser is part of. A local IP-address is therefore
an address that is located inside the intranet. Such addresses are rarely accessible
from the outside.

Local URL: If a URL references a resource that is hosted on a local IP-address,
we refer to is as local URL.

The respective counterparts external IP-address and external URL are defined
accordingly.

1.2 Transparent Implicit Authentication

With the term implicit authentication we denote authentication mechanisms,
that do not require further interaction after the initial authentication step. For
example the way HTTP authentication is implemented in modern browsers re-
quires the user to enter his credential for a certain web application only once per
session. Every further request to the application’s restricted resources is outfitted
with the user’s credentials automatically.

Furthermore, with the term transparent implicit authentication we denote au-
thentication mechanisms that also execute the initial authentication step in a
way that is transparent to the entity that is being authenticated. For example
NTLM authentication [4] is such an authentication mechanism for web appli-
cations. Web browsers that support the NTLM scheme obtain authentication
credentials from their underlying operating system. These credentials are de-
rived from the user’s operating system login information. In most cases the user
does not notice such an automatic authentication process at all. Often such
mechanism are summarized under the term “Single Sign On” (SSO).

Especially in the intranet context transparent implicit authentication is used
frequently. This way the company makes sure that only authorized users access
restricted resources without requiring the employees to remember additional
passwords or execute numerous, time-consuming authentication processes on a
daily basis.

42 M. Johns and J. Winter

The firewall as a means of authentication. A company’s firewall is often
used as a means of transparent implicit authentication: The intranet server are
positioned behind the company’s firewall and only the company’s staff has ac-
cess to computers inside the intranet. As the firewall blocks all outside traffic to
the server, it is believed that only members of the staff can access these servers.
For this reason intranet server and especially intranet web server are often not
protected by specific access control mechanisms. For the same reason intranet
applications often remain unpatched even though well known security problems
may exist and home-grown applications are often not audited for security prob-
lems thoroughly.

1.3 Cross Site Request Forgery

Cross Site Request Forgery (XSRF / CSRF) a.k.a. Session Riding is a client side
attack on web applications that exploits implicit authentication mechanisms.
The actual attack is executed by causing the victim’s web browser to create
HTTP requests to restricted resources. This can be achieved e.g., by including
hidden images in harmless appearing webpages. The image itself references a
state changing URL of a remote web application, thus creating an HTTP re-
quest (see Figure 1). As the browser provides this requests automatically with
authentication information, the target of the request is accessed with the privi-
leges of the person that is currently using the attacked browser. See [26] or [2]
for further details.

www.bank.com

Cookie: auth_ok

www.attacker.org

GET transfer.cgi?am=10000&an=3422421

Fig. 1. A CSRF attack on an online banking site

2 Attacking the Intranet with JavaScript

2.1 Using a Webpage to Get Access to Restricted Web Resources

As described in Section 1 many companies allow their employees to access the
WWW from within the company’s network. Therefore, by constructing a ma-
licious webpage and succeeding to lure an unsuspecting employee of the target
company into visiting this page, an attacker can create malicious script code that
is executed in the employee’s browser. As current browser scripting technologies
possess certain network capabilities and as the employee’s browser is executed
on a computer within the company’s intranet and the employee is in general out-
fitted with valid credentials for possibly existing authentication mechanisms (see

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 43

Fig. 2. Using a webpage to access restricted web servers

Section 1.2), any script that runs inside his browser is able to access restricted
intranet resources with the same permissions as the employee would.

In the next Sections we examine the actual network capabilities and restric-
tions of existing active browser technologies and exemplify how these capabilities
can be used to circumvent authentication schemes.

2.2 A Closer Look at JavaScript

For security reasons, the networking functions of client-side browser technologies
are subject to major restrictions. We describe these restrictions only in respect
to JavaScript, but similar concepts apply to e.g., Flash or Java applets.

Network capabilities: Foremost JavaScript is limited to HTTP communica-
tion only. Furthermore, a script is not allowed to communicate with arbitrary
HTTP hosts. This is enforced by the Same Origin Policy (SOP): The Same Ori-
gin Policy was introduced by Netscape Navigator 2.0 [24]. It defines and limits
various rights of JavaScript. The origin of an element is defined by the protocol,
the domain and the port that were used to access this element. The SOP is sat-
isfied when the origins of two elements match. All explicit network functionality
of JavaScript is restricted to communication with targets that satisfy the SOP.
This effectively limits a script to direct communication with its origin host.

There is only one possibility for JavaScript to create HTTP requests to targets
that do not satisfy the SOP: The script can dynamically include elements like
images from foreign hosts into the document’s DOM tree [9].

Access rights: Additionally, the SOP defines the access rights of a given script.
A JavaScript is only allowed access to elements that are part of a document which
has been obtained from the same origin as the JavaScript itself. In this respect,
the SOP applies on a document level. Thus, if a JavaScript and a document
share a common origin, the SOP allows the script to access all elements that are
embedded in the document. Such elements could be e.g., images, stylesheets, or
other scripts. These granted access rights hold even if the elements themselves
where obtained from a different origin.

Example: The script http://exa.org/s.js is included in the document
http://exa.org/i.html. Furthermore i.html contains various images from

http://exa.org/s.js
http://exa.org/i.html
i.html

44 M. Johns and J. Winter

http://picspicspics.com. As the script’s and the document’s origin match,
the script has access to the properties of the images, even though their origin
differs from the script’s.

A loophole in the SOP: As explained above, the cross-domain networking
capabilities of JavaScript are restricted by the SOP. However, this policy allows
dynamically including elements from cross domain HTTP hosts into the DOM
tree by a JavaScript in its container document. This exception in the networking
policy and the fact that the SOP applies on a document level creates a loophole
in SOP, as this policy allows partial cross domain access. Depending on the type
of the element that was included in the document, the JavaScript’s capabilities
to gain information by the inclusion differs. In the next sections we explain how
this loophole can be exploited for malicious purposes.

2.3 Portscanning the Intranet

It was shown by various parties [19,21,7] how malicious web pages can use its
capability to port-scan the local intranet. While the specific techniques vary, the
general approach is always the same:

1. The script constructs a local URL that contains the IP-address and the port
that shall be scanned.

2. Then the script includes an element in the webpage that is addressed by this
URL. Such elements can be e.g., images, iframes or remote scripts.

3. Using JavaScript’s time-out functions and eventhandlers like onload and
onerror the script can decide whether the host exists and the given port
is open: If a time-out occurs, the port is probably closed. If an onload- or
onerror-event happens, the host answered with some data, indicating that
the host is up and is listening on the targeted port.

To launch such an discovery attack, the malicious script needs to know the
IP-range of the local intranet. In case this IP-range is unknown to the attacker,
he can use a Java-Applet [17] to obtain the IP-address of the computer that
currently executes the web browser which is vehicle of the attack. Using this
address the attacker’s script can approximate the intranet’s IP-range.

Limitation: Some browsers like Firefox enforce a blacklist of forbidden ports [23]
that are not allowed in URLs. In this case JavaScript’s port scanning abilities are
limited to ports that are not on this list. Other browsers like Internet Explorer
allow access to all ports.

2.4 Fingerprinting of Intranet Hosts

After determining available hosts and their open ports, a malicious script can
try to use fingerprinting techniques to get more information about the offered
services. Again the script has to work around the limitations that are posed
by the SOP. For this reason the fingerprinting method resembles closely the
port-scanning method that was described above [19,7].

http://picspicspics.com

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 45

The basic idea of this technique is to request URLs that are characteristic for
a specific device, server, or application. If such a URL exists, i.e., the request
for this URL succeeds, the script has a strong indication about the technology
that is hosted on the fingerprinted host. For example, the default installation
of the Apache web server creates a directory called “icons” in the document
root of the web server. This directory contains image files that are used by the
server’s directory listing functionality. If a script is able to successfully access
such an image for a given IP-address, it can conclude that the scanned host
runs an Apache web server. The same method can be used to identify web
applications, web interfaces of network devices or installed scripting languages
(e.g., by accessing PHP eastereggs).

2.5 Attacking Intranet Servers

After discovering and fingerprinting potential victims in the intranet, the actual
attack can take place. A malicious JavaScript has for example the following
options:

Exploiting unpatched vulnerabilities: Intranet hosts are frequently not as
rigorously patched as their publicly accessible counterparts as they are believed
to be protected by the firewall. Thus, there is a certain probability that com-
paratively old exploits may still succeed if used against an intranet host. A
prerequisite for this attack is that these exploits can be executed by the means
of a web browser [7].

Opening home networks: The following attack scenario mostly applies to
home users. Numerous end-user devices like wifi routers, firewall appliances or
DSL modems employ web interfaces for configuration purposes. Not all of these
web interfaces require authentication per default and even if they do, the stan-
dard passwords frequently remain unchanged as the device is only accessible
from within the “trusted“ home network.

If a malicious script was able to successfully fingerprint such a device, there is
a certain probability that it also might be able to send state changing requests
to the device. In this case the script could e.g., turn off the firewall that is
provided by the device or configure the forwarding of certain ports to a host in
the network, e.g., with the result that the old unmaintained Windows 98 box in
the cellar is suddenly reachable from the internet. Thus, using this method the
attacker can create conditions for further attacks that are not limited to the web
browser any longer.

Cross protocol communication: Wade Alcorn showed in [1] how multi-part
HTML forms can be employed to send (semi-)valid messages to ASCII-based
protocols. Prerequisite for such an attempt is that the targeted protocol imple-
mentation is sufficient error tolerant, as every message that is produced this way
still contains HTTP-meta information like request-headers. Alcorn exemplified
the usage of an HTML-form to send IMAP3-messages to a mail-server which are
interpreted by the server in turn. Depending on the targeted server, this method
might open further fingerprinting and exploitation capabilities.

46 M. Johns and J. Winter

2.6 Leaking Intranet Content by Breaking DNS-Pinning

The SOP should prevent cross domain access to content hosted on intranet web
servers. In 1996 [27] showed how short lived DNS entries can be used to weaken
this policy.

Example: Attacking an intranet host located at 10.10.10.10 would roughly
work like this:

1. The victim downloads a malicious script from www.attacker.org
2. After the script has been downloaded, the attacker modifies the DNS answer

for www.attacker.org to 10.10.10.10
3. The malicious script requests a web page from www.attacker.org (e.g via

loading it into an iframe)
4. The web browser again does a DNS lookup request for www.attacker.org,

now resolving to the intranet host at 10.10.10.10
5. The web browser assumes that the domain values of the malicious script and

the intranet server match, and therefore grants the script unlimited access
to the intranet server.

To counter this attack modern browsers employ “DNS pinning”: The mapping
between a URL and an IP-address is kept by the web browser for the entire
lifetime of the browser process even if the DNS answer has already expired.
While in general this is an effective countermeasure against such an attack,
unfortunately there are scenarios that still allow the attack to work: Josh Soref
has shown in [28] how in a multi session attack a script that was retrieved from
the browser’s cache still can execute this attack. Furthermore, we have recently
shown [13] that current browsers are vulnerable to breaking DNS pinning by
selectively refusing connections.

Using this attack, the script can access the server’s content. With this ability
the script can execute refined fingerprinting, leak the content to the outside or
locally analyze the content in order to find further security problems.

Based on our findings, Kanatoko Anvil [16] demonstrated recently, that a
successful anti DNS-pinning attack also effects some browser plugins, like the
Flash player. As the Flash player’s scripting language ActionScript supports low
level socket communication, such an attack extends the adversary’s capabilities
towards binary protocols.

2.7 Attacks That Do Not Rely on JavaScript

Intranet exploration attacks like portscanning do not necessary have to rely on
JavaScript. It has been shown recently [5] that attacks similar to the vectors show
in Sections 2.3 can be staged without requiring active client-side technologies.
Instead timing analysis is employed.

Currently these attacks rely on a certain, not-standardized behaviour of the
Firefox web browser: In general whenever a browser’s rendering engine encoun-
ters an HTML element that includes remote content into the page, like image,

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 47

script or style-tags, the browser sends an asynchronous HTTP request to re-
trieve the remote resource and resumes rendering the web page. However, the
link-tag does not adhere to this behaviour. Instead the rendering engine stops
the rendering process until the HTTP request-response pair, that was initiated
because of the tag, has terminated. Thus, by creating a webpage that contains
a link-element, that references a local URL, and an image-element, that is re-
quested from the attacker’s host, the attacker can use timing analysis to conclude
if in fact an actual host can be reached under a given local URL. Employing this
technique, an attacker can reliably create a mapping of the local lan. However,
the timing differences between the response time of a RST-package, that was
generated because of a closed port, and an actual HTTP-response are hard to
measure from the attacker’s position. For this reason fingerprinting attacks are
not yet feasible. As research in the area of these attack techniques is compara-
tively young and web browsers are still evolving, it is probable that there exist
more attack vectors which do not rely on active technologies.

2.8 Analysis

In the most cases CSRF attacks (see Section 1.3) target authentication mech-
anisms that are executed by the web browser, e.g., by creating hidden HTTP
requests that contain valid session cookies. The attacks covered in this paper are
in fact CSRF attacks that target an authentication mechanism which is based on
physical location: As discussed in Section 1.2, the firewall is used as a means of
transparent implicit authentication which is subverted by the described attacks.

The main problem in the context of the specified issues is that the attacked
intranet servers have very limited means to protect themselves against such at-
tacks. All they receive are HTTP requests from legitimate users, sometimes even
in a valid authentication context. Therefore, at the server side it is not always
possible to distinguish between requests that were intended by the user and re-
quests that were generated by a malicious JavaScript. In some cases evidence
like external referrers or mismatching host headers are available but this is not
always the case. Furthermore, some of the described attacks will still work even
when the server would be able to identify fraudulent requests.

Thus, a reliable protection mechanism has to be introduced at the client side.
Only at the client-side all required context information concerning the single
requests is available. Furthermore, to stop certain attacks, like the exploitation
of unpatched vulnerabilities, it has to be prevented that the malicious request
even reaches the targeted host.

3 Defense Strategies

In this section we discuss four possible strategies to mitigate the threats described
in Section 2. At first we assess to which degree already existing technology can
be employed. Secondly we examine whether a refined version of the Same Origin

48 M. Johns and J. Winter

Policy could be applied to protect against malicious JavaScript. The third tech-
nique shows how general client-side CSRF protection mechanisms can be extended
to guard intranet resources (a prior version of this approach was originally pro-
posed by us in [14]). The final approach classifies network locations and deducts
access rights on the network layer based on this classification. For every presented
mechanism, we assess the anticipated protection and potential problems.

3.1 Turning Off Active Client-Side Technologies

An immediate solution to counter the described attacks is to turn of active
client-side technologies in the web browser. To achieve the intended protection
at least JavaScript, Flash and Java Applets should be disabled. As turning off
JavaScript completely breaks the functionality of many modern websites, the
usage of browser-tools that allow per-site control of JavaScript like the NoScript
extension [10] is advisable.

Protection: This solution protects effectively against active content that is
hosted on untrusted web sites. However, this approach does not protect against
attacks, that do not rely on active technologies (see Section 3.1).

Furthermore, if an XSS weakness exists on a web page that is trusted by the
user, he is still at risk. Compared to e.g. Buffer Overflows, XSS is a vulnerability
class that is often regarded to be marginal. This is the case especially in respect
to websites that do not provide serious services, as an XSS hole in such a site has
only a limited attack surface in respect to causing “real world“ damage. For this
reason such web sites are frequently not audited thoroughly for XSS problems.

Any XSS hole can be employed to execute the attacks that are subject of
this paper. This is the analogy between XSS and Buffer Overflows, that was
mentioned in the introducing quote by J. Grossman: As a Buffer Overflow enables
the attacker to run the shellcode in a trusted binary, an XSS vulnerability enables
the attacker to run script code in the context of a trusted web application and
therefore inside the victims browser.

Drawbacks: In addition to the limited protection, an adoption of this protec-
tion strategy will result in significant obstacles in the user’s web browsing. The
majority of modern websites require active client-side technologies to function
properly. With the birth of the so-called “Web 2.0” phenomenon this trend even
increases. The outlined solution would require a site-specific user-generated de-
cision which client-side technologies should be permitted whenever a user visits
a website for the first time. For this reason the user will be confronted with nu-
merous and regularly occurring configuration dialogues. Furthermore, a website’s
requirements may change in the future. A site that does not employ JavaScript
today, might include mandatory scripts in the future. In the described protection
scenario such a change would only be noticeable due to the fact that the web
application silently stopped working correctly. The task to determine the reason
for this loss of functionality lies with the user.

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 49

3.2 Extending the SOP to Single Elements

As discussed in Section 2 a crucial part of the described attacks is the fact that
the SOP applies on a document level. This allows a malicious JavaScript to
explore the intranet by including elements with local URLs into documents that
have an external origin. Therefore, a straight forward solution would be to close
the identified loophole by extending the SOP to the granularity of single objects:

Definition 1 (Element Level SOP). In respect to a given JavaScript an el-
ement satisfies the Element Level SOP if the following conditions are met:

• The element has been obtained from the same location as the JavaScript.
• The document containing the element has the same origin as the JavaScript.

Only if these conditions are satisfied the JavaScript
• is allowed to access the element directly and
• is permitted to receive events, that have been triggered by the element.

Jackson et. al describe in [12] a similar approach. In their work they extend
the SOP towards the browser’s history and cache. By doing so, they are able to
counter attacks that threaten the web user’s privacy.

Protection: Applying the SOP on an element level would successfully counter
attacks that aim to portscan the intranet or fingerprint internal HTTP-services
(see Sections 2.3 and 2.4). These attacks rely on the fact that events like onerror
that are triggered by the inclusion of local URLs can be received by attacker
provided JavaScript. As the origin of this JavaScript and the included ele-
ments differs, the refined SOP would not be satisfied and therefore the mali-
cious JavaScript would not be able to obtain any information from the inclusion
attempt.

However, refined and targeted fingerprinting attacks may still be feasible.
Even if elements of a different origin are not directly accessible any longer, side
effects that may have been caused by these elements are. E.g., the inclusion of
an image causes a certain shift in the absolute positions of adjacent elements,
which in turn could be used to determine that the image was indeed loaded
successfully. Furthermore, the attacks described in Section 2.5 would still be
possible. Such an attack consists of creating a state-changing request to a well
known URL, which would still be allowed by the refined policy. Also the content
leaking attack described in Section 2.6 would not be prevented. The basis of the
attack is tricking the browser to believe that the malicious script and the at-
tacked intranet server share the same origin. Nonetheless, the feasibility of these
still working attacks depends on detailed knowledge of the intranet’s internal
layout. As obtaining such knowledge is prevented successfully by the outlined
countermeasure the protection can still be regarded as sufficient, provided the
attacker has no other information leak at hand.

Drawbacks: The main disadvantage of this approach is its incompatibility to
current practices of many websites. Modern websites provide so called web APIs
that allow the inclusion of their services into other web applications. Such ser-
vices are for example offered to enable the inclusion of external cartography

50 M. Johns and J. Winter

material into webpages. Web APIs are frequently implemented using remote
JavaScripts that are included in the targeted webpage by a script-tag. If a
given browser starts to apply the SOP on an element level, such services will
stop working.

A further obstacle in a potential adoption of this protection approach is the
anticipated development costs, as an implementation would require profound
changes in the internals of the web browser.

3.3 Rerouting Cross-Site Requests

As discussed in Section 2.8, the attacks shown in Section 2 are CSRF attacks
which exploit the fact that the firewall is used as a means of transparent implicit
authentication. In [14] we proposed RequestRodeo a client side countermeasure
against CSRF attacks in general. This section presents a refined version of our
original concept that is geared towards protecting companies’ intranets against
JavaScript Malware.

RequestRodeo’s protection mechanism is based on a classification of outgoing
http requests:

Definition 2 (entitled). A given HTTP request is classified to be entitled if
and only if:

• It was initiated because of the interaction with a web page and
• the URLs of the originating page and the requested page satisfy the SOP.

Only requests that were identified to be entitled are permitted to carry implicit
authentication information.

According to this definition, all unentitled requests are “cross site requests”
and therefore suspicious to be part of a CSRF attack and should be treated
with caution. Cross-site request are fairly common and an integral part of the
hyperlink-nature of the WWW. Therefore, a protection measure that requires
the cancellation of such requests is not an option.

Instead we proposed to remove all authentication information from these re-
quests to counter potential attacks. However, in the given case the requests do
not carry any authentication information. They are implicitly authenticated as
their origin is inside the boundaries that are defined by the firewall. For this
reason other measures have to be taken to protect local servers. Our proposed
solution introduces a reflection service that is positioned on the outer side of the
firewall. All unentitled requests are routed through this server. If such a request
succeeds, we can be sure that the target of the request is reachable from the
outside. Such a target is therefore not specifically protected by the firewall and
the request is therefore permissible.

The method that is used to do the actual classification is out of scope of this
paper. In [14] we introduced a client side proxy mechanism for this purpose,
though ultimately we believe such a classification should be done within the web
browser.

Example: As depict in figure 3a a web browser requests a webpage from a
server that is positioned outside the local intranet. In our scenario the request is

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 51

Inner Firewall

Intranet webserver

RequestRodeo

Malicious site

Reflection server

OK

Outer Firewall

1

3

2

Inner Firewall

Intranet webserver

RequestRodeo

Malicious site

Reflection server

Outer Firewall

1

3

2

a. legal request b. prohibited request

DMZ DMZ

DENY

Fig. 3. Usage of a reflection service

unentitled. It is therefore routed through the reflection service. As the reflec-
tion service can access the server unhindered, the browser is allowed to pose
the request and receives the webpage’s data. The delivered webpage contains a
malicious script that tries to request a resource from an intranet web server (see
figure 3b). As this is a cross domain request, it also is unentitled and therefore
routed through the reflection service as well. The reflection service is not able
to successfully request the resource, as the target of the request lies inside the
intranet. The reflection service therefore returns a warning message which is
displayed by the web browser.

Position of the service: It is generally undesirable to route internal web traffic
unprotected through an outside entity. Therefore the reflection service should
be positioned between the outer and an inner firewall. This way the reflection
service is treated as it is not part of the intranet while still being protected by
the outer firewall. Such configurations are usually used for DMZ (demilitarized
zone) hosts.

Protection: The attack methods described in Section 2.3 to Section 2.5 rely
on executing a JavaScript that was obtained from a domain which is under (at
least partial) control of the attacker. In the course of the attack, the JavaScript
creates HTTP requests that are targeted to local resources. As the domain-value
for local resources differs from the domain-value of the website that contains the
malicious script, all these requests are detected to be cross-site request. For this
reason they are classified as unentiteld. Consequently, these request are routed
through the reflection service and thus blocked by the firewall (see Figure 3).

Therefore, the usage of a reflection service protects effectively against ma-
licious JavaScript that tries to either port-scan the intranet (see Section 2.3),
fingerprint local servers (Section 2.4) or exploit unpatched vulnerabilities by
sending state changing requests (Section 2.5).

The main problem with this approach is its incapability to protect against
attacks that exploit the breaking of the web browser’s DNS pinning feature
(see Section 2.6). Such attacks are based on tricking the browser to access local
resources using an attacker provided domain-name (e.g., attacker.org). Be-
cause of this attack method, all malicious requests exist within that domain

attacker.org

52 M. Johns and J. Winter

and are therefore not recognised to be suspicious. Thus, these requests are not
routed through the reflection service and can still execute the intended attack.
As long as modern web browsers allow the breaking of DNS pinning, the pro-
tection provided by this approach is not complete. However, executing such an
attack successfully requires detailed knowledge on the particular properties of
the attacked intranet. As obtaining knowledge about the intranet is successfully
prevented by the countermeasure, the feasibility of anti-DNS-pinning based at-
tacks is questionable.

Drawbacks: Setting up such a protection mechanism is comparatively complex.
Two dedicated components have to be introduced: The reflection service and an
add-on to the web browser that is responsible for classification and routing of
the HTTP requests. Furthermore, a suitable network location for the reflection
service has to exist. As small-scale and home networks rarely contain a DMZ,
the user either has the choice of creating one, which requires certain amounts
of networking knowledge, or to position the reflection service outside the local
network, which is objectionable.

The most appropriate deployment scenario for the proposed protection ap-
proach is as follows: Many companies already require their employees to use an
outbound proxy for WWW-access. In such cases the classification engine, that is
responsible for routing non-trusted request through the reflection service, could
be included in the existing central proxy. This way all employees are transpar-
ently using the protection measure without additional configuration effort.

3.4 Restricting the Local Network

As introduced in Section 1 we refer to addresses that are located within the
intranet as local. This notation implies a basic classification that divides net-
work addresses into either local or external locations. If the web browser could
determine to which group the origin and the target of a given request belong, it
would be able to enforce a simple yet effective protection policy:

Definition 3 (restricted local network). Hosts that are located inside a re-
stricted local network are only accessible by requests that have a local origin.
Therefore, inside such a network all HTTP requests with an external origin that
target at a local resource are forbidden.

With requests with an external origin we denote requests that were generated
in the execution context of a webpage that was received from an external host.
Unlike the proposed solution in Section 3.3 this classification does not take the
domain-value of the request’s origin or target into account. Only the actual IP-
addresses are crucial for a policy-based decision.

Protection: All the attack methods specified in Section 2 depend on the capa-
bility of the malicious script to access local elements in the context of a webpage
that is under the control of the attacker: The portscanning attack (Sec. 2.3)
uses elements with local URLs to determine if a given host listens on the URL’s
port, the fingerprinting (Sec. 2.4) and local CSRF (Sec. 2.5) methods create

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 53

local URLs based on prior application knowledge, breaking DNS-pinning (Sec.
2.6) tries to let the browser believe that an attacker owned domain is mapped
to a local IP-address, and even the methods that do not rely on JavaScript (Sec.
3.1) require the usage local URLs to function. Therefore, the attacker’s ability to
successfully launch one of the specified attacks depends on his capability to cre-
ate local HTTP requests from within a webpage under his control. By definition
the attacker’s host is located outside the intranet. Thus, the starting point of
the attack is external. As the proposed countermeasure cancels all requests from
an external origin to local resources, the attacker is unable to even bootstrap his
attack.

Drawbacks: The configuration effort of the proposed solution grows linearly
with the complexity of the intranet. Simple networks that span over a single
subnet or exclusively use private IP-addresses can be entered fairly easy. How-
ever, fragmented networks, VPN setups, or mixes of public and private address
ranges may require extensive configuration work.

Furthermore, another potential obstacle emerges when deploying this protec-
tion approach to mobile devices like laptops or PDAs. Depending on the current
location of the device, the applicable configuration may differ. While a poten-
tial solution to this problem might be auto-configuration based on the device’s
current IP-address, overlapping IP-ranges of different intranets can lead to am-
biguities, which then consequently may lead to holes in the protection.

3.5 Comparison of the Proposed Protection Approaches

As the individual protection features and disadvantages of the proposed ap-
proaches have already been discussed in the preceding sections, we concentrate
in this section on aspects that concern either potential protection, mobility or
anticipated configuration effort (see Table 1). The technique to selectively turn
of active technologies (see Section 3.1) is left out of this discussion, due to the
approach’s inability to provide any protection in the case of an exploited XSS
vulnerability.

Protection: The only approach that protects against all presented attack vec-
tors is introducing a restricted local network, as this is the sole technique that
counters effectively anti DNS-pinning attacks. However, unlike the other attack
methods that rely on inherent specifics of HTTP/HTML, successfully attacking
DNS-pinning has to be regarded as a flaw in the browser implementation. There-
fore, we anticipate this problem to be fixed by the browser vendors eventually. If
this problem is solved, the anticipated protection of the other approaches may
also be regarded to be sufficient.

Configuration effort & mobility: The element level SOP approach has the
clear advantage not to require any location-depended configuration. Therefore,
the mobility of a device protected by this measure is uninhibited. But as some
sites’ functionality depends on external scripts, adopters of this approach instead
would have to maintain a whitelist of sites, for which document level access to

54 M. Johns and J. Winter

cross-domain content is permitted. As the technique to reroute cross-site requests
requires a dedicated reflection service, the provided protection exists only in net-
works that are outfitted accordingly, thus hindering the mobility of this approach
significantly. Also a restricted local network depends on location specific config-
uration, resulting in comparable restrictions. Furthermore, as discussed above,
a restricted local network might lead to extensive configuration overhead.

Conclusion: As long as breaking DNS-pinning is still possible with current
browsers, an evaluation ends in favor of the restricted local network approach. As
soon as this browser flaw has been removed, rerouting cross-site request appears
to be a viable alternative, especially in the context of large-sized companies
with non-trivial network set-ups. Before an element level SOP based solution
is deployed on a large scale, the approach has to be examined further for the
potential existence of covert channel (see Section 3.2).

Table 1. Comparison of the proposed protection approaches

No JavaScr. Element SOP Rerout. CSR Restr. network
Prohibiting Exploring the Intranet (+)∗ (+)∗ + +
Prohibiting Fingerprinting Servers + + + +
Prohibiting IP-based CSRF - - + +
Resisting Anti-DNS Pinning + - - +
Mobile Clients + + - -
No Manual Configuration -∗∗ + - -

+: supported, -: not supported, ∗: Protection limited to JS based attacks, ∗∗: Per site
configuration.

4 Evaluation

4.1 Implementation

Based on the discussion above, we chose to implement a software to enforce a
restricted local network, in order to evaluate feasibility and potential practical
problems of this approach [30].

We implemented the approach in form of an extension to the Firefox web
browser. While being mostly used for GUI enhancements and additional func-
tions, the Firefox extension mechanism in fact provides a powerful framework
to alter almost every aspect of the web browser. In our case, the extension’s
functionality is based mainly on an XPCOM component which instantiates a
nsIContentPolicy [22]. The nsIContentPolicy interface defines a mechanism that
was originally introduced to allow the development of surf-restriction plug-ins,
like parental control systems. It is therefore well suited for our purpose.

By default our extension considers the localhost (127.0.0.1), the private
address-ranges (10.0.0.0/8, 192.168.0.0/16 and 172.16.0.0/12) and the link-local
subnet (169.254.0.0/16) to be local. Additionally the extension can be configured
manually to include or exclude further subnets in the local-class.

Every outgoing HTTP request is intercepted by the extension. Before passing
the request to the network stack, the extension matches the IP-addresses of the

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 55

request’s origin and target against the specifications of the address-ranges that
are included in the local-class. If a given request has an external origin and a
local target it is dropped by the extension.

By creating a browser extension, we hope to encourage a wider usage of the
protection approach. This way every already installed Firefox browser can be
outfitted with the extension retroactively. Furthermore, in general a browser
extension consists of only a small number of small or medium sized files. Thus,
an external audit of the software, as it is often required by companies’ security
policies, is feasible.

An alternative to implementing a browser extension would have been to re-
alize the outlined protection mechanism in the form of a client-side web proxy.
A proxy has the advantage of not being restricted to one single browser brand.
Furthermore, such a proxy could be installed company wide at a central location,
thus minimizing configuration and maintenance effort. Unfortunately establish-
ing the origin for a given HTTP request is a non-trivial task outside the web
browser. Achieving this within a proxy requires substantial alteration of incom-
ing HTML content (see [14]), which is an error prone exercise, due to dynamic
content creation by JavaScript.

4.2 Practical Evaluation

Our testing environment consisted of a PC running Ubuntu Linux version 6.04
which was located inside a firewalled subnet employing the 192.168.1.0/24 pri-
vate IP-address range. Our testing machine ran an internal Apache webserver
listening on port 80 of the internal interface 127.0.0.1. Furthermore, in the same
subnet an additional host existed running a default installation of the Apache
webserver also listening on port 80. The web browser that was used to execute
the tests was a Mozilla Firefox version 2.0.0.1. with our extension installed. The
extension itself was configured using the default options.

Besides internal testing scripts, we employed public available tools for the prac-
tical evaluation of our implementation. To test the protection abilities against
portscanning and fingerprinting attacks, we used the JavaScript portscanner from
SPI Dynamics that is referenced in [19]. To evaluate the effectiveness against anti
DNS-pinning attacks we executed the online demonstration provided by [15] which
tries to execute an attack targeted at the address 127.0.0.1.

The results turned out as expected. The portscanning and fingerprinting at-
tempts were prevented successfully, as the firewall rejected the probing requests
of the reflection service. Also as expected, the anti DNS-pinning attack on the lo-
cal web server was prevented successfully. Furthermore the extension was able to
detect the attack, as it correctly observed the change of the adversary’s domain
(in this case 1170168987760.jumperz.net) from being remote to local.

4.3 Limitations

During our tests we encountered a possible network setup that may yield prob-
lems with our approach. A company’s web-services are usually served from

1170168987760.jumperz.net

56 M. Johns and J. Winter

within a DMZ using public IP-addresses. Unfortunately, the “local”/”external”-
classification of hosts located in a DMZ is not a straight-forward task. As the
hosts’ services are world-reachable the respective IPs should be classified as “ex-
ternal” to allow cross-domain interaction between these services and third party
web applications. However, in many networks the firewall setup allows connec-
tions that origin from within the company’s network additional access rights to
the servers positioned in the DMZ. For example internal IPs could be permitted
to access the restricted FTP-port of the webserver to update the server’s con-
tent. Thus, in such setups a malicious JavaScript executed within the intranet
also possesses these extended network capabilities.

5 Related Work

In this section we sum up related publications. As, to the best of our knowledge,
no work has been published yet that directly deals with the threats to the intranet
specified in this paper, we describe approaches that deal with related web appli-
cation threats in general. We thereby focus on protection mechanisms that are
positioned at the client side. If applicable we discuss if the described approaches
can be extended to protect the intranet against JavaScript based attacks.

Lam et al. [20] discus the reconnaissance probing attack (see Section 2.3) as a
tool to identify further victims in the context of web-server worm propagation.
They propose several options for client-side defense mechanisms, like limiting the
number of cross-domain requests. However, as they address the issues only in the
context of large scale worm propagation and DDoS attacks, these measures do
not promise to be effective against targeted intranet-attacks. The paper contains
an excellent analysis of existing restrictions posed by different web browsers, like
number of allowed simultaneous connections.

Vogt et al. [29] propose a combination of static analysis and dynamic data
tainting to stop the effects of XSS attacks. The outlined approach does not
identify or stop the actual injected script but instead aims to prohibit resulting
leakage of sensitive information. To achieve this, their technique employs an
enhanced JavaScript engine. The added features of this modified engine are
twofold: For one, the flow of sensitive data, like cookie-values, through the script
can be tracked dynamically. This way the mechanism detects and prevents the
transmission of such data to the adversary. Furthermore, via static analysis,
all control flow dependencies in scripts that handle sensitive information are
established. This is done to identify indirect and hidden channels that could be
abused for data leakage. If such channels are identified, their communication
with external hosts is prevented.

In a related approach, Kirda et al. [18] describe Noxes, an application-level
firewall that examines incoming HTML data in respect to potential sources for
information leaks. Based on this analysis the firewall dynamically creates connec-
tion rules, to stop HTTP requests that are suspicious to transport confidential
data, like cookie values. Noxes is concerned with the data content of outgoing
requests and not with the target. For this reason the described algorithm is not

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 57

applicable in the context of this paper. However, the protection approach, can-
celing suspicious HTTP requests, is closely related to our solution proposed in
Section 3.4. A combination of both approaches to extend the respective range of
protection is therefore possible.

Ismail et al. [11] describe a local proxy based solution towards protection
against reflected XSS attacks. The proxy examines the GET and POST
parameters of outgoing HTTP request for the existence of potential problematic
characters like “<”. If such characters are found in one of the parameters, the
proxy also checks the respective HTTP response if the parameter is included
verbatim and unencoded in the resulting webpage. If this is the case, the proxy
concludes a potential XSS attack and encodes the offending characters itself.

A more general protection approach is described by Hallaraker and Vigna [8].
Their paper shows how to modify the JavaScript-engine of a web browser to allow
behaviour based analysis of JavaScript execution. Using this newly introduced
capability, they apply intrusion detection mechanisms to e.g., prevent denial of
service or XSS attacks. While the paper does not address the threats that are
subject of our work, it may be possible to extend their work towards detecting
and preventing JavaScript Malware. To verify this assumption further research
work is necessary.

Finally, as already mentioned in Section 3.2, Jackson et al. [12] describe a so-
lution to a related issue: Current browser technologies grant JavaScript certain
capabilities to access information about the user’s browsing history and cache
content. These capabilities enable the adversary to create scripts that compro-
mise the privacy of the user. In order to prevent such attacks, [12] extends the
Same Origin Policy to also apply to cache and history information. This has the
effect, that a JavaScript can only obtain cache and history information about
elements that have the same origin as the script itself. As browsing history and
cache content information can provide hints about the existence and particular-
ities of intranet servers without requiring the attacker to generate any network
traffic, an adoption of the described countermeasures is advisable in addition to
applying the here proposed mechanisms.

6 Conclusion and Future Work

We showed that carefully crafted script code embedded in webpages is capable
to bypass the Same Origin Policy and thus can access intranet resources. For this
reason simply relying on the firewall to protect intranet HTTP server against
unauthorized access is not sufficient. As it is not always possible to counter such
attacks at the server side, we introduced and discussed four distinct client-side
countermeasures. Based on this discussion, we implemented a Firefox extension
to enforce a restricted local network.

While our implementation reliably provides protection against the specified
threats, this protection comes with a price, as additional configuration overhead
and potential problems concerning mobile clients exist. Furthermore, our solu-
tion fixes a problem that occurs because of fundamental flaws in the underlying

58 M. Johns and J. Winter

concepts - HTTP and the current JavaScript security model. Therefore future
research in this area should specifically target these shortcomings to provide the
basis for a future web browser generation that is not susceptible any longer to
the attacks that have been discussed in this paper.

References

1. Alcorn, W.: Inter-protocol communication. Whitepaper (11/13/06) (August 2006)
http://www.ngssoftware.com/research/papers/
InterProtocolCommunication.pdf

2. Burns, J.: Cross site reference forgery - an introduction to a common web applica-
tion weakness. Whitepaper (2005)
https://www.isecpartners.com/documents/XSRF_Paper.pdf

3. Endler, D.: The evolution of cross-site scripting attacks. Whitepaper, iDefense Inc.
(May 2002) http://www.cgisecurity.com/lib/XSS.pdf

4. Glass, E.: The ntlm authentication protocol. (03/13/06) (2003) [online]
http://davenport.sourceforge.net/ntlm.html

5. Grossman, J.: Browser port scanning without javascript. (08/01/07) (Novem-
ber 2006) Website http://jeremiahgrossman.blogspot.com/2006/11/browser-
port-scanning-with out.html

6. Grossman, J.: Javascript malware, port scanning, and beyond. Posting to the web-
security mailing list (July 2006) http://www.webappsec.org/lists/websecurity/
archive/2006-07/msg00097.html

7. Grossman, J., Niedzialkowski, T.C: Hacking intranet websites from the outside. Talk
at Black Hat USA 2006 (August 2006) http://www.blackhat.com/presentations/
bh-usa-06/BH-US-06-Grossman.pdf

8. Hallaraker, O., Vigna, G.: Detecting malicious javascript code in mozilla. In: Pro-
ceedings of the IEEE International Conference on Engineering of Complex Com-
puter Systems (ICECCS), pp. 85–94 (June 2005)

9. Le Hegaret, P., Whitmer, R., Wood, L.: Document object model (dom). W3C
recommendation (January 2005) http://www.w3.org/DOM/

10. InformAction. Noscript firefox extension. Software (2006)
http://www.noscript.net/whats

11. Ismail, O., Eto, M., Kadobayashi, Y., Yamaguchi, S.: A proposal and implementa-
tion of automatic detection/collection system for cross-site scripting vulnerability.
In: 8th International Conference on Advanced Information Networking and Appli-
cations (AINA04), (March 2004)

12. Jackson, C., Bortz, A., Boneh, D., Mitchell, J.C.: Protecting browser state from
web privacy attacks. In: Proceedings of the 15th ACM World Wide Web Conference
(WWW 2006) (2006)

13. Johns, M. (somewhat) breaking the same-origin policy by undermining dns-
pinning. Posting to the Bug Traq Mailinglist (August 2006)
http://www.securityfocus.com/archive/107/443429/30/180/threaded

14. Johns, M., Winter, J.: Requestrodeo: Client side protection against session riding.
In: Piessens,F. (ed.) Proceedings of the OWASP Europe 2006 Conference, refereed
papers track, Report CW448, pp. 5 – 17. Departement Computerwetenschappen,
Katholieke Universiteit Leuven (May 2006)

15. Kanatoko. Stealing information using anti-dns pinning (30/01/07) (2006) Online
demonstration. webpage, http://www.jumperz.net/index.php?i=2&a=1&b=7

http://www.ngssoftware.com/research/papers/InterProtocolCommunication.pdf
http://www.ngssoftware.com/research/papers/InterProtocolCommunication.pdf
https://www.isecpartners.com/documents/XSRF_Paper.pdf
http://www.cgisecurity.com/lib/XSS.pdf
http://davenport.sourceforge.net/ntlm.html
http://jeremiahgrossman.blogspot.com/2006/11/browser-port-scanning-with out.html
http://jeremiahgrossman.blogspot.com/2006/11/browser-port-scanning-with out.html
http://www.webappsec.org/lists/websecurity/archive/2006-07/msg00097.html
http://www.webappsec.org/lists/websecurity/archive/2006-07/msg00097.html
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Grossman.pdf
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Grossman.pdf
http://www.w3.org/DOM/
http://www.noscript.net/whats
http://www.securityfocus.com/archive/107/443429/30/180/threaded
http://www.jumperz.net/index.php?i=2&a=1&b=7

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 59

16. Kanatoko. Anti-dns pinning + socket in flash (19/01/07) (January 2007) Website
http://www.jumperz.net/index.php?i=2&a=3&b=3

17. Kindermann, L.: My address java applet (11/08/06) (2003) Webpage
http://reglos.de/myaddress/MyAddress.html

18. Kirda, E., Kruegel, C., Vigna, G., Jovanovic, N.: Noxes: A client-side solution for
mitigating cross site scripting attacks, security. In: Security Track of the 21st ACM
Symposium on Applied Computing (SAC 2006) (April 2006)

19. SPI Labs. Detecting, analyzing, and exploiting intranet applications using
javascript. Whitepaper (July 2006)
http://www.spidynamics.com/assets/documents/JSportscan.pdf

20. Lam, V.T., Antonatos, S., Akritidis, P., Anagnostakis, K.G.: Puppetnets: Misus-
ing web browsers as a distributed attack infrastructure. In: ACM Conference on
Computer and Communications Security (CCS’06), pp. 221–234 (2006)

21. Petkov, P.: Javascript port scanner (11/08/06), August (2006) Website
http://www.gnucitizen.org/projects/javascript-port-scanner/

22. XUL Planet. nsicontentpolicy. API Reference (11/02/07) (2006) webpage
http://www. xpcomref/ifaces/nsIContentPolicy.html

23. Mozilla Project. Mozilla port blocking (11/13/06) (2001) Webpage
http://www.mozilla.org/projects/netlib/PortBanning.html

24. Ruderman, J.: The same origin policy (01/10/06) (August 2001) Webpage
http://www.mozilla.org/projects/security/components/same-origin.html

25. Samy: Technical explanation of the myspace worm (01/10/06) (October 2005) web-
site http://namb.la/popular/tech.html

26. Schreiber, T.: Session riding - a widespread vulnerability in today’s web applica-
tions. Whitepaper, SecureNet GmbH (December 2004)
http://www.securenet.de/papers/Session_Riding.pdf

27. Princeton University Secure Internet Programming Group. Dns attack scenario
(February 1996) Webpage
http://www.cs.princeton.edu/sip/news/dns-scenario.html

28. Soref, J.: Dns: Spoofing and pinning (14/11/06) (September 2003) Webpage
http://viper.haque.net/~timeless/blog/11/

29. Vogt, P., Nentwich, F., Jovanovic, N., Kruegel, C., Kirda, E., Vig, G.: Cross site
scripting prevention with dynamic data tainting and static analysis. In: 14th An-
nual Network and Distributed System Security Symposium (NDSS 2007) (2007)

30. Winter, J., Johns, M.: Localrodeo: Client side protection against javascript malware
(01/02/07) (January 2007) webpage http://databasement.net/labs/localrodeo

http://www.jumperz.net/index.php?i=2&a=3&b=3
http://reglos.de/myaddress/MyAddress.html
http://www.spidynamics.com/assets/documents/JSportscan.pdf
http://www.gnucitizen.org/projects/javascript-port-scanner/
http://www.xulplanet.com/references/xpcomref/ifaces/nsIContentPolicy.html
http://www.xulplanet.com/references/xpcomref/ifaces/nsIContentPolicy.html
http://www.mozilla.org/projects/netlib/PortBanning.html
http://www.mozilla.org/projects/security/components/same-origin.html
http://namb.la/popular/tech.html
http://www.securenet.de/papers/Session_Riding.pdf
http://www.cs.princeton.edu/sip/news/dns-scenario.html
http://viper.haque.net/~timeless/blog/11/
http://databasement.net/labs/localrodeo

On the Effects of Learning Set Corruption in

Anomaly-Based Detection of Web Defacements

Eric Medvet and Alberto Bartoli

DEEI, University of Trieste, Via Valerio, Trieste
emedvet@units.it, bartolia@units.it

Abstract. Anomaly detection is a commonly used approach for con-
structing intrusion detection systems. A key requirement is that the data
used for building the resource profile are indeed attack-free, but this is-
sue is often skipped or taken for granted. In this work we consider the
problem of corruption in the learning data, with respect to a specific
detection system, i.e., a web site integrity checker. We used corrupted
learning sets and observed their impact on performance (in terms of false
positives and false negatives). This analysis enabled us to gain important
insights into this rather unexplored issue. Based on this analysis we also
present a procedure for detecting whether a learning set is corrupted.
We evaluated the performance of our proposal and obtained very good
results up to a corruption rate close to 50%. Our experiments are based
on collections of real data and consider three different flavors of anomaly
detection.

1 Introduction

Anomaly detection is a powerful and commonly used approach for constructing
intrusion detection systems. With this approach the system constructs automat-
ically a profile of the resource to be monitored, starting from a collection of
data representing normal usage (the learning set). Once this profile has been
established the system signals an anomaly whenever the actual observation of
the resource deviates from the profile, on the assumption that any anomalies
represent evidence of an attack.

A key requirement is that the learning set is indeed attack-free, otherwise the
presence of attacks would be incorporated in the profile and, thus, considered
as a normal status. Although this requirement is crucial for the effectiveness of
anomaly detection, in practice the absence of attacks in the learning set is either
taken for granted or verified “manually”. While such a pragmatic approach may
be feasible in a carefully controlled environment, it clearly becomes problematic
in many scenarios of practical interest. Building a large number of profiles for
resources immersed in their production environment, for example, cannot be
done by inspecting each learning set “manually” to make sure there were no
attacks. A cross-the-fingers approach, on the other hand, can only lead to the
construction of potentially unreliable profiles.

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 60–78, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Effects of Learning Set Corruption in Anomaly-Based Detection 61

In this work we focus on the problem of corruption in the learning set, i.e.,
a learning set containing records which do not represent a “normal” condition
for the observed resource. We think that focussing on this fundamental issue
could broaden the scope of anomaly-based detection frameworks. For example, in
order to apply anomaly-based monitoring on a large scale—to hundreds or even
thousands of resources—it is necessary to build a large number of learning sets,
one for each resource to be monitored (e.g., [1] monitored many web applications
at the same time). It is clearly not feasible to “manually” check each learning
set to make sure there are no attacks hidden in it. The fact that profiles could
have to be updated periodically in order to reflect changes in legitimate usage
of resources (e.g., [2]) may only exacerbate this problem.

We restrict our analysis to a specific detection system that we developed ear-
lier, i.e., an anomaly-based web site integrity checker [3,4]. This tool is able
to monitor many remote web pages automatically using an anomaly detection
approach, which may help in triggering prompt reactions in the presence of unau-
thorized modifications. The tool builds an individual profile for each monitored
page, by simply observing that page for a while. The process is fully automatic,
i.e., no prior knowledge about content and appearance of the monitored page is
required. The scope of our analysis is clearly narrowed by the specific detection
system that we consider, but we believe that our approach may be of interest
also for other forms of detection systems.

A roadmap to deal with the problem of potentially corrupted learning sets
involves: (1) understanding, i.e., evaluating quantitatively the effects of a cor-
rupted learning set on the effectiveness of anomaly detection; (2) detecting, i.e.,
being able to discriminate between a corrupted learning set and a clean one;
and, possibly, (3) mitigating, i.e., preserving an acceptable performance level
of the detection system in spite of a corrupted learning set. In this paper we
focus on the first two steps. Our experiments are based on collections of real
data and consider three different flavors of anomaly detection. We first assess
the effects of a corrupted learning set on performance, in terms of false positives
and false negatives. This analysis enabled us to gain important insights into this
rather unexplored issue. Based on this analysis we also present a procedure for
detecting automatically whether a learning set contains corrupted records. This
procedure may be used for handling large collections of datasets automatically,
raising an alert to a human operator only for those which look suspicious (much
like the alerts raised after the learning phase has completed). We evaluated the
performance of this procedure and obtained very good results up to a corruption
rate close to 50%.

2 Related Work

Broadly speaking, anomaly detection is an instance of inductive learning classifi-
cation in which the goal is to build a profile able of discriminating between only
two classes—i.e., normal and anomalous—using learning data corresponding to
a single class—i.e., normal [5,6,7,8]. In the inductive machine learning field the

62 E. Medvet and A. Bartoli

corruption of learning set is indicated as noise, which is generally subdivided in
two categories: attribute noise and class noise. The former consists in records
for which one or more attributes are not really representative of the correspond-
ing class, whereas the latter concerns records of the dataset which are wrongly
labeled. A comparison between the effects of the two different types of noise on
classifier accuracy is presented in [9]; our work refers to a very specific instance
of the inductive machine learning problem and considers only class noise.

Concerning class noise, there is a substantial amount of work proposing solu-
tions for identifying and then removing the corrupting (mislabled) records. More
in general, this issue can be addressed with outlier detection techniques [10]. We
have not investigated whether such techniques can be applied to our framework,
that is characterized by a small learning set—usually a few tens of records. In
this work we are merely concerned with the problem of detecting whether the
learning set is indeed clean or contains some amount of class noise.

An important method for finding mislabeled records in the learning set is
given in [11]. The idea consists in building a set of filtering classifiers from only
part of the learning set and then testing whether data in the remaining part also
belong to the profile. The learning set is partitioned in a number of subsets and,
for each subset, a filtering classifier is trained using the remaining part of the
learning set. Each record of the learning set is then input to each of the filtering
classifiers. The cited paper proposes and evaluates several criteria for merging
the labels generated by the filtering classifiers. The method should be able to
identify outliers regardless of the specific classifier being used, hence, regardless
of the chosen model for the data. A very similar approach, specifically tailored to
large datasets, is proposed in [9]. Our work differs from these proposals in that
we do not partition the learning set in smaller sets. This can be an advantage
in the cases—our test scenario is indeed one of them—where learning sets may
be very small and thus a further division will lead to a ineffective classifier: such
cases are considered by Forman and Cohen [12] in their comparative study about
machine learning applied to small learning set.

Concerning specifically anomaly detection, we are not aware of works cover-
ing both the understanding and detecting phases of the problem of corrupted
learning sets. We are only aware of a few published experiments about the effects
of a corrupted learning set—i.e., only the understanding phase. Hu et al. [13]
consider an anomaly-based host intrusion detection system and compare the per-
formance of Robust Support Vector Machines (RSVMs), conventional Support
Vector Machines and nearest neighbor classifiers using 1998 DARPA BSM data
set. Besides experimenting with clean learning sets, they consider also artificially
corrupted learning datasets and find that RSVM are more robust to noise.

A similar analysis is proposed by Mahoney and Chan [14]. The authors present
an IDS which detects anomalies in packet header fields. In addition to the nor-
mal effectiveness evaluation (with 1999 DARPA dataset), they experiment also
with smaller and corrupted learning sets. They motivate this choice based on
the practical difficulty in obtaining attack-free learning sets. The authors test
their tool in a real environment and retune the tool every day based on the data

On the Effects of Learning Set Corruption in Anomaly-Based Detection 63

collected on the previous day. A significant loss in detection rate is highlighted,
but the relation between loss and corruption is not analyzed because the cor-
ruption level is not measured accurately.

A radically different approach to the problem of corrupted learning sets is that
of unsupervised anomaly detection. With these techniques learning set records
do not need to be labelled as clean or attack-related and the detection method
itself is intrinsically robust to a certain amount of noise. Along this line, Laskov
et al. [15] present a network IDS based on a formulation of a one-class Support
Vector Machine (SVM) [16], whereas Wang and Stolfo [17] present a network IDS
where anomalies with respect to the profile are based on the the Mahalanobis
distance. These techniques usually work on learning datasets much larger than
ours, which often consists of only a few tens of records.

3 The Test Scenario: Web Site Defacement Detection

3.1 Motivation and Framework

Our analysis is based on a specific detection system that we developed earlier, i.e.,
an anomaly-based web site integrity checker [3]. This tool is aimed at monitoring
the integrity of remote web pages automatically while remaining fully decoupled
from them, in particular, without requiring any prior knowledge about content
or appearance of the monitored resources. The tool builds an individual profile
for each monitored page, by simply observing that page for a while, and signals
an anomaly whenever a page deviates from its profile. Full details can be found
in [4], in particular concerning performance, limitations and open issues.

The issue of learning set corruption is particularly significant in this scenario
for two key reasons. First, the learning set for each page is usually small. We
decided that the monitoring of a new page should require the gathering of learn-
ing data for a few days at most. Since readings taken every few minutes usually
exhibit very little difference, the result is that a learning set typically consists of
a few tens of readings. It follows that the learning set is so small that even a little
amount of corruption (e.g., a single corrupting reading) could have significant
impact. Second, it is necessary to update the profile periodically [4]. Assuming a
visual inspection of each new learning set is clearly not an option: the tool must
be able to retune itself automatically.

Although we focus on a web site integrity checker, however, we considered
a more general anomaly-based framework. We consider a source of information
producing a sequence of readings {i1, i2, . . . } which is input to a detector (Fig. 1).
The detector will classify each reading as being either normal or anomalous. The
detector consists internally of a refiner followed by an aggregator, both described
in the next sections. In our scenario the source of information is a web page,
univocally identified by an URL, and each reading consists of the document
downloaded from that URL.

Detector Architecture. The refiner implements a function that takes a read-
ing i and produces a fixed size numeric vector v = R(i). The details of the

64 E. Medvet and A. Bartoli

Source I

Human
operator

params t

Refiner Aggregator

Detector

i

y’

v
y

OtherTernary Numeric Numeric vector Numeric matrix

Fig. 1. Detector architecture. Different arrow types correspond to different types of
data.

transformation are problem specific. In our case the transformation involves
evaluating and quantifying many features of a web page related to both its con-
tent and appearance. The refiner is internally composed by one or more sensors.
A sensor S is a component which receives as input the reading i and outputs
a fixed size vector of real numbers vS . The output of the refiner is composed
by concatenating the output of all sensors. Sensors are functional blocks and
have no internal state: v = R(i) depends only on the current input i and does
not depend on any prior reading. In our case we consider a refiner producing a
vector v = R(i) of 1466 elements, obtained by concatening the outputs from 43
different sensors (Sect. 3.2).

The aggregator is the core component of the detector and it is the one that
actually implements the anomaly detection. In a first phase, that we call the
learning phase, the aggregator collects a number of readings in order to build
the profile of the resource; during this phase, the aggregator is not able to classify
readings. In a second phase, the monitoring phase, the aggregator compares the
current reading against the profile and considers it as anomalous whenever it is
too much different from the profile. The output in the monitoring phase depends
on an external parameter called normalized discrimination threshold (threshold
for short), which affects the sensitivity-specificity tradeoff of the detector. We
denote the threshold by t and the output of the refiner for reading ik by vk.

The aggregator performs the learning phase on a learning sequence obtained
with the first l readings {v1, . . . , vl}, that we denote Slearning. With this procedure
the aggregator sets the values for some internal numeric parameters {p1, . . . , pm},
that constitute the profile P of the resource. During the learning phase, the
output yk for each reading ik is always yk = unable, meaning that the aggregator
is currently unable to classify the reading.

On the Effects of Learning Set Corruption in Anomaly-Based Detection 65

After the learning phase, the aggregator enters the monitoring phase, in
which it considers the monitoring sequence obtained with the remaining readings
{vl+1, vl+2, . . . }, that we denote Smonitoring. In this phase the aggregator com-
pares each reading against the profile P established in the learning phase. The
output yk for each reading ik is given by a function FA

compare(vk, P, t) that may
return either yk = negative (meaning the reading is normal) or yk = positive
(meaning the reading is anomalous).

We built 3 different aggregators, which differ in the way they exploit
application-specific knowledge in order to elaborate the outputs produced by
the refiner. The details are presented in the next sections.

3.2 Prototype Details

Sensors. The 43 sensors contained in our refiner can be grouped in 5 categories,
based on the way they extract information from readings. A brief description
of each category follows. Table 1 summarizes salient information about sensor
categories and indicates the number of sensors and the corresponding size for
the vector v portion in each category.

Table 1. Sensor categories and corresponding vector portion sizes

Category Number of sensors Vector size

Cardinality 25 25
RelativeFrequencies 2 117
HashedItemCounter 10 920
HashedTree 2 200
Signature 4 4

Total 43 1466

Cardinality sensors. Each sensor in this category outputs a vector composed by
only 1 element v1. The value of v1 corresponds to the measure of some simple
feature of the reading (e.g., the number of lines).

The features taken into account by the sensors of this category are:

– Tags: block type (e.g., the output v1 of the sensor is a count of the number
of block type tags in the reading), content type, text decoration type, title
type, form type, structural type, table type, distinct types, all tags, with
class attribute;

– Size attributes: byte size, mean size of text blocks, number of lines, text
length;

– Text style attributes: number of text case shifts, number of letter-to-digit
and digit-to-letter shifts, uppercase-to-lowercase ratio;

– Other items: images (all, those whose names contain a digit), forms, tables,
links (all, containing a digit, external, absolute).

66 E. Medvet and A. Bartoli

RelativeFrequencies sensors. Each sensor S in this category outputs a vector
composed by nS elements v = |v1, . . . , vnS |. Given a reading i, S computes the
relative frequency of each item in the item class analyzed by S (e.g., lowercase
letters), whose size is known and equal to nS . The value of the element vk is
equal to the relative frequency of the k -th item of the given class.

This category includes two sensors. One analyzes lowercase letters contained
in the visible textual part of the resource (nS = 26); the other analyzes HTML
elements of the resource—e.g., HTML, BODY, HEAD, and so on—with nS = 91.

HashedItemsCounter sensors. Each sensor S in this category outputs a vector
composed by nS elements v = |v1, . . . , vnS | and works as follows. Given a reading
i, S: (1) sets to 0 each element vk of v; (2) builds a set L = {l1, l2, . . . } of items
belonging to the considered class (e.g., absolute linked URLs) and found in i;
note that L contains no duplicate items; (3) for each item lj , applies a hash
function to lj obtaining a value 1 ≤ kj ≤ nS ; (4) increments vkj by 1.

This category includes 10 sensors, each associated with one of the following
item classes: image URLs (all images, only those whose name contains on or
more digits), embedded scripts, tags, words contained in the visible textual part
of the resource and linked URLs. The link feature is considered as 5 different
sub-features, i.e., by 5 different sensors of this group: all external, all absolute,
all without digits, external without digits, absolute without digits. All of the
above sensors use a hash function such that nS = 100, except from the sensor
considering embedded scripts for which nS = 20. Note that different items could
be hashed on the same vector element. We use a large vector size to minimize
this possibility, which cannot be avoided completely however.

HashedTree sensors. Each sensor S in this category outputs a vector composed
by nS elements v = |v1, . . . , vnS | and works as follows. Given a reading i, S:
(1) sets to 0 each element vk of v; (2) builds a tree H by applying a sensor-
specific transformation on the HTML/XML tree of i (see below); (3) for each
node hl,j of the level l of H , applies a hash function to hl,j obtaining a value
kl,j ; (4) increments vkl,j by 1. The hash function is such that different levels of
the tree are mapped to different adjacent partitions of the output vector v, i.e.,
each partition is “reserved” for storing information about a single tree level.

This category includes two sensors, one for each of the following transforma-
tions:

– Each start tag node of the HTML/XML tree of reading i corresponds to a
node in the transformed tree H . Nodes of H contain only the type of the tag
(for example, TABLE could be a node of H , whereas <TABLE CLASS="NAME">
could not).

– Only nodes of the HTML/XML tree of reading i that are tags in a predefined
set (HTML, BODY, HEAD, DIV, TABLE, TR, TD, FORM, FRAME, INPUT, TEXTAREA,
STYLE, SCRIPT) correspond to a node in the transformed tree H . Nodes of
H contain the full start tag (for example, <TD CLASS="NAME"> could be a
node of H , whereas <P ID="NEWS"> could not).

On the Effects of Learning Set Corruption in Anomaly-Based Detection 67

Both sensor have nS = 200 and use 2, 4, 50, 90 and 54 vector elements for storing
information about respectively tree levels 1, 2, 3, 4 and 5; thereby, nodes of level
6 and higher are not considered.

Signature sensors. Each sensor of this category outputs a vector composed by
only 1 element v1, whose value depends on the presence of a given attribute. For
a given reading i, v1 = 1 when the attribute is found and v1 = 0 otherwise.

This category includes 4 sensors, one for each of the following attributes
(rather common in defaced web pages):

– has a black background;
– contains only one image or no images at all;
– does not contain any tags;
– does not contain any visible text.

Aggregators. As observed in Sect. 3.1, we built 3 different aggregators. They
exploit different levels of application-specific knowledge and are described in the
next sections. Recall that the learning sequence consists of a sequence Slearning =
{v1, . . . , vl} obtained from the first l readings, where each vk is a vector with
1466 elements.

TooManyFiringElements. This aggregator does not exploit any application-
specific knowledge. A reading is labelled as anomalous whenever too many ele-
ments of vk are too much different from what expected.

During the learning procedure the aggregator computes the mean ηi and
standard deviation σi for each element vi

k, across all vectors in Slearning =
{v1, . . . , vl}. During the monitoring phase the aggregator counts the number
of firing elements, i.e., those elements whose value is too much different from
what expected. An element fires when its value vi is such that |vi − ηi| ≥ 3σi. If
the number of firing elements is at least Nt, the reading is classified as anomalous
(N = 1466 is the size of each vector, t is the threshold).

Note that this aggregator handles all vector elements in the same way, ir-
respective of how they have been generated by the refiner. Thus, for example,
elements generated by a signature sensor are handled in the same way as those
generated by hashed. Moreover, the aggregator does not consider any informa-
tion possibly associated with pairs or sets of elements, i.e., elements generated
by either the same sensor or by sensors in the same category.

TooManyFiringSensors. This aggregator exploits some degree of domain-specific
knowledge: it “knows” that the vector elements are partitioned in slices and each
slice corresponds to a specific sensor. The profile constructed in the learning
phase is also partitioned, with one partition associated with each sensor.

In the monitoring phase this aggregator transforms each slice in a boolean,
by applying a sensor-specific transformation that depends on the profile (i.e.,
on the partition of the profile associated with that sensor). When the boolean
obtained from a slice is true, we say that the corresponding sensor fires. If the

68 E. Medvet and A. Bartoli

number of sensors that fire is at least Mt, the reading is classified as anomalous
(M = 43 is the number of sensors, t is the threshold).

We describe the details of the learning phase and monitoring phase below. All
sensors in the same category are handled in the same way.

Cardinality. In the learning procedure the aggregator determines mean η and
standard deviation σ of the values {v1

1 , . . . , v
1
l }—recall that Cardinality sen-

sors output a vector composed by a single value. In the monitoring phase a
sensor fires if its output value v1 is such that |v1 − η| ≥ 3σ.

RelativeFrequencies. A sensor in this category fires when the relative fre-
quencies (of the class items associated with the sensor) observed in the cur-
rent reading are too much different from what expected. In detail, let nS be
the size of the slice output by a sensor S. In the learning phase, the aggrega-
tor performs the following steps: (i) evaluates the mean values {η1, . . . , ηnS }
of the vector elements associated with S; (ii) computes the following for each
reading vk of the learning sequence (k ∈ [1, l]):

dk =
nS∑

i=1

|vi
k − ηi| (1)

(iii) computes mean η and standard deviation σ of {d1, . . . , dl}.
In the monitoring phase, for a given reading v, the aggregator computes:

d =
nS∑

i=1

|vi − ηi| (2)

The corresponding sensor fires if and only if |d − η| ≥ 3σ.
HashedItemsCounter. Let nS be the size of the slice output by a sensor

S. In the learning procedure, the aggregator computes for each slice ele-
ment the minimum value across all readings in the learning sequence, i.e.
{m1, . . . , mnS }. In the monitoring phase S fires if and only if at least one
element vi in the current reading is such that vi < mi.
The interpretation of this category is as follows. Recall that each slice ele-
ment is a count of the number of times an item appears in the reading (dif-
ferent items are hashed to different slice elements). Any non-zero element in
{m1, . . . , mnS }, thus, corresponds to items which appear in every reading of
the learning sequence. In the monitoring phase the sensor fires when there
is at least one of these “recurrent items” missing from the current reading.

HashedTree. Sensors in this category are handled in the same way as those of
the previous category, but the interpretation of a firing is slightly different.
Any non-zero element in {m1, . . . , mnS} corresponds to a node which appear
in every reading of the learning sequence, at the same level of the tree.
In the monitoring phase the sensor fires when a portion of this “recurrent
tree” is missing from the current reading (i.e., the sensor fires when the tree
corresponding to the current reading is not a supertree of the recurrent tree).
We omit further details for simplicity, as they can be figured out easily.

On the Effects of Learning Set Corruption in Anomaly-Based Detection 69

Signature. A sensor in this category fires when its output is 1. Recall that
these sensors output a single element vector, whose value is 1 whenever they
find a specific attribute in the current reading.

As an aside, note that not only the aggregator exploits domain-specific knowl-
edge, it also exploits knowledge about the refiner (e.g., regarding the number of
sensors and size of each slice).

TooManyFiringGroups. This aggregator works similarly to the previous one. It
transforms slices into boolean values in the same way as above. However, rather
then considering all sensors as being equivalent, this aggregator “knows” that
sensors are grouped in categories. If the number of categories with at least one
sensor that fires is at least Kt, the reading is classified as anomalous (K = 5 is
the number of categories, t is the threshold).

As we noticed in our previous works, sensors belonging to the same category
tend to exhibit a similar behaviour in terms of false positives [3,4]. This aggregator
thus exploits domain-specific knowledge more deeply than the previous one.

4 Experiments

4.1 Dataset

In order to perform our experiments, we built a dataset as follows. We observed
15 web pages for about one year, collecting a reading for each page every 6 hours,
thus totalling about 1350 readings for almost each web page. These readings
compose the negatives sequences—one negative sequence SN for each page: we
visually inspected them in order to confirm the assumption that they are all
genuine, that is, none of them was a defacement. Table 2 presents a list of the
observed pages, which includes pages of e-commerce web sites, newspapers web
sites, and alike. Pages differ in size, content and dynamicity and are the same
that we observed for a shorter period in [4].

Then we built a single positive sequence SP composed by 100 readings ex-
tracted from a publicly available defacement archive.1 Defacements composing
SP were not related with any of the 15 resources that we observed—as pointed
out above none of these resources was defaced during our monitoring period.
The next section explains how we used SP readings in order to simulate attacks
to the monitored resources.

4.2 Methodology

We wanted to gain insight about how a given aggregator A copes with a cor-
rupted learning sequence Slearning, i.e., when Slearning contains readings that
must be classified as anomalous. We considered different corruption rates r, i.e.,
1 Our selection is available online at http://www.units.it/bartolia/download/
BartoliMedvetAttackSet.zip

http://www.units.it/bartolia/download/BartoliMedvetAttackSet. zip
http://www.units.it/bartolia/download/BartoliMedvetAttackSet.zip

70 E. Medvet and A. Bartoli

Table 2. List of web resources composing our dataset. Change frequency is a rough
approximation of how often non minor changes were applied to the resource, according
to our observations. Concerning Amazon – Home page and Wikipedia – Random page,
we noted that most of the content section of the resource changed at every reading,
independently from the time.

Change frequency Monitoring period # of
readings

Amazon – Home page Almost every reading 9/19/05–9/1/06 1340
Ansa – Home page Every 4–6 hours 9/19/05–9/1/06 1340
Ansa – Rss sport Every 4–6 hours 9/19/05–9/1/06 1340
ASF France – Home page Weekly 9/19/05–9/1/06 1340
ASF France – Traffic page Less than weekly 9/19/05–9/1/06 1340
Cnn – Businnes Every 4–6 hours 9/19/05–9/1/06 1340
Cnn – Home page Every 4–6 hours 9/19/05–9/1/06 1340
Cnn – Weather Daily 9/19/05–9/1/06 1340
Java – Top 25 bugs Less than weekly 12/1/05–9/1/06 1096
Repubblica – Home page Every 4–6 hours 9/19/05–9/1/06 1340
Repubblica – Tech. and science Every 2–3 days 9/19/05–9/1/06 1340
The Server Side – Home page Every 2–3 days 12/1/05–9/1/06 1095
The Server Side – Tech talks Weekly 12/1/05–9/1/06 1096
Univ. of Trieste – Home page Weekly 9/19/05–9/1/06 1342
Wikipedia – Random page Every reading 9/19/05–9/1/06 1337

different fractions of positive reading in Slearning. We measured A effectiveness,
in terms of false positive rate (FPR), false negative rate (FNR) and area under
the ROC curve (AROC).

For each aggregator A, corruption rate r and page p:

– We constructed a learning sequence Slearning as follows. (1) We extracted a
sequence S = {in0 , . . . , in125} of 125 consecutive readings from the negative
sequence SN of the page p. (2) We split S in two subsequences: S′

learning

composed by the first l = 50 readings and S′
test composed by the last 75

readings. (3) We constructed Slearning by replacing the 50 ·r final readings of
S′

learning with a positive reading extracted from the positive sequence SP and
repeated 50 · r times (for simulating a defacement occurred while collecting
the learning data). Note that r represents the percentage of Slearning that is
corrupted.

– We constructed a test sequence Stest for evaluating the profile built with
the corrupted learning sequence Slearning as follows. (4) We inserted at the
beginning the sequence S′

test obtained at the previous step. (5) We appended
75 different positives extracted at random from the positive sequence SP (and
including the one that corrupted Slearning). In other words Stest is composed
of 150 readings, the expected output should be negative in the first half and
positive in the second half.

We repeated the above experiment several times, with NS = 10 different nega-
tive sequences S at step 1 and with Np = 10 different positive readings at step 3.

On the Effects of Learning Set Corruption in Anomaly-Based Detection 71

For each tuple 〈page p, aggregator A, corruption rate r〉, thus, we performed
NSNp = 100 experiments evaluating FPR, FNR and AROC in each experiment.
The values in the next sections are the average values obtained across all 15
pages in our dataset.

5 Results

5.1 Uncorrupted Learning Sequence

In this section, we present the results obtained for the 3 aggregators presented
in Sect. 3.1 evaluated on an uncorrupted learning sequence, i.e., with r = 0.
The values obtained for FPR, FNR and AROC in these conditions will serve as
a comparison baseline.

Table 3 shows FPR and FNR for the 3 aggregators as a function of the thresh-
old t. The same results are plotted in Fig. 2 in the form of ROC curves. It is
clear that TooManyFiringGroups outperforms the other aggregators. In particu-
lar, Tab. 3 confirms that, with t = 0.9, TooManyFiringGroups never misclassifies
a negative reading as positive, while it wrongly undetects only 1.9% of positive
readings (i.e., defacements). Such values can not be obtained with any t value for
the two other aggregators. This results confirms the intuition that domain-specific
knowledge may be very beneficial in the design of an aggregator (this is similar
to, e.g., choosing values for conditional probabilities in a Bayesian network [18]).

Table 3. FPR and FNR for the 3 aggregators and several t values obtained with r = 0,
i.e., with uncorrupted learning sequences, expressed in percentage. Values correspond-
ing to t = topt for each aggregator are bolded (see below).

Aggregator (A) t 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.90 0.95

TooManyFiringGroups
FPR - - 76.8 - 52.9 - 29.4 - 4.2 0.0 -
FNR - - 0.0 - 0.0 - 0.0 - 0.0 1.9 -

TooManyFiringSensors
FPR 76.8 55.2 39.0 18.1 10.1 5.4 2.8 1.6 0.7 0.0 0.0
FNR 0.0 0.0 0.0 0.0 4.5 5.7 9.2 12.9 13.3 49.8 91.6

TooManyFiringInputs
FPR 65.7 11.4 5.0 1.3 0.0 0.0 0.0 - - - -
FNR 0.0 5.2 13.3 27.8 74.1 94.1 100.0 - - - -

The choice of the threshold t depends on the desired trade-off between FPR
and FNR. We have emphasized in bold in Tab. 3 the values corresponding to the
lowest value of FPR + FNR—just one of the possible performance indexes. We
observe that the 3 aggregators have different values for the respective optimal
threshold topt. Assigning the same weight to false positive and false negatives
may or may not be appropriate in all scenarios. For example, in the web site
defacement detection scenario, one could tolerate some false positive in order to
be sure of not missing any defacement. On the contrary, in the spam detection
problem, one could accept some undetected spam message while not tolerating
a genuine e-mail being thrown away.

72 E. Medvet and A. Bartoli

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

1
−

 F
N

R

TooManyFiringInputs
TooManyFiringSensors
TooManyFiringGroups

(a) ROC curves

0.00 0.04 0.08 0.12 0.16 0.20

0.
80

0.
84

0.
88

0.
92

0.
96

1.
00

FPR

1
−

 F
N

R

TooManyFiringInputs
TooManyFiringSensors
TooManyFiringGroups

(b) ROC curves (detail)

Fig. 2. ROC curvers for the 3 aggregators obtained with r = 0, i.e., with uncorrupted
learning sequences. The plot on the right shows the area with FPR and FNR lower
than 20%.

5.2 Corrupted Learning Sequence

In this section, we present the results concerning the effectiveness of the ag-
gregators when corrupted learning sequences are used. We experimented with
the following values for the corruption rate r, including 0 (the uncorrupted se-
quence): 0, 0.02, 0.05, 0.1, 0.2, 0.35, 0.5, 0.75. Being l = 50 the size of the learning
sequence, these rates mean that respectively 0, 1, 3, 5, 10, 18, 25, 38 positive read-
ings have been inserted in the learning sequence.

Table 4 shows FPR and FNR for the 3 aggregators with varying values of the
corruption rate r. These results refer to the optimal threshold topt determined
as explained above for r = 0.

Not surprisingly, increasing the corruption rate results in an increment of FNR
for each aggregator. In other words, the more corrupted the learning sequence,
the less sensitive to attacks the aggregator. Increasing the corruption rate also
results in a decrease of FPR, due to the fact that the learning sequence, and hence
the profile, becomes less and less page-specific. Although performance appears
to quickly become unacceptable, varying the threshold may greatly help, as
clarified in the following. The reason is because the above data corresponds to a
threshold t that is optimal for an uncorrupted learning sequence, but this value
is not necessarily optimal for a corrupted one.

A more general characterization of the performance of each aggregator is given
in Fig. 3, which plots AROC as a function of the corruption rate r. As such, each
point in this graph provides a performance index capturing all possible val-
ues for the threshold t. We found that AROC does not decrease monotonically
when the corruption rate increases. On the contrary there is an AROC increase

On the Effects of Learning Set Corruption in Anomaly-Based Detection 73

Table 4. FPR and FNR, obtained with t = topt (see Tab. 3) and presented in percent-
age, for the aggregator with different values for r

TooManyFiringGroups TooManyFiringSensors TooManyFiringInputs

FPR FNR FPR FNR FPR FNR
r t = topt = 0.9 t = topt = 0.4 t = topt = 0.05

0.00 0.0 1.9 5.4 5.7 11.4 5.2
0.02 0.0 73.4 0.1 12.4 6.5 5.6
0.05 0.0 77.6 0.1 12.9 5.5 6.3
0.10 0.0 83.9 0.0 69.5 2.5 75.8
0.20 0.0 87.5 0.1 99.9 2.5 99.4
0.35 0.0 86.7 0.1 99.9 2.6 99.6
0.50 0.0 77.6 0.1 99.7 2.8 99.6
0.75 0.0 87.7 0.3 99.8 11.3 99.4

when r < 0.05, the entity of the improvement being dependent on the specific
aggregator. In other words, a very small corruption in the learning sequence
is beneficial for all aggregators from the AROC point of view. This suggests
that under a modest corruption there is some point of the ROC curve of each
aggregator—i.e., some value of t—for which FPR and FNR are acceptable and,
maybe, even slightly better than with an uncorrupted learning sequence. Of
course, finding that point would require the knowledge of the corruption rate.
The slight increase in AROC is probably due to the fact that a small amount of
noise (i.e., corruption) may balance the overfitting effect, which affects negatively
FPR and may be an issue in pages that are less dynamic and whose corresponding
learning sets are hence less representative.

The relation between FPR + FNR and t is shown in Fig. 4, which plots one
curve for each corruption rate. The lowest point of each curve corresponds to
t = topt. We remark again that one could choose to minimize a different func-
tion of FPR and FNR. The essential issues of our arguments would not change,
however. Figure 4 illustrates two important facts. First, the optimal threshold
depends on the corruption rate. That is, a threshold optimized for an uncor-
rupted learning sequence is not necessarily the best threshold for a corrupted
learning sequence. Second, performance with a corrupted learning sequence are
not necessarily worse than with an uncorrupted learning sequence. For exam-
ple, decreasing t improves the FPR + FNR index significantly, especially for the
TooManyFiringSensors aggregator. Table 5 summarizes the improvements ex-
hibited by the aggregators using the optimal value topt for two salient r values.

A key lesson from these experiments is that the aggregators may remain prac-
tically useful (i.e., they exhibit acceptable FPR and FNR) even in the presence
of a moderate degree of corruption in the learning sequence. The problem is,
turning this observation into a practically usable procedure is far from being
immediate: one should know the corruption rate in order to select a suitable
working point, but this is precisely the unknown entity.

74 E. Medvet and A. Bartoli

Table 5. Aggregators optimal working point for two different corruption rates and
corresponding FPR and FNR, presented in percentage

Aggregator (A) r topt FPR FNR FPR + FNR

TooManyFiringGroups
0.0 0.9 0.0 1.9 1.9
0.05 0.5 0.2 0.8 1.0

TooManyFiringSensors
0.0 0.4 5.4 5.7 11.1
0.05 0.1 1.5 0.0 1.5

TooManyFiringInputs
0.0 0.05 11.4 5.2 16.6
0.05 0.05 5.5 6.3 11.8

6 A Corruption Detection Procedure

We have seen in the previous section that the impact of the corruption rate r on
FPR and FNR is not linear. In particular, it can be observed that the change
in FPR and FNR is much sharper when r increases from 0 to 0.02 than when
r increases from 0.02 to 0.05 (see Tab. 4). The effects on performance, thus,
are much stronger when switching from a clean learning sequence to a corrupted
learning sequence than with a moderate increase of a (non-zero) corruption rate.
We performed a number of experiments, not shown here for space reasons, to
verify that this phenomenon does occur in a broad range of operating conditions.
We exploited the above observation for building a simple yet effective corruption
detection procedure, which is presented below.

6.1 Description

The objective is to determine whether a given learning sequence S0
learning is

corrupted. The key idea is quite simple. We build three profiles, one with S0
learning

and the other with two learning sequences obtained by artificially corrupting
S0

learning with 1 or 3 positive readings. Then we measure performance of the
three profiles on a same sequence Scheck. If we observe a strong change in FPR
and/or FNR when switching from the first profile to the other two profiles, then
S0

learning was probably clean, otherwise it was probably already corrupted.
In detail, let S′

P = {ip0, . . . , i
p
n} be a set of n positive readings. We construct

Scheck with a mixture of genuine readings and positive readings. Then we proceed
as follows. (1) We tune the aggregator on S0

learning; we measure FPR0 and FNR0

on the check sequence Scheck; (2) For a given ipi in S′
P , we construct two learning

sequence S1,i
learning and S3,i

learning by replacing respectively 1 and 3 random readings
of S0

learning with ipi ; we tune the aggregator on these learning sequences; we
measure the corresponding performance on Scheck (FPR1,i, FNR1,i, FPR3,i and
FNR3,i). (3) We repeat the previous step for each ipi of S′

P and evaluate mean
and standard deviation of the performance indexes.

On the Effects of Learning Set Corruption in Anomaly-Based Detection 75

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

0.
50

0.
65

0.
80

0.
95

r

R
O

C
 a

re
a

TooManyFiringInputs
TooManyFiringSensors
TooManyFiringGroups

TooManyFiringInputs
TooManyFiringSensors
TooManyFiringGroups

(a) AROC vs r

0.00 0.02 0.04 0.06 0.08 0.100.
99

90
0.

99
93

0.
99

96

r

R
O

C
 a

re
a

(b) TooManyFiringGroups detail

0.00 0.10 0.20 0.30 0.40 0.50

0.
99

0
0.

99
3

0.
99

6
0.

99
9

r

R
O

C
 a

re
a

(c) TooManyFiringSensors detail

0.00 0.02 0.04 0.06 0.08 0.10
0.

95
0

0.
96

5
0.

98
0

r

R
O

C
 a

re
a

(d) TooManyFiringInputs detail

Fig. 3. The area under the ROC curve (AROC) vs the corruption rate r. Figures 3(b),
3(c) and 3(d) show salient AROC values for the 3 aggregators separately.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

t

F
P

R
 +

 F
N

R

0
0.02
0.05
0.1
0.2

0
0.02
0.05
0.1
0.2

(a) TooManyFiringGroups

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

F
P

R
 +

 F
N

R

0
0.02
0.05
0.1
0.2

0
0.02
0.05
0.1
0.2

(b) TooManyFiringSensors

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

F
P

R
 +

 F
N

R

0
0.02
0.05
0.1
0.2

0
0.02
0.05
0.1
0.2

(c) TooManyFiringInputs

Fig. 4. Effectiveness of aggregators, as sum of FPR and FNR, plotted vs the aggregator
normalized discrimination threshold t, for different modest corruption rates including
r = 0. The lowest point of each curve corresponds to the optimal working point t = topt

in the given conditions.

The original learning sequence S0
learning is deemed corrupted if and only if at

least one of the following holds:

FPR0 − FPRη ≥ mFPRσ (3)

FNR0 − FNRη ≥ mFNRσ (4)

where m corresponds to a sensitivity parameter of the procedure.

76 E. Medvet and A. Bartoli

6.2 Evaluation and Results

We measured the effectiveness of our procedure as follows. (1) We generated an
uncorrupted learning sequence; (2) we artificially corrupted this sequence with
a positive reading repeated until the end of the sequence (much like Sect. 4.2)
and then (3) we applied the procedure. We experimented with n = 5 and several
corruption rates r: 0, 0.01, 0.05, 0.1, 0.2, 0.35, 0.5. For each learning sequence,
Scheck contained 50 positive readings and 50 negative readings of the page de-
scribed by the learning sequence. For each pair 〈r, page〉, we repeated the test 25
times, with NS = 5 different learning sequences at step 1 and Np = 5 different
positive readings at step 2.

Whenever the procedure stated that the learning sequence was corrupted,
the test counted as a true positive if r �= 0 and as a false positive otherwise.
Whenever the procedure stated that the learning sequence was not corrupted,
the test counted as a false negative if r �= 0 and as a true negative otherwise.

Figure 5(a) shows the ROC curves, obtained experimenting with different
values for m. It can be seen that with TooManyFiringSensors and TooMany-
FiringInputs the procedure exhibits unsatisfactory performance, in that FPR is
never smaller than 0.6 irrespective of m (see also what follows). With TooMany-
FiringGroups, on the other hand, it appears to exhibit an ideal behavior.

Figure 5(b) plots the positive rate with m = 1 as a function of the corruption
rate r (the optimum would correspond to a positive rate 0 for r = 0 and 1
otherwise). This figure clearly shows that the procedure achieves the optimum (at
least in our benchmark) with the TooManyFiringGroups aggregator: it detects
each corrupted learning sequence while not misclassifiying any clean sequence.
With the two other aggregators, on the other hand, it exhibits far too many
false positives. We interpret this result as a consequence of the previous results
in Tab. 4: when switching from a clean learning sequence to a corrupted one, the

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

1
−

 F
N

R

TooManyFiringInputs
TooManyFiringSensors
TooManyFiringGroups

(a) ROC curves

0.00 0.10 0.20 0.30 0.40 0.50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

P
os

iti
ve

 R
at

e

TooManyFiringInputs
TooManyFiringSensors
TooManyFiringGroups

(b) Positive Rate

Fig. 5. Effectiveness of our corruption detection procedure applied to the 3 aggregators.
Figure on the left shows ROC curves. Figure on the right plots positive rates for the
procedure applied with m = 1.

On the Effects of Learning Set Corruption in Anomaly-Based Detection 77

performance change is not sufficiently strong, with TooManyFiringSensors and
TooManyFiringInputs.

Another important result from Fig. 5(b) is that the detection accuracy of
corrupted sequences is very high over the whole range of r.

7 Concluding Remarks

We attempted to understand the rather unexplored effects of a corrupted learn-
ing set in an anomaly-based detection system, with reference to a very specific
form of detection. We quantified the impact of the corruption rate on perfor-
mance indexes (FPR, FNR and AROC) over many different working points for
our detectors. Our experiments confirmed the obvious intuition on the posi-
tive correlation between corruption rate and aggregator sensitivity: i.e., as the
corruption rate increases the false negative rate (FNR) increases and the false
positive rate (FPR) decreases.

We found also the interesting result that a corrupted learning set does not
necessarily lead to worse performance, at least for moderate corruption rates.
We observed that the threshold leading to best performance depends on the
corruption rate (which is unknown, however).

Finally, the previous analysis enabled us to develop a novel automatic proce-
dure capable of detecting whether the learning set is corrupted. The procedure
differs from other noise detection algorithms in the fact that it does not divide
the learning set in smaller sets: this can be an advantage in the cases where
learning sets are very small and a further division is not possible. We tested the
procedure with our detectors and found that for one of them, the most effective,
the procedure exhibits optimal behavior: it is able to detect all the corrupted
sets (for each corruption rate value ranging from the minimum to 0.5) while not
misclassifying any clean sequence as corrupted.

Acknowledgments

The authors are grateful to the anonymous reviewers and the shepherd for their
detailed and constructive comments.

References

1. Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. In: CCS ’03: Pro-
ceedings of the 10th ACM conference on Computer and communications security,
pp. 251–261. ACM Press, New York (2003)

2. Shavlik, J., Shavlik, M.: Selection, combination, and evaluation of effective software
sensors for detecting abnormal computer usage. In: KDD ’04: Proceedings of the
tenth ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 276–285. ACM Press, New York (2004)

3. Bartoli, A., Medvet, E.: Automatic Integrity Checks for Remote Web Resources.
IEEE Internet Computing 10(6), 56–62 (2006)

78 E. Medvet and A. Bartoli

4. Bartoli, A., Medvet, E.: Anomaly-based Detection of Web Site Defacements.
In submission (2006) Available at http://www.units.it/~bartolia/abstract/
AnomalyBasedDetectionOfWebSiteDefacements.pdf

5. Lane, T., Brodley, C.E.: An application of machine learning to anomaly detection.
In: Proceedings of the Twentieth National Information Systems Security Confer-
ence, Gaithersburg, MD, The National Institute of Standards and Technology and
the National Computer Security Center, National Institute of Standards and Tech-
nology. vol. 1, pp. 366–380 (1997)

6. Lane, T.D.: Machine learning techniques for the computer security domain of anom-
aly detection. PhD thesis, Purdue University, Major Professor-Carla E. Brodley
(2000)

7. Li, K., Teng, G.: Unsupervised svm based on p-kernels for anomaly detection. In:
First International Conference on Innovative Computing, Information and Control
- vol II (ICICIC’06) 2, pp. 59–62 (2006)

8. Baah, G.K., Gray, A., Harrold, M.J.: On-line anomaly detection of deployed soft-
ware: a statistical machine learning approach. In: SOQUA ’06: Proceedings of the
3rd International Workshop on Software Quality Assurance, pp. 70–77. ACM Press,
New York (2006)

9. Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study of their
impacts. Artif. Intell. Rev. 22(3), 177–210 (2004)

10. Hodge, V., Austin, J.: A Survey of Outlier Detection Methodologies. Artif. Intell.
Rev. 22(2), 85–126 (2004)

11. Brodley, C.E., Friedl, M.A.: Identifying Mislabeled Training Data. J. Artif. Intell.
Res (JAIR) 11, 131–167 (1999)

12. Forman, G., Cohen, I.: Learning from little: comparison of classifiers given lit-
tle training. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
PKDD 2004. LNCS (LNAI), vol. 3202, pp. 161–172. Springer, New York (2004)

13. Hu, W., Liao, Y., Vemuri, V.R.: Robust Support Vector Machines for Anomaly
Detection in Computer Security. In: ICMLA, pp. 168–174 (2003)

14. Mahoney, M., Chan, P.: Phad: Packet header anomaly detection for identifying
hostile network traffic. Technical report, Florida Tech. CS-2001-4 (2001)

15. Laskov, P., Schäfer, C., Kotenko, I.V.: Intrusion detection in unlabeled data with
quarter-sphere Support Vector Machines. In: DIMVA, pp. 71–82 (2004)

16. Tax, D.M., Duin, R.P.: Data Domain Description using Support Vectors. In:
ESANN, pp. 251–256 (1999)

17. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In:
RAID, pp. 203–222 (2004)

18. Mutz, D., Valeur, F., Vigna, G., Kruegel, C.: Anomalous system call detection.
ACM Trans. Inf. Syst. Secur. 9(1), 61–93 (2006)

http://www.units.it/~bartolia/abstract/AnomalyBasedDetectionOfWebSiteDefacements.pdf
http://www.units.it/~bartolia/abstract/AnomalyBasedDetectionOfWebSiteDefacements.pdf

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 79–88, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Intrusion Detection as Passive Testing:
Linguistic Support with TTCN-3

(Extended Abstract)

Krzysztof M. Brzezinski

Institute of Telecommunications, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warszawa, Poland

kb@tele.pw.edu.pl

Abstract. We explore the idea of using the internationally standardized test
language TTCN-3 (Testing and Test Control Notation) as a platform for
Intrusion Detection (ID) systems. Intrusion detection is treated as an application
of verification by passive testing. It is argued that TTCN contains many features
embodied in various „detection languages”, and is relevant for ID. As a case
study, we discuss a TTCN-based IDS for detecting the Smurf attack.

1 Introduction

Telecommunications is a broad area, in which many distinct research communities are
active. The community associated with traditional telecommunications has strongly
contributed to the development of formal methods and tools, e.g., for rigorous testing
[1]. The „new telecommunications” community, with its IETF approach, is guided by
„rough consensus and working code”, and is more inclined to adopt ad-hoc solutions.
Each community tackles common problems without paying much attention to the
results of the other. This leads to waste of resources. In this paper we show how the
concepts developed within traditional telecommunications can be applied to an
important problem of „new” telecommunications: intrusion detection (ID).

We treat intrusions as particular behavioral properties of a system, and intrusion
detection as a verification / validation problem. Monitoring and assessing of live
traffic is the natural setting for testing-based verification methods. We propose to use
the test language TTCN-3 (Testing and Test Control Notation) as a possible linguistic
and execution platform for ID systems. TTCN-3 is virtually unknown within the ID
community. The main aim of this paper is thus to establish the relevance of this
language to intrusion detection, and ultimately - to add it to the ID toolbox. For a case
study, the familiar Smurf attack was deliberately chosen. Its simplicity should help
concentrate on the features and patterns of use of the TTCN-3 language.

The rest of the paper is organized as follows. Chapter 2 provides a more formal
setting for treating ID as a testing-based verification problem. Chapter 3 contains an
overview of TTCN-3. In chapter 4 we give the motivation for this work and relate it
to other results. Chapter 5 contains the case study. In chapter 6 the possible
modifications to a TTCN-based IDS are discussed. Chapter 7 concludes the paper.

80 K.M. Brzezinski

2 Background - Reasoning About Behaviors

In the early phases of the system life-cycle, it is in principle possible to formally
prove whether a set of properties holds in a system under design. In the late (cut-in,
operation) phases, an implementation is no longer a formal mathematical object. It is
treated as a black box. Its qualitative (functional) and quantitative (performance-
related) properties can only be measured. Testing and monitoring are two distinct [2],
generic techniques of such measurements. The aim is to evaluate the behavior of an
implementation w.r.t. its design specification (verification) or a set of properties
reflecting user expectations, irrespective of the design specification (validation). We
now provide a more formal basis for treating ID as a testing problem.

A distributed system S is composed of a set of active, non-distributed (at a given
abstraction level) entities, communicating over passive channels. This corresponds to
a generic protocol model attributed to Merlin (1982). A manifestation, or instance of
behavior results from an execution (a run) of a system. It is a trace of observable
events. The nature of these events depends on the chosen level of abstraction. System
behavior BS is a (possibly infinite) set of behavior instances that a system can
manifest. A specification P is a reference, or a model, of system behavior - it
expresses a set of „interesting” traces. A generic verification problem is to check
whether the system behavior corresponds to its model, or whether (BS~P) holds. The
existence (but not necessarily a priori knowledge or non-mutability) of this model is a
fundamental assumption inherent in the idea of verification. This is also the case for
intrusion detection in general [3], and, what may not be obvious, for any particular ID
paradigm, be it misuse detection, anomaly detection, or a specification-based
approach [4,5,6].

In testing-based verification, a system is a black-box implementation I, whose
behavior BI is a priori unknown. The validity of (BI~P) now has to be established
solely by inspecting the observed manifestations of behavior BI

obs. I is called
Implementation Under Test (IUT), and a system of which IUT is a part (in which I is
embedded) is called System Under Test (SUT). Testing consists in evaluating (the
behavior of) a IUT in particular circumstances (conditions). The active testing
paradigm considers this activity as consisting of three elements: (a) stimulating a SUT
in order to place an IUT in one of the pre-defined conditions (states); (b) observing
the behavior of SUT in this situation; and (c) comparing the observation to a model,
in order to issue a verdict. In testing parlance, the „pre-defined conditions” are related
to test purposes [7]. In passive testing, a test system does not apply stimuli; instead, it
waits for an IUT to „place itself” in one of the conditions, in which its behavior would
be symptomatic.

One of the reasons for considering a particular set of traces as a specification is to
establish a design specification PD for a prospective implementation I. A typical PD
can be found, e.g., in standards for protocols, developed by ETSI, ITU-T, IETF, etc.
(BI~PD) means: I implements, or conforms to, a PD. If not (BI~PD), then I is said to be
faulty. For a reference specification P that is not a design specification, the semantics
of the ~ relation may be better characterized by the notion of correspondence or
satisfaction (rather than implementation or conformance). Verification thus consists
in establishing the validity of (BI~PD), while validation consists in establishing the
validity of (BI~P).

 Intrusion Detection as Passive Testing: Linguistic Support with TTCN-3 81

3 The TTCN Language

To reason about the behavioral properties, including those related to intrusions, a
suitable language with its underlying semantic base is required. To bring some order
to numerous linguistic approaches used for intrusion detection, [8] classifies the
languages used in this field into: event languages for describing and constructing
elementary events from the observed data; response languages to specify actions to
be taken in reaction to a detected attack, reporting languages to specify a convenient
format for attack reports; correlation languages to reason about attacks at a „meta”
level (i.e., when the elementary events are the attack detection reports); exploit
languages for specifying the procedure for performing an attack (a problem dual to
ID); and detection languages, a.k.a. attack languages, which provide mechanisms and
abstractions for identifying the manifestation of an attack. In the sequel we deal only
with detection and event languages, and consider TTCN-3 in this context.

The TTCN-3 language was presented and discussed, e.g., in [9]. However, in line
with the aims of this work, a more detailed overview is indicated. The standardized
specification of the language and its environment is contained in the ETSI standard
[10]. It currently consists of seven published volumes, 1: Core Language, 2: Tabular
Presentation Format (TFT), 3: Graphical Presentation Format (GFT), 4: Operational
Semantics, 5: Runtime Interface (TRI), 6: Control Interface (TCI), 8: the IDL to
TTCN-3 mapping. Further standardization is pending (vol. 7 on the use of ASN.1,
vol.9 on XML, vol.10 on documentation tags, vol.11 on the C mapping). TTCN-3 is a
re-designed version of TTCN-2 (Tree and Tabular Combined Notation [11]).

MTC PTCn
connect

component
definition

create, start

ATSI

map map

real interface

SUT / IUT

behaviour

Test
components

ports

configuration of an
abstract test system
(domain of the TTCN
language)

adaptation
to SUT / IUT

Fig. 1. Abstract view of a TTCN-3 test configuration. Master test component (MTC) may start
and communicate with many parallel test components (PTC) through connected ports. A
system under test (SUT) is reached through an ATSI interface, by mapped ports.

A TTCN-3 program is referred to as an Abstract Test Suite (ATS). It expresses the
configuration (fig.1) and behavior of an abstract test system, which is composed of a
set of concurrently executing test components TC: a unique Master Test Component
(MTC) and possibly many Parallel Test Components (PTC). A component is
characterized by a set of its ports, through which it may communicate with other
components. Two kinds of communication acts (and thus two port types) are
distinguished: message passing and remote procedure call. Procedure port types were
introduced in TTCN-3, as a step towards extending the application scope of the
language to cover software testing.

82 K.M. Brzezinski

A test configuration is set up dynamically, by creating the instances of statically
defined components, connecting the given ports of MTC/PTC components, and
mapping the component ports to the ports of an Abstract Test System Interface ATSI
(a special kind of component). These mapped ports, referred to as PCOs (Points of
Control and Observation) are the means of communication with a SUT/IUT.

The main notational unit of TTCN-3 is a module, which is composed of a
definition part and a control part. The definition part contains the definitions of types,
constants, templates, ports, components, and component behaviors: functions and test
cases. Syntactically, a test case (a name for a single test) defines the behavior of a
MTC. Dynamically, a MTC may create and start multiple PTCs, with their behaviors
defined as functions. The control part governs the execution of individual test cases,
by means of language constructs that, in general, use the verdicts of previous test
cases as conditions for the execution of further tests.

The look-and-feel of the core (textual) notation of TTCN-3 has been purposely
redesigned to be similar to general programming languages. This makes TTCN-3
different from the previous versions of the language, which were considered too
„peculiar” to be acceptable to the programming community [9]. The remaining,
semantically equivalent notations of TTCN-3 (TFT and GFT) are rarely used.

Despite the shallow similarity to programming languages, TTCN-3 is specialized
in its ability to express a particular kind of programs: tests. To this end it includes:

− the send and receive operations for asynchronous message passing on a given port;
− templates (called constraints in previous versions of the language): a particular

kind of data structure that combines the features of a constant, a variable, and a
data type. A template is used to explicitly define a concrete data value for send
operations, and to implicitly define (or generate) a set of values, any of which will
be accepted (or matched) by a receive operation;

− timers; an expiration of a timer is recognized by means of an operation similar to a
receive. The pragmatics of the use of timers covers, e.g., assuring a limited
execution time, and inferring a „no response” event;

− alternative behavior (alt): a list of alternatives, composed of a (possibly guarded)
operation and a following instruction block. Within an alt block, each alternative is
„tried” in the order of its syntactic appearance. If none can be executed
successfully (e.g., for a receive operation, if there is no matching message awaiting
reception), then the alt block is entered again, with a new „snapshot” of the state of
environment. According to the pragmatics of active testing, within an alt block
there is usually either a single send alternative (i.e., a tester sends a stimulus), or a
list of many branches in which the awaited response is received and dealt with (i.e.,
the receive operations for alternative SUT responses and the timeout operations
indicating the lack of response);

− verdicts: values {pass, fail, inconc, none, error} of a special verdicttype; by
assigning a verdict, the outcome of a test case is made known to the control part.

One of the most important aspects of TTCN-3 standardization is that it also covers
the abstract architecture of a test system and its implementation-oriented mappings. In
the implementation domain, the ATSI ports must be „properly connected” to a SUT.
The implementation of such connection is hidden from a TTCN program and
delegated to a SUT Adapter (SA) module. The SA technology is the subject of part 5

 Intrusion Detection as Passive Testing: Linguistic Support with TTCN-3 83

of the Standard. Similarly, the functionality and the interface of a Coder-Decoder
(CD) module has been standardized in part 6. This, in principle (although not always
in practice) makes the adaptation of a test system to a particular SUT a routine task.
The joint functionality of a SA and a CD is to deliver and handle the events expressed
as values of a TTCN-3 type system. This is the general scope of an event language.
The TTCN-3 technology allows a leeway in distributing this functionality among a
SA, a CD, and a test program expressed in TTCN. In particular, it is possible to
deliver a raw bitstring to a test program, if the templates for receive operations are
thus defined. However, in practice the message definitions in TTCN-3 are structural,
and a decoder will have to deliver data in chunks that reflect this structure.

4 Motivation and Aims

The following attack and event languages are characteristic of the Internet and CS
community: EFSM automata [12], Regular Expressions for Events (REE) [13],
Behavioral Monitoring Specification Language (BMSL) [6], Parallel Environment
(PE) grammars to specify trace policies [5], Attack Language for State-based
Intrusion Detection (STATL) [8], Auditing Specification Language (ASL) [14], Trace
Description Language (TDL) / Filter Description Language (FDL) [15], the Bro
language [16], Network Event Recognition Language (NERL) [17]. This variety is
discouraging, and gives impression of „re-inventing the wheel”. On the other hand,
we have discovered many similarities between the features of these languages and the
test language TTCN. These similarities, displayed by languages developed separately
and for different purposes, suggest the existence of their common, underlying core.
This corroborates our perception of ID as a verification / testing problem. One way to
assess the practical virtue of this methodological proposition is to see what „mileage”
the ID community can get from taking over, and adapting, the testing concepts. This
idea was hinted in several sources [17], but has not been developed further. Some
elements of passive testing using TTCN are discussed in [18]. The general need for
the Internet community to acquire the TTCN technology is voiced in [19]. The only
identified direct precursor of our work is [20], in which a TTCN-based system is
proposed for on-line validation of the service deployment process, and the idea of
„abusing the (TTCN) notation for online testing purposes” is submitted. The authors
also suggest, as an item for further work, the possible use of their system for ID.

Initially, TTCN was developed strictly within the framework of conformance
testing of black-box implementations of communication protocols in a layered (e.g.,
OSI) system [11]. This framework only covers the logical behavior and explicitly
excludes other, mostly non-functional properties, such as performance, robustness,
and scalability. It was natural for a TTCN community to try and extend the
applicability of the language, e.g., by proposing its experimental modifications for
performance testing (PerfTTCN [18], TimedTTCN-3 [21]), real-time properties
(Real-Time TTCN [22]), and interoperability testing. All these modifications
respected the main paradigm of active testing. Our work is different in that it keeps
the language intact, but modifies the pragmatics of its use.

84 K.M. Brzezinski

5 Case Study - Detecting Smurf with TTCN-3

We have developed and programmed in TTCN-3 passive tests for a number of
attacks, including Ping of Death, Smurf and Neptune [3,23]. Here, to show how the
common problems (patterns) of ID may be expressed in TTCN, we report on the
experiment with Smurf (fig.2a).

A1

A2

An

V

I

EchoRequest
(s=V,r=FF) EchoReply

(s=Ak,r=V)

0

1

2

3

c1

c2

F

Req(s,FF) ! R:=Reply(?,s)

>mass.

>mass.

else

else

else

else

t

t,<usu.
R

t,>=usu.

R

Rt,<usu.
<=mass.

<=mass.

t,>=usu.

(none)

(pass)

(inconc)

 (fail)

F

F

I

P

N

a) b)

 (fail)

Fig. 2. The Smurf attack. (a) the idea: an intruder (I) broadcasts spoofed EchoRequest ICMP
packets with a victim (V) address as a source; the recipients (A) send unsolicited replies to V;
(b) the detection algorithm: after an initial attacking request is received in phase 0, a first
response is expected (1), then responses are counted (2), and, if in doubt, counted again (3).

In the initial phase (0) of the detection algorithm (fig.2b), the test awaits the
attacking EchoRequest packet. Then, until a verdict is issued, the test considers only
EchoReply packets (R) that may have been sent in response to this initial packet. A
timeout t is used to limit the duration of consecutive detection phases. In phase 1, the
test awaits the first possible response. If it does not appear, the test ends with the idle
verdict NONE. In phase 2, the consecutive R packets are counted: if their number is
MASSIVE, then the test ends immediately with a FAIL. If, after timeout, this number
is less that USUAL, then it is inferred that an attack has not developed - the verdict is
PASS. If the number of responses is moderate, in phase 3 the responses are counted
again. Exceeding the MASSIVE count ends the test with a FAIL verdict. If the
number of accumulated responses is less than USUAL, a „prudent” verdict INCONC
is issued. If this number exceeds the threshold again, the verdict is FAIL.

The semantics of the verdicts provided by TTCN-3 was originally defined for
active testing, and had to be re-considered in a passive setting. In the example above,
PASS means: „a symptomatic behavior was detected, but according to this test it was
qualified as benign”, INCONC means: „a symptomatic behavior was detected that
could not be assessed by this test”, and FAIL means: „an intrusion was detected”.

The TTCN-3 implementation of the algorithm is presented in fig.3. The whole test
suite (consisting of only one test case) is defined in the module TestSmurfAttack (line
1). The test case SmurfSearch (line 49) defines the behavior of a Master Test
Component (MTC) named Sniffer (10). This component uses (is equipped with) port p
(10), defined as a unidirectional input port (9) for messages of the type Icmp (5). At
the start of the test case execution, the Sniffer component is implicitly created and
starts to execute its behavior defined in (56..61). Port p is mapped (56) to the port of

 Intrusion Detection as Passive Testing: Linguistic Support with TTCN-3 85

the test system interface (component defined in line 11, and referenced as a TSI in
49). This, at run-time, implicitly creates and initiates the connection, through the SUT
adapter, with a network link which is being „tapped”. This operation is invisible at the
level of a test program. The required SA functionality and packet decoding functions
(that deliver the received IP packets as values of TTCN-defined types) must be
implemented (programmed) separately. Indeed, in the experiments they were fully
implemented, which turned out to be relatively easy. These modules can be re-used.

Fig. 3. The source text of the TTCN-3 module defining an IDS for the Smurf attack

The test program uses two templates: broadcast_request (52), which matches
attacking requests coming from any source towards any victim, and answer (16),
which matches the responses destined towards a particular victim, which are the
essence of the attack. To be precise, in the example template variables are used; this
construct, introduced in a recent release of TTCN-3, allows for greater flexibility.

To wait at port p for an attacking message, i.e., the one matching the template
broadcast_request, the trigger operation is used. It is a variant of the receive
operation that „silently” removes a message from a receiving queue if this message
does not match a template. Here, the trigger operation is used in a stand-alone,
blocking way; its semantics is equivalent to an alt block with only one alternative,
which is „tried” in a loop until a successful match is found. When a candidate
attacking message is received, the value of its sender address field src is taken as the
victim address (58). With this value a function TrackPings, which implements the rest
of the algorithm, is called (59). When this function returns, a test verdict is read (60)
and, for a fail verdict, information on the victim address is produced. The test is
executed in a loop specified in the control part (63), until a fail verdict is issued.

86 K.M. Brzezinski

Within the function TrackPings (12), each phase of the algorithm is specified in a
separate alt block. The alternatives of each block serve to control time (DET_TIME,
4) assigned to each phase (23,29,40), to receive „expected” response packets
(24,31,43), and to receive and ignore any other responses (25,35,47). For illustration,
this time receive operations are used instead of a trigger. The function also makes use
of the repeat (to immediately re-enter an alt block) and return instructions.

6 Issues and Improvements

After a potential attacking message is received, the test considers only the responses
to this message, and remains „deaf” to attacks initiated by messages that occur outside
the initial waiting period (phase 0). To overcome this problem, the current centralized
arrangement (fig.4a) may be replaced by a distributed architecture (fig.4b).

MTC: Sniffer

ATSI

SA

function TrackPings

SmurfSearchtest case

medium (ICMP)

TrackPings

PTC: Tracker

TrackPings

PTC: Tracker

TrackPings

PTC: Tracker

SmurfSearch MTC: Sniffer

(ATSI)

create...
connect...
start... send... to all component

p

w
p

p

w w w

b)a)

Fig. 4. Two configurations of a TTCN-based IDS for a Smurf attack: (a) centralized - with a
single test component; (b) distributed - with separate PTCs for individual instances of an attack

The MTC now awaits the potential attacking messages, and for each such message
immediately creates an instance of a Tracker PTC (...Tracker.create), connects its
own port w with a corresponding port of the new instance (connect...:w,mtc:w), and
starts the function TrackPings on this component, with the address of a potential
victim. Additionally, the MTC receives each EchoReply packet and broadcasts it
(...send() to all component) to all the started Trackers for further processing. All the
operations concerned with comparing addresses and counting responses are now
realized in independent test modules, which opens up the possibility of implementing
these in separate hardware nodes. If physical broadcast is used for internal
communication, then a high-performance, scalable system becomes feasible. Our
experiments were conducted using the OpenTTCN tool (www.openttcn.com), in
which distribution is treated in a peculiar way: SUT adapters may indeed be
distributed, but the test components may not. We have found that in this environment,
using readily available hardware platforms, it is possible to run at least 200 test
components in parallel. In general, the number of required test components is related
to the number of contexts that must have their local state tracked during the testing
process. It is currently accepted that, for ID, up to 1 million contexts may have to be
handled [24]. This is a „large” number, apparently beyond the reach of current
TTCN-3 execution environments. However, the application of TTCN-3 to load and
benchmarking tests has shown that at least tens of thousands of contexts can be

 Intrusion Detection as Passive Testing: Linguistic Support with TTCN-3 87

handled successfully, and that a suitable structure of a test program and optimization
of the execution environment can bring vast quantitative improvements [25].

7 Conclusions and Further Work

We advocated the use of TTCN-3 as a potential platform for Intrusion Detection
Systems. It is internationally standardized, unlike multiple solutions currently used by
the ID community. We have found it relevant and suitable for this particular
application domain. Due to space restrictions, a systematic comparison of TTCN-3
with typical attack detection languages (such as STATL [8] and NERL [17]) had to be
skipped, but the provided example should allow the reader to spot their similarity.

As pointed out in [19], the availability of TTCN-3 tools is still far from the
expectations of the Internet community. There are relatively few, fairly expensive,
commercially available TTCN-3 tools (www.ttcn-3.org), including: OpenTTCN
Tester (Finland; a tool chosen for experiments), TT Workbench (TestingTechnology,
Germany), TTCN-3 toolbox (Danet, Germany), Tau Tester (Telelogic, Sweden),
MessageMagic (ELVIOR, Estonia), and a recent addition: TTCN-3 Express (Metarga
+ Fraunhofer, Germany). The interest of ID community could lead to developing
open-source TTCN-3 tools, and availability of such tools seems to be the key enabler.

Intrusion detection and testing have often been presented as fundamentally
different, or alternative activities [5]. This work is an attempt at harmonizing the
concepts and results of these research areas from the practical, tool-oriented
perspective. We have only touched (in ch.2) the theory behind the use of TTCN. The
application of this theory (esp. its passive testing branch [2,26]) to ID deserves a
thorough treatment. As an element of such research, we have developed a taxonomy
that tries to capture the dimensions of ID from the perspective of testing. This
taxonomy (which is being prepared for publication) explains the place of our
experiment and its relation to the general paradigms of ID. In particular, it shows that
TTCN-based intrusion detection is not limited to network-oriented and specification-
based ID paradigms, and that missed observations (an important ID problem) are a
manifestation of observation infidelity inherent in passive / distributed testing. It also
seems to generate new research challenges, such as truly active ID: a test system
might actively stimulate a SUT so that its intrusion-related behavior, if present,
becomes „more symptomatic”.

Acknowledgments. Early versions of TTCN-3 tests for attacks were developed by
T.Kaminski [23], under this author’s supervision. G.Danielewicz contributed to the
verification of tests. Vesa-Matti Puro of OpenTTCN kindly provided the tools. This
work was supported by the Polish Government Research Grant N517 008 31/1429.

References

1. ITU-T Z.500, Framework on Formal Methods in Conformance Testing. Geneva (1997)
2. Brzezinski, K.M.: Towards Practical Passive Testing. In: Proc. PDCN’05, Innsbruck

(2005)
3. Labib, K., Vemuri, V.R.: Detecting And Visualizing Denial-of-Service and Network Probe

Attacks Using Principal Component Analysis. In: Proc. SAR’04, La Londe (2004)

88 K.M. Brzezinski

4. Debar, H., Dacier, M., Wespi, A.: Towards a Taxonomy of Intrusion Detection Systems.
Computer Networks. Int. J. Comp. and Telecomm. Networking 31(9) (1999)

5. Ko, C., Ruschitzka, M., Levitt, K.: Execution Monitoring of Security-critical Programs in
Distributed Systems: A Specification-based Approach. In: Proc. IEEE SSP (1997)

6. Uppuluri, P., Sekar, R.: Experiences with Specification-based Intrusion Detection. In: Lee,
W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, Springer, Heidelberg (2001)

7. Ledru, Y., et al.: Test Purposes: Adapting the Notion of Specification to Testing. In: Proc.
ASE’2001, San Diego (2001)

8. Eckmann, S.T., Vigna, G., Kemmerer, R.A.: STATL: An Attack Language for State-based
Intrusion Detection. In: JCS’02 (2002)

9. Grabowski, J., Wiles, A., Willcock, C., Hogrefe, D.: On The Design of the New Testing
Language TTCN-3. In: Proc. Testcom’2000 (2000)

10. ETSI ES 201 873. Methods of Testing and Specification; The Testing and Test Control
Notation version 3 (release: 3.2.1, 2007-02)

11. ISO/IEC 9646. Information Technology; Open Systems Interconnection; Conformance
Testing Methodology and Framework; Parts 1-7

12. Orset, J.-M., Alcalde, B., Cavalli, A.: An EFSM-Based Intrusion Detection System for Ad
Hoc Networks. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707,
Springer, Heidelberg (2005)

13. Sekar, R., Uppuluri, P.: Synthesizing Fast Intrusion Prevention / Detection Systems from
High-Level Specifications. In: Proc. USENIX’99 (1999)

14. Sekar, R., Cai, Y., Segal, M.: A Specification-Based Approach for Building Survivable
Systems. In: Proc. NISSC’98 (1998)

15. Hofmann, R., et al.: Distributed Performance Monitoring: Methods, Tools, and Applica-
tions. IEEE Trans. on Parallel and Distributed Systems 5(6) (1994)

16. Paxson, V.: Bro: a System for Detecting Network Intruders in Real-Time. Computer Net-
works 31, 23–24 (1999)

17. Bhargavan, K., Gunter, C.: Requirements for a Practical Network Event Recognition Lan-
guage. Electronic Notes in Theoretical Computer Science 70(4) (2002)

18. Schieferdecker, I., Stepien, B., Rennoch, A.: PerfTTCN, a TTCN Language Extension for
Performance Testing. In: Proc. 10th IWTCS, Cheju Island (1997)

19. Sabiguero, A., Baire, A., Floch, A., Viho, C.: Using TTCN-3 in the Internet Community:
an Experiment with the RIPng Protocol. In: Proc. 2nd TTCN-3 User Conference (2005)

20. Deussen, P.H., Din, G., Schieferdecker, I.: A TTCN-3 Based Online Test and Validation
Platform for Internet Services. In: Proc. ISADS’03 (2003)

21. Dai, Z.: TimedTTCN-3, a Real-time Extension for TTCN-3. In: Proc. TestCom’02, Berlin
(2002)

22. Walter, T., Grabowski, J.: Test Case Specification with Real-Time TTCN. In: Proc. 7
GI/ITG Technical Meeting on ’Formal Description Techniques for Distributed Systems’,
Berlin (1997)

23. Kaminski, T.: New Applications of the TTCN-3 Language. MSc. Thesis, Institute of Tele-
communications, Warsaw University of Technology (in Polish) (2006)

24. Bononi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: Beyond Bloom Fil-
ters: From Approximate Membership Checks to Approximate State Machines. In: Proc.
SIGCOMM’06 (2006)

25. Din, G., Rentea, G.: Using TTCN-3 to Design Performance Tests. In: Proc. TTCN-3 UC,
Berlin (2006)

26. Netravali, A.N., Sabnani, K.K., Viswanathan, R.: Correct Passive Testing Algorithms and
Complete Fault Coverage. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003.
LNCS, vol. 2767, Springer, Heidelberg (2003)

Characterizing Bots’ Remote Control Behavior

Elizabeth Stinson and John C. Mitchell

Department of Computer Science, Stanford University, Stanford, CA 94305
{stinson,mitchell}@cs.stanford.edu

Abstract. A botnet is a collection of bots, each generally running on a
compromised system and responding to commands over a “command-and-
control” overlay network. We investigate observable differences in the be-
havior of bots and benign programs, focusing on the way that bots respond
to data received over the network. Our experimental platform monitors
execution of an arbitrary Win32 binary, considering data received over
the network to be tainted, applying library-call-level taint propagation,
and checking for tainted arguments to selected system calls. As a way of
further distinguishing locally-initiated from remotely-initiated actions, we
capture and propagate “cleanliness” of local user input (as received via
the keyboard or mouse). Testing indicates behavioral separation of major
bot families (agobot, DSNXbot, evilbot, G-SySbot, sdbot, Spybot) from
benign programs with low error rate.

1 Introduction

Botnets have been instrumental in distributed denial of service attacks, click
fraud, phishing, malware distribution, manipulation of online polls and games,
and identity theft [2,18,19,25,33,30]. As much as 70% of all spam may be trans-
mitted through botnets [4] and as many as 1

4 of all computers may be partici-
pants in a botnet [37]. A bot master (or “botherder”) directs the activities of a
botnet by issuing commands that are transmitted over a command-and-control
(C&C) overlay network. Some previous network-based botnet detection efforts
have attempted to exploit this ongoing C&C behavior or its side effects [3,6,25].
Our work investigates the potential for host-based behavioral bot detection. In
particular, we test the hypothesis that the behavior of installed bots can be char-
acterized in a way that distinguishes malicious bots from innocuous processes.
We are not aware of any prior studies of this topic.

Each participating bot independently executes each command received over
the C&C network. A bot command takes some number of parameters (possibly
zero) – each of a particular type – in some fixed order. For example, many bots
provide a web-download command, which commonly takes two parameters; the
first is a URL that identifies a remote resource (typically a file) that should be
downloaded, and the second is the file path on the host system at which to store
the downloaded data. A botnet, therefore, constitutes a remotely programmable
platform with the set of commands it supports forming its API.

Many parameterized bot commands are implemented by invoking operating
system services on the host system. For example, the web-download command

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 89–108, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

90 E. Stinson and J.C. Mitchell

connects to a target over the network, requests some data from that target,
and creates a file on the host system; all of these actions (connect, network
send and receive, and file creation) are performed via execution of system calls.
Typically, a command’s parameters provide information used in the system call
invocation. For example, the connect system call takes an IP address argument,
which identifies the target host with which a connection should be established.
Implementations of the web-download command obtain that target host IP from
the given URL parameter. Thus, execution of many parameterized commands
causes system call invocations on arguments obtained from those parameters.

In this paper, we test the experimental hypothesis that the remote control
of bots through parameterized commands separates bot behavior from normal
execution of innocuous programs. We postulate that a process exhibits external
or remote control when it uses data received from the network (an untrusted
source) in a system call argument (a trusted sink). We test our hypothesis via a
prototype implementation, BotSwat, designed for the environment in which the
vast majority of bots operate: home users’ PCs running Windows XP or 2000
[25]. BotSwat can monitor execution of an arbitrary Win32 binary and interposes
on the run-time library calls (including system calls) made by a process. We
consider data received over the network to be tainted and track tainted data
as it propagates via dynamic library calls to other memory regions. We identify
execution of parameterized bot commands when tainted arguments are supplied
to select gate functions, which are system calls used in malicious bot activity.

Our experimental results suggest that the presence of network packet contents
in selected system call arguments is an effective indicator for malicious Win32
bots, including tested variants of agobot, DSNXbot, evilbot, G-SySbot, sdbot,
and Spybot. Bots from these families constitute 98.2% of malicious bots seen
in the wild [18]. While these bots may implement commands in significantly
different ways, similarities in the way they respond to external control allow a
single approach to identify them. Additionally, the thousands of variants of each
such family generally differ in ways that will not affect our ability to detect
them; this is in contrast to traditional anti-malware signature scanners which
may require a distinct signature for each variant [38]. Moreover, our generic
approach does not rely on a particular command-and-control communication
protocol (e.g., IRC) or botnet structure (e.g., centralized or peer-to-peer).

Since our prototype implementation only has visibility into memory-copying
calls made via a Dynamically Linked Library (DLL), we introduce strategies to
counteract the effects of out-of-band memory copies – those which occur outside
of the interposition mechanism. In particular, we perform content-based tainting,
which considers a memory region tainted if its contents are identical to a known
tainted string. We also introduce substring-based tainting, whereby a region will
be considered tainted if its contents are a substring of any data received by the
monitored process over the network. These strategies are applied upon calls by
a monitored process into taint propagation functions, which are DLL functions
used to copy or convert the contents of memory. Applying these strategies al-
lows us to effectively identify bot behavior even when all of the bot’s calls to

Characterizing Bots’ Remote Control Behavior 91

memory-copying functions occur out-of-band, which may be the case if the bot
statically links in C library functions.

A consequence of BotSwat’s use of library-call-level taint propagation is that
bots could apply out-of-band encryption functions (e.g., XOR) to network data
and consequently defeat detection by the prototype implementation. This is a
limitation of our current testing platform rather than a deficiency in the char-
acterization of bot remote-control behavior. Our testing of versions of agobot,
which encrypt C&C communications via dynamic calls to the OpenSSL library,
indicates that remote control behavior can still be identified (even when commu-
nications are encrypted), given visibility into the cryptographic function calls.
Current botnet C&C communications tend to be unencrypted [19].

While both bots and benign programs may create files, interact with the net-
work, and execute programs, we are able to separate bot behavior from that of be-
nign programs by distinguishing between remotely-initiated and locally-initiated
actions. We tested applications typical to the target environment (home-user PCs)
which exhibit extensive network interaction. Early testing revealed that a benign
program may use some tainted value in a system call argument as a result of local
user input. For example, when a user downloads a webpage via a browser then
clicks on a hypertext link therein, the browser will consequently request the con-
tent stored at the linked URL. In so doing, the browser will invoke system calls
(e.g., connect, send) on tainted arguments (the URL). If user input were not
tracked, this sequence of events would look similar to bot execution of the web
download command. To account for this phenomenon in our experimental assess-
ment, we designed and implemented a user-input module that identifies data val-
ues resulting from local user input as received via the keyboard or mouse. These
clean strings are used to identify instances of local control. Our testing of eight be-
nign programs over a variety of activities common to those applications resulted
in eight total flagged behaviors (five different) whereas testing six bots resulted in
a total of 202 flagged behaviors (18 different).

In Sect. 2, we provide background information on bots. Section 3 describes
our experimental method, and Sect. 4 details our prototype implementation.
Our experimental results are given in Sect. 5. We discuss the potential for and
challenges to applying our findings for real-time host-based bot detection in Sect.
6. Section 7 describes related work and Sect. 8 provides concluding remarks.

2 Bots and Botnets

A botnet is a network of compromised machines that can be remotely controlled
by a bot master over a command-and-control (C&C) network. Individual bots
connect to a rendezvous point – commonly an IRC server and channel, access to
which may require password authentication – and await commands.

2.1 Bot Families and Variants

The Honeynet Project identifies four main Win32 bot families: (1) the agobot
family – the most well known; (2) the sdbot family – the most common; (3)

92 E. Stinson and J.C. Mitchell

DSNXbot; and (4) mIRC-based bots [25]. A family is “a new, distinct sample of
malicious code,” whereas a variant is “a new iteration of the same family, one
that has minor differences but that is still based on the original” [36]. Variants
may be created by augmenting the functionality of a bot (e.g., adding a new
exploit for use in spreading) or by applying “packing transformations” (such
as compression and encryption) to a bot binary [36,38]. We tested at least one
variant from each of the first three major Win32 bot families (agobot, sdbot,
and DSNXbot) as well as evilbot and Spybot. Data from McAfee suggests that
bots from these tested families collectively constitute 98.2% of known variants
(as of June 2005) [18]. Since bots in the wild may link in C library functions
statically or dynamically, we tested bots under both conditions.

Fig. 1. Bot capabilities

2.2 Bot Capabilities and Commands

Figure 1 provides a summary of some of the functionality exported by the tested
bots. The shaded cells represent activities that are detected by BotSwat as de-
scribed in Sect. 5. Note that, of the 22 different bot activities listed, 21 are
implemented as parameterized commands by each of the bots that provides that
capability. The exception is keylogging, which – for both of the bots that perform
it – logs the captured keystrokes to a file whose name is statically configured.
This chart reflects the bot versions we tested; different variants from each of
these families may export more or less functionality.

Candidate Commands. Since our characterization of bot behavior exploits
the fact that command parameters are often used in system call arguments, we

Characterizing Bots’ Remote Control Behavior 93

identify a bot’s candidate commands as those which take at least one parameter
that is subsequently used (in whole or in part) in an argument to a critical system
function. Our method considers non-candidate commands, those which take no
parameters or parameters with only “local meaning” to the bot, out-of-scope.

Any bot execution of a received command is an instance in which that bot is
being remotely controlled. The remote control behavior associated with a partic-
ular command consists of all the actions taken by the bot as a direct consequence
of receipt of that command. Not all commands result in an equal amount of re-
mote control behavior; e.g., a command that asks a bot to return its ID (some
statically-configured value) to the bot controller entails fewer actions than the
described web-download command. We approximate a command’s remote con-
trol behavior by identifying the number of distinct system calls invoked during
a successful execution of that command; these values were obtained through bot
source code inspection. A bot’s total potential remote control behavior, then, is
the sum of the remote-control behavior of each of that bot’s commands (Table 1,
Row 1). Our coverage of that potential can be measured by summing the remote-
control behavior of each of a bot’s candidate commands (Table 1, Row 2). The
complete list of system calls used in the tallies can be found in [52]. The number
of system calls invoked by a bot’s candidate commands accounts for around 64
to 79% of the system calls invoked over all of the bot’s commands. Interestingly
enough, the non-candidate commands that cause the highest number of system
call invocations generally perform beneficial tasks (from the perspective of the
compromised host); specific examples of this can be found in [52].

Table 1. The number of system calls invoked during successful execution of commands

ago DSNX evil GSyS sd Spy

syscalls invoked over all cmds 591 145 5 187 173 202
syscalls invoked over candidate cmds 417 114 5 122 110 145

3 Experimental Method

We developed a host-based method that identifies instances of external control,
whereby a process uses data it received from an untrusted source in a system
call argument without having received intervening (local) user input implicitly
or explicitly agreeing to this use.

Tainting Component. This component identifies when untrusted data is received
by the system (taint instantiation) and tracks that data as it propagates to other
memory regions (taint propagation). For our method, taint instantiation occurs
upon network receive, and taint propagation keeps track of memory regions to
which tainted data is written. This component exports an interface that enables
querying whether a particular memory region is considered tainted.

User Input Component. This purpose of this component is to identify actions
that are initiated by the local application user. A primary challenge in designing

94 E. Stinson and J.C. Mitchell

this component is to identify the data values corresponding to mouse input events
where this mapping (from event to value) is heavily application-dependent and
not typically exposed (i.e., available via a library call). This component exports
an interface that enables learning whether a data value or memory region is
considered clean or whether a syscall invocation is likely the result of user input.

Behavior-Check Procedure. Triggered by invocation of selected system calls, this
procedure queries the tainting and user-input components to determine whether
to flag the invocation as exhibiting external control. Invocations on arguments
that contain more bytes of tainted than clean data are flagged.

4 Implementation

This section describes the interposition approach and the tainting, user-input,
and behavior-check instrumentation used to evaluate our hypothesis.

4.1 Library and System Call Interposition

We use the detours library provided by Microsoft Research for library- and
system-call interposition [9]. Our platform consists of a set of functions that we
want to interpose upon, a replacement function for each, and a mechanism for
performing interposition. The replacement functions contain the tainting, user-
input, and behavior-check instrumentation. This platform is packaged as a DLL
that can be injected into a target process upon its creation. Our implementation
consists of approximately 70,000 lines of C++ code and, for the purpose of
conducting thorough experiments, may intercept up to 2,200 API functions.

4.2 Tainting Module

Our tainting module operates dynamically at the library-call level and consid-
ers data received over the network to be tainted; consequently, network receive
functions (e.g., recv, WSARecv) are instrumented as taint instantiators. Taint
propagation functions include those which copy memory from a source to a des-
tination buffer (e.g., memcpy), convert a buffer’s contents to a numeric value (e.g.,
atoi), or convert one numeric value to another (e.g., htons). Taintedness can
be a property of memory addresses, strings, or numeric values. A total of 172
different functions (enumerated in [52]) were instrumented as taint propagators.

As a result of out-of-band memory copies, our mechanism may possess one of
two flawed views regarding a particular memory region. If a destination region
D is written to with tainted data via an out-of-band operation, we will not know
that D should be considered tainted. Our belief that D does not contain tainted
data is a false negative. Similarly, a tainted region T may be written to via
an out-of-band operation with untainted data; in this case, our belief that T is
tainted is a false positive. We perform content-matching to reduce false positives
and content-based and substring-based tainting to reduce false negatives.

To reduce false positives, we perform content-matching : for a believed-to-be-
tainted memory region M, before taking any action on the basis of M’s supposed

Characterizing Bots’ Remote Control Behavior 95

taintedness (where actions include propagating taint or flagging a system call
invocation), we confirm that M’s contents match the relevant portion of the
network receive buffer N from which M allegedly descended. The information
needed to perform such a comparison (an identifier of N, the offset into N from
which this tainted data descended, the number of bytes of tainted data, etc.) is
stored in the data structure describing a tainted memory region.

There are three conditions under which a region may be considered tainted:
address-based, content-based, and substring-based. Under address-based taint-
ing, a memory region is considered tainted if its address range overlaps with
that of a known tainted region. With content-based tainting, a memory region
will be considered tainted if its contents are identical to a known tainted string.
Under substring-based tainting, a memory region will be considered tainted if its
contents are a substring of any data received over the network by this process.

The tainting module may run in one of two modes, which differ in the condi-
tions used to determine taintedness. Under cause-and-effect propagation, a mem-
ory region is considered tainted if the address-based or content-based conditions
hold. Under correlative propagation, a memory region will be considered if any
of the three conditions holds. Consequently, these modes differ in the amount
of resilience provided against out-of-band copies. Cause-and-effect propagation
was designed for the case where the majority of memory-copies made by a mon-
itored process are visible to the interposition mechanism. We refer to this as
cause-and-effect propagation since, in applying it, there is a tight causal rela-
tionship between receipt of some data over the network and use of that data in
a system call argument. That is, we can point to a sequence of memory copies
from a network receive buffer to a system call argument buffer. Correlative prop-
agation, on the other hand, was designed for the case where most or all memory
copies occur out of band – such as can occur when a bot statically links in C
library functions. This mode is referred to as correlative propagation since, in
applying it, we are ultimately identifying when data received over the network
correlates to that used in system call arguments.

Upon a call to a taint propagation function f, that function’s relevant argu-
ments are checked for taintedness via applying the appropriate conditions, given
the mode, and performing content-matching. Given a tainted source argument,
taint propagation proceeds in the following way. For source buffers, we ensure
that the tainted portion of that buffer is a known tainted string and its address
range is a known tainted region. If f copies some portion of this source buffer to
a destination buffer, the corresponding portion of the destination region is tran-
sitively marked tainted. If, on the other hand, f converts the source buffer to a
numeric value, we add the numeric result to our collection of tainted numbers.
Finally, if the tainted source argument is a number which f converts to another
number, we add the destination value to our set of tainted numbers.

4.3 User Input Module

Our implementation tracks local user input as received via the keyboard or
mouse and considers subsequent use of such clean data, such as in a system call

96 E. Stinson and J.C. Mitchell

argument, innocuous. Obtaining the data value corresponding to a keystroke
is generally straightforward as the system generates a message in response to
keyboard input for the target application identifying the key or character. Our
implementation monitors such messages and creates, for each line of keyboard
input, a clean string consisting of the previously input characters.

Obtaining the data value corresponding to a mouse input event is more chal-
lenging as the system generates, upon receipt of such an event, a message which
merely identifies the target window, type of event (e.g. left button down), and
coordinate pair within that window at which the event occurred. The actual data
value corresponding to such an event is application-defined and not available via
a library call. Our implementation addresses this opacity via exploiting local-
ity of reference; in particular, our goal was to identify when an application was
executing code to handle a user-input event. We posited that any data values
referenced during execution of such code could be considered clean and that in
this way we could infer a set of data values corresponding to a user input event.

For a Windows user input event E, an application calls DispatchMessage in
order to invoke that application’s predefined handler for E. The handler must
process E prior to returning from DispatchMessage [35] and may invoke system
calls in its processing. Thus, upon entry to DispatchMessage and until return
from it, we add any string referenced by any interposed-upon function to our
collection of clean strings.

4.4 Behavior-Check Procedure

Our ability to identify bot behavior relies in part on our selection of appropriate
system calls and their arguments to check for taintedness and cleanliness. The
collection of bot capabilities (Fig. 1) informed our selection of system calls (gates)
and their particular arguments (sinks); these are described below. The algorithm
is as follows. If the sink type is numeric, if the argument value is tainted, we flag
the invocation; otherwise, we pass control to the system call. While a numeric
value will either be considered tainted or not, buffer arguments may contain some
number of bytes of tainted and/or clean data. If the sink type is a data buffer
which contains no tainted data, control is passed to the system call. Otherwise,
we query the user-input module to determine whether that buffer also contains
clean data. If not, the invocation is flagged; if so, this procedure will flag the
invocation only if the argument contains more bytes of tainted than clean data.

A behavior is a general description of an action that may be detected via check-
ing particular arguments for one or more system calls. The same gate function
may be instrumented to detect multiple different behaviors. Conversely, multiple
library functions may be instrumented to check for a single behavior. Table 2
contains the complete list of behaviors and the gate functions for each behavior.
In general, we favored instrumenting lower-level API functions as gates; e.g., in-
strumenting NtOpenFile as a gate enables us to detect all behaviors that entail
listing a directory, deleting a file, or replacing a file since the higher-level API
functions for these tasks ultimately call into NtOpenFile.

Characterizing Bots’ Remote Control Behavior 97

Table 2. Detected behaviors and the gate functions for each behavior

Behavior gate function

B1 tainted open file NtOpenFile
B2 tainted create file NtCreateFile
B3 tainted program execution CreateProcess{A,W}
B4 tainted process termination NtTerminateProcess
B5 bind tainted IP NtDeviceIoControlFile
B6 bind tainted port NtDeviceIoControlFile
B7 connect to tainted IP connect; WSAConnect
B8 connect to tainted port connect; WSAConnect
B9 tainted send NtDeviceIoControlFile; SSL write
B10 derived send NtDeviceIoControlFile; SSL write
B11 sendto tainted IP sendto; WSASendTo
B12 sendto tainted port sendto; WSASendTo
B13 tainted set registry key NtSetValueKey
B14 tainted delete registry key NtDeleteValueKey
B15 tainted create service CreateService{A,W}
B16 tainted delete service OpenService{A,W}
B17 tainted HttpSendRequest HttpSendRequest{A,W}
B18 tainted IcmpSendEcho IcmpSendEcho{A,W}

Two behaviors (tainted send and derived send) require a bit more explanation.
Tainted send occurs when data received over one connection (or socket) is sent
out on another; e.g., when a bot is acting as a proxy, it echoes out on a second
socket the data heard on the first. Since an application may commonly receive
and send certain fixed strings over a variety of connections, we do not perform
content-based or substring-based tainting for such strings. The set of such strings
is small, application-specific, and generally consists of protocol header fields;
e.g., a browser’s set includes HTTP/1.1 and Accept-Range. Consequently, the
tainted send behavior is not flagged for transmission of routine messages that do
not otherwise contain tainted data. Derived send occurs when a system call is
invoked on some tainted input to obtain a result that is then sent on the network.
Various data leaking commands match derived send, such as those which take a
parameter identifying a registry key and return its value.

5 Experimental Evaluation

This section provides the results of testing our experimental hypothesis that the
remote control behavior of bots can be detected via checking selected system calls
for tainted arguments. To determine the utility of this characterization of remote
control, we compare the effects of detected commands to those of all commands.
Finally, we measure whether benign programs exhibit remote control.

98 E. Stinson and J.C. Mitchell

5.1 Bot Experiment Setup

We edited the source code of each bot by altering its C&C parameters such that,
when executed, that bot would connect to a C&C server under our control. We
then built two versions of each bot: one which dynamically linked in C library
functions (DYN) and a second which statically linked these in (STAT). We then
executed each bot binary, injecting our DLL into the newly-spawned bot process
so as to intercept its API calls (as described in 4.1). We were then able to exercise
each bot over its set of commands and monitor the effects of each such command.

5.2 Terminology

When BotSwat flags a system call invocation, we say that a behavior is detected.
If flagging this invocation is incorrect, we refer to this as a false positive. Any
behavior flagged for a benign program is considered a false positive. If BotSwat
fails to flag a system call invocation on an argument that contains data received
over the network (most likely because BotSwat does not know that this argument
should be considered tainted), we say a behavior is exhibited but not detected
and refer to this as a false negative. We say that a command is detected when
BotSwat correctly flags at least one behavior exhibited by that command. Note
that many commands exhibit more than one behavior; therefore, a particular
command may exhibit a false negative but still be detected.

5.3 Bot Results

In summary, we found that the external or remote control behavior of bots
can be measured by identifying system call invocations which use tainted pa-
rameters. Moreover, the effects of a bot’s detected commands account for the
majority of the effects of all of a bot’s commands (where effects are measured
via number of system call invocations). Bots in general exhibit a great volume
and diversity of behaviors. Table 3 provides a summary of our test results. Row
1 identifies the total number of commands provided by each of the tested bots.
The number of those commands that take at least one parameter that is sub-
sequently used (in whole or in part) in a critical system function is provided in
row 2. The 3rd row gives the number of candidate commands that were detected
using cause-and-effect propagation (C&E) for bots built with C library func-
tions dynamically linked in (DYN). The last row shows the number of candidate
commands detected using correlative propagation (CORR) on bots built with
statically linked in C library functions (STAT). We did not have a version of
evilbot which dynamically linked in C library functions.

Detection of Commands on Dynamically-Linked Bots. The best de-
tection occurs under cause-and-effect propagation on dynamically-linked bots,
since these conditions provide the best visibility into the bot’s use of data re-
ceived over the network. Only three total candidate commands were not detected
in this mode: agobot’s harvest.registry and scanning commands. Agobot’s

Characterizing Bots’ Remote Control Behavior 99

Table 3. Summary of bot command detection

ago DSNX evil GSyS sd Spy

cmds 88 28 5 56 50 36
candidate cmds 36 14 5 26 20 15
detected cmds (DYN, C&E) 33 14 N/A 26 20 15
detected cmds (STAT, CORR) 31 10 5 12 12 15

scanning commands use a transformation of a received parameter in a system
call argument. Taintedness was not propagated across this transformation oper-
ation; thus, scan.start and scan.startall were not detected. Also, the same
set of commands was detected (and the same behaviors flagged for each com-
mand) for agobot whether that bot encrypted C&C messages via dynamic calls
to the OpenSSL library or not. Thus, detection of remote control is resilient to
command encryption, given visibility into the cryptographic function calls.

Detection of Commands on Statically-Linked Bots. Since all tested bots
either primarily or exclusively use C library functions for memory copying, static
linking severely hinders visibility into a bot’s use of received data. We were still,
however, able to detect execution of many of the bots’ candidate commands by
correlating received network data to system call arguments. We explore below
the effects of detected vs. undetected commands and provide some evidence that
these undetected commands are significantly less harmful than are the detected
commands. Many of the undetected commands rely on the previous execution
of a command this is detected under these conditions. In particular, three of
DSNX’s four undetected commands (75%), seven of sdbot’s eight (87.5%), and
seven of G-SySbot’s fourteen (50%) perform clone management; this function-
ality only makes sense when a clone exists to be managed. The command that
creates a clone – for each of these three bots – was detected under STAT, CORR.
There were three false positives under this mode; in all cases, the incorrectly
flagged behavior was in fact malicious but not an example of external control.

The candidate commands that were not detected under STAT, CORR share
a common property that could be used to produce even better detection results.
Specifically, 24 of the 28 undetected commands use sprintf to format the argu-
ment buffers passed to system calls. The call to this buffer-formatting function
was not visible to BotSwat (under STAT) and thus it was not able to infer that
the resulting argument buffers contained (among other data) strings received
over the network. Statistical tests that measure how similar an argument buffer
is to data received over the network may provide significant gains here.

The Effects of Detected Commands Relative to All Commands As
discussed in Sect. 2.2, not all commands result in an equal amount of remote

100 E. Stinson and J.C. Mitchell

control behavior. 1 We find that the commands we are able to detect for each
bot – even under STAT, CORR – account for the majority of that bot’s total
potential remote control behavior. For Spybot, e.g., under STAT, CORR, the
number of system calls invoked during execution of detected commands is 145
(Table 4) and during execution of all commands is 202 (Table 1). The same
pattern held for all tested bots and is a consequence of the relative severity of
commands we are able to detect even under these conditions.

Table 4. The number of system calls invoked during successful execution of candidate
and detected commands

ago DSNX evil GSyS sd Spy

syscalls invoked by candidate cmds 417 114 5 122 110 145
syscalls . . . detected cmds (DYN, C&E) 393 114 N/A 122 110 145
syscalls . . . detected cmds (STAT, CORR) 386 110 5 99 99 145

Bots Exhibit Volume and Diversity of Behaviors. For each bot command,
we counted the number of distinct behaviors correctly detected in a successful
execution of that command. Then we tallied these values across commands, giv-
ing us the number of times each behavior was detected for each bot (Fig. 2).
It is not uncommon for execution of a single command to result in detection of
multiple behaviors. Executing a port redirect command, e.g., generally results
in four detected behaviors: binding a tainted port (B6), connecting to a tainted
IP (B7), connecting to a tainted port (B8), and tainted send (B9). Note that in
practice the raw number of detected bot behaviors might be much larger since
execution of certain commands may cause the same behavior to be repeatedly
flagged. Such is the case with denial-of-service (DoS) commands, which often
cause a particular behavior to be flagged with transmission of each DoS packet.
We note that the distribution of detected behaviors across bot families is not
uniform; e.g., behavior B11 (sendto tainted IP) is frequently flagged in agobot
but never in DSNXbot and only rarely in G-Sys, sd, and Spybots. Such differ-
ences may be leveraged to perform classification of an encountered bot as more
likely to be a variant of a particular family.

5.4 Benign Program Results

We tested eight benign applications that exhibit extensive network interaction
across a variety of activities typical to these programs. False positives in this
context are any instances in which a system call invocation is flagged. This
could arise from imperfections in our user-input module implementation, which
1 We approximate the remote control behavior associated with a particular command

via tabulating the number of distinct system calls invoked in a successful execution
of that command. Then the bot’s total potential remote control behavior is the sum
of these values across all of that bot’s commands.

Characterizing Bots’ Remote Control Behavior 101

Fig. 2. The number of times each behavior was detected, over all of a bot’s commands

may not be able to infer that a system call invocation is the result of local user
input. Alternatively, a benign program may genuinely exhibit external or remote
control. There were eight false positives: two for the browser, three for the email
client, two for the IRC client, and one for the IRC server. The programs, activities
across which their behavior was traced, and results are described below.

Benign Program Testing. We tested a browser (firefox), email client (Eu-
dora), IRC client (mIRC), ssh client (putty), FTP clients (WS FP and Se-
cureFX), anti-virus (AV) signature updater (Symantec’s LuComServer 3 0.exe),
and IRC server (Unreal IRCd). Since the majority of systems infected with bots
are those of home users (who do not typically run server programs) [32], we
tested against only one server program. We note, however, that server programs
may, at an abstract level, be designed to respond to certain types of external
control (that exerted by the client).

We used the browser to visit a variety of sites, some containing linked-in im-
ages. Once at a site, we clicked on hypertext links, downloaded files specified by
links, saved the web page’s contents to a file, executed downloaded programs from
within the browser, etc. With the email client, we received, composed, replied to,
forwarded, and sent email, including and excluding attachments, and including
and excluding HTML. We also saved and executed received attachments from
within the email client. We exercised the IRC client over a range of its capa-
bilities: connecting to a server and channel, messaging, DCC file transfer, etc.
We used the ssh client to connect to and execute commands on a remote host.
Using FTP clients, we connected to and browsed various FTP sites, navigated
across directories (alternatively using the mouse and keyboard), and downloaded
files. We tested the AV signature updater via establishing a base state with stale
virus definitions files then instructing the updater to get the latest AV signatures.
Finally, the IRC server was networked to other servers and serviced clients.

Benign Program Results. We present the results of running under correl-
ative propagation (which has the most relaxed requirements for taintedness)
with the user-input module enabled. Four of the eight false positives occur as a

102 E. Stinson and J.C. Mitchell

result of the automatic downloading of linked-in images performed in rendering
an HTML document. Two of these were exhibited by the browser and two by
the email client, both upon receipt of an HTML document containing an element. Receipt of such an element causes the application to re-
quest the content specified in the SRC URL. Also, when the user receives an
email with an attachment, Eudora automatically creates a file of the same name
(as the received file), which causes the tainted open file behavior (B1).

The mIRC client generated two false positives as a result of performing Direct
Client Protocol (DCC) file receipt. These false positives reveal limitations in our
user-input module implementation. In preparation for DCC file transfer, the file
sender provides an IP and port to the recipient via a network message. The
recipient then creates a TCP connection to the sender using the specified IP and
port. Therefore, behaviors B7 (connecting to a tainted IP) and B8 (connecting to
a tainted port) were flagged. Prior to the chat client creating such a connection,
however, the client asks the user whether he wishes to perform this operation and
will only proceed if the user responds affirmatively. Our user-input module was
not able to infer the connection between the user input agreeing to this behavior
(via a dialog box) and the values used to create the network connection.

The IRC server repeatedly exhibited the tainted send behavior (B9) – which
identifies when data heard over one socket is sent out on another. Clearly this
behavior is expected, since the overriding purpose of an IRC server is to partici-
pate in a chat network, which entails receiving messages and sharing those with
its clients and/or other servers.

Benign Results Discussion. We find it interesting that most of the detected
behaviors of benign programs may be known to carry a risk and thus our flagging
of these behaviors may not be totally inappropriate. In particular, [53] recom-
mends disabling DCC file receipt so as to avoid malware infection (2 behaviors);
the automatic downloading of linked-in images performed by the email client
and browser may be exploited to perform DoS attacks [50] (4 behaviors); and
email attachments are a known malware propagation vector (1 behavior).

Table 5 summarizes the detection of behaviors across all tested programs. Note
that a single run of any such program may exhibit fewer behaviors depending
upon the inputs to that particular run-time instance. In general, bots exhibit high
volume (202 across all bots and all commands, as in Fig. 2) and great diversity
(18 different) of behaviors. By contrast, only eight behaviors total (five different)
were flagged over execution of all benign programs even when testing under the
most liberal taint propagation mode, correlative. We discuss how one might
handle these false positives in Sect. 6. Finally, we acknowledge the limitations
of black-box dynamic testing; that is, there may be other inputs to these benign
programs that would result in flagging additional behaviors. Similarly, it may be
the case that higher fidelity taint propagation (e.g., assembly-code-level tainting)
reveals additional behaviors. That said, all programs (malicious and benign) were
tested using the same system, and the demonstrated behavioral gap between bots
and benign applications under these conditions is dramatic.

Characterizing Bots’ Remote Control Behavior 103

Table 5. For each tested program, the number of distinct behaviors detected

distinct behaviors which behaviors

agobot 16 B1 - B16
GSySbot 12 B1 - B3, B6 - B12, B17, B18
sdbot 12 B1 - B3, B6 - B12, B17, B18
Spybot 10 B1 - B4, B6 - B9, B11, B12
DSNXbot 7 B1 - B3, B6 - B9
evilbot 1 B3
Eudora 3 B1, B7, B17
Firefox 2 B7, B9
mIRC 2 B7, B8
Unreal IRCd 1 B9
putty 0 N/A
SecureFX 0 N/A
Symantec AV updater 0 N/A
WS FTP 0 N/A

5.5 Performance Results

Function interception via the detours library imposes an overhead of fewer than
400 nanoseconds per invocation [9]. We measured the overall performance impact
of BotSwat’s instrumentation via scripting a bot to receive then execute various
commands; the bot’s performance was measured natively and under each of the
two propagation modes. The overall measured performance overhead is 2.81%
when using cause-and-effect propagation and 3.87% under correlative.

6 Potential for Host-Based, Behavioral Bot Detection

Signature-based anti-malware mechanisms suffer from several critical limitations,
including the inability to detect novel malware instances or obfuscated variants
and the need to continuously update their signature sets [34,38]. A recent study
found that even the most effective anti-virus vendor failed to detect a significant
percentage of malware samples found in the wild [42]. Behavior-based approaches
to malware detection provide a powerful alternative: the ability to detect entire
classes of malware including previously unseen instances. The primary challenge
is to identify a useful behavioral characterization: one which identifies behav-
ior fundamental to a class of malware but which is not generally exhibited by
innocuous programs. The data presents a compelling argument that our charac-
terization meets these criteria; the very behavior that makes bots most useful to
their installers (their programmability) provides the basis for detection.

Our prototype implementation was designed to test the effectiveness of our
behavioral characterization; a secure implementation of our method must be
able to detect and differentiate such remote control behavior in a way that is
difficult for malware to adaptively evade and subvert. Designing such a system is

104 E. Stinson and J.C. Mitchell

a research problem unto itself. We highlight some of the fundamental challenges
and tradeoffs in building a bot detection mechanism based on our findings.

Process Monitoring Mechanism. The mechanism that enables visibility into a
process’s actions may also be referred to as a sandbox. There are two primary
design considerations: visibility, which refers to the type and granularity of events
visible to the sandbox, and isolation, which refers to the difficulty of a moni-
tored process to evade or subvert the sandbox. The (user-space) in-line function
hooks [9] used in the prototype implementation provide high visibility (as the
interposition code runs in the same address space as the monitored application)
but very weak isolation [8,10]. Kernel-space system call interposition and Virtual
Machine Introspection [24] are additional possibilities.

Tainting Challenges and Tradeoffs. Since a malicious bot may evade detection
via performing data movement (or data transformation) operations out-of-band,
coverage is a critical aspect of the system’s security. There appears at present
to be a fundamental tradeoff in dynamic tainting modules between coverage
and performance; i.e., tainting implementations that provide thorough coverage
(as in [12]) exact significant performance penalties. Also, if there are operations
across which taintedness is not propagated (e.g., writes to persistent storage or
pipes), surely such avenues will be used to launder tainted data. Propagating
taint more thoroughly may result in more flagged behaviors and false positives.

User Input Module Challenges. There are two types of attacks specific to this
component: spoofing user input events and genuinely obtaining user input. Expo-
sure to user-input-spoofing attacks may be minimized by incorporating a kernel-
level component that identifies receipt of user input events. The latter attack,
however, highlights the fundamental challenge in this module’s design. In partic-
ular, since the meaning of user input events is inherently application-defined, a
user-input module must rely on the application that received a user-input event
to implicitly or explicitly identify the semantics of that input. Consequently, if a
malicious process is able to legitimately obtain any local user input, that process
may be able to arbitrarily assign meaning to that input.

System Inputs and Outputs. An interesting question is which processes to mon-
itor using the detection mechanism. A reasonable decision may be to not mon-
itor known benign programs. Such a decision would inevitably cause attackers
to explore ways in which such known benign programs could be coopted to do
the attackers’ bidding (as in [50]). In either case, a general decision must be
made about when to label something a bot. A reasonable tradeoff may be to
require some volume and diversity of behaviors; then a lower threshold more
narrowly constrains the attacker’s arena but may also result in more false posi-
tives. Additionally, one could whitelist certain behaviors known to be generated
by particular applications during their legitimate operation (as in Sect. 5.4). A
final option may be to identify and flag execution of commands – sequences of
correlated behaviors – rather than individual behaviors.

Characterizing Bots’ Remote Control Behavior 105

7 Related Work

Applications of Tainting Analysis Tainting has been applied statically, dynam-
ically, at a language level, via an interpreter, an emulator, compiler extensions,
etc. [1,11,12,14,15,20,27]. Most commonly, security-motivated tainting has been
used to identify vulnerabilities in or exploitations of non-malicious programs.

Host-Based Intrusion Detection. The problem of distinguishing execution of an
installed malicious bot from that of innocuous processes differs from that ex-
plored by much previous run-time, host-based, anti-malware research, which
has focused on identifying when a host program (generally assumed to be non-
malicious) has been exploited [5,12,13,21,28]. While a bot may be spread via
leveraging such exploits, monitoring execution of an installed bot using one of
these mechanisms will generally not result in the bot being identified as ma-
licious since no exploit of a local host program is entailed in normal bot ex-
ecution. Other behavior-based research has been done to identify rootkits and
spyware [23,49,7,31]. [31] identifies extrusions: stealthy outgoing network connec-
tion made by malicious processes. User-intended (legitimate) outgoing network
connections include those preceded in time by receipt of user input. A difference
between our work and theirs is that, for us, outgoing network connections are
only one of 18 behaviors of interest; also, we are interested in the semantics of
user-input events, not merely their occurrence at some point in time.

Botnet Detection. Host-based approaches include scanning the contents of files
and memory for certain byte sequences as well as content-based filtering, which
identifies receipt of packets containing known bot-command keywords, as in Nor-
ton Intrusion Prevention. Network-based approaches to botnet detection include
those which: (a) detect secondary effects of botnets [6,3]; (b) set up honeypots
to obtain bot binaries then infiltrate those botnets [25,41,40]; (c) mitigate the
effects of a botnet at a DDoS victim [22]; (d) apply content-based Network In-
trusion Detection System (NIDS) signatures [16]; (e) apply heuristics to IRC
channel traffic to identify likely C&C rendezvous points; (f) identify IRC NICK
messages likely to have been generated by bots [44]; (g) track and correlate
various types of NIDS alarms to identify bot-infection sequences [43]; (h) per-
form analysis of flow data to identify suspected bots then likely conversations
between such suspected bots and their C&C servers [45]. Challenges for these ap-
proaches include: changing the C&C protocol or botnet topology; encrypting or
otherwise obfuscating C&C communications; altering the timing of bot-related
events and port scanning activity so as to stay below detection thresholds; bots
which employ non-worm-like spreading behavior; coverage of C&C rendezvous
points; running a botnet entirely within a single administrative domain; etc.

8 Conclusions

Botnets present a serious and increasing threat, as launching points for attacks
including spam, distributed denial of service, sniffing, keylogging, and malware

106 E. Stinson and J.C. Mitchell

distribution. Our work explores whether the execution of malicious bots can be
distinguished from that of innocuous programs. We provided a characterization
of the remote control behavior of bots, identified the fraction of current bot
remote-control behavior covered by this characterization, built a prototype im-
plementation, and evaluated our hypothesis against six bots from five different
families and a variety of benign applications typical to the target environment.
We introduce techniques, such as content-based and substring-based tainting,
that enable us to effectively identify a bot’s remote control behavior even when
visibility into the memory-copying calls made by a bot is severely limited.

Experimental evaluation suggests that the external or remote control behavior
of bots can be detected by identifying system call invocations which use tainted
parameters. We see that the effects of a bot’s candidate commands (as measured
via number of system call invocations) constitute the vast majority of the effects
of all of a bot’s commands. We also see that bots in general exhibit a great volume
and diversity of behaviors. Finally, we note that, when we track local user input
and sanitize subsequent uses of it, benign programs relatively rarely exhibit the
external control behavior that we’re measuring. Significant challenges remain in
the problem of building a secure and robust bot detection system based on these
observed behavioral differences.

Acknowledgements. Thanks to the detours team at MSR and Galen Hunt
in particular for helpful insights into detours. We are also grateful to David
Dagon at Georgia Tech, who provided versions of agobot, and to Andrew Sakai,
for testing assistance. Thanks to Tal Garfinkel and Adam Barth for helpful
feedback. We thank Wenke Lee for extensive and valuable feedback on our work
and on its presentation. We are very grateful to our reviewers and to our shepherd
for their insightful questions and comments.

References

1. Turoff, A.: Defensive CGI Programming with Taint Mode and CGI:: UNTAINT
2. Schneier, B.: How Bot Those Nets? In Wired Magazine (July 27, 2006)
3. Dagon, D.: Botnet Detection and Response: The Network Is the Infection. In:

Operations, Analysis, and Research Center Workshop (July 2005)
4. Ilett, D.: Most spam generated by botnets, says expert. ZDNet UK(September 22,

2004)
5. Wagner, D., Dean, D.: Intrusion Detection via Static Analysis. In: IEEE Sympo-

sium on Security and Privacy (May 2001)
6. Cooke, E., Jahanian, F., McPherson, D.: The Zombie Roundup: Understanding,

Detecting, and Disrupting Botnets. In Steps to Reducing Unwanted Traffic on the
Internet (July 2005)

7. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.: Behavior-based Spy-
ware Detection. In: Proc. 15th USENIX Security Symposium (August 2006)

8. Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel. Addison-
Wesley, Upper Saddle River, NJ (2006)

9. Hunt, G., Brubacher, B.: Detours: Binary Interception of Win32 Functions. In: 3rd
USENIX Windows NT Symposium (July 1999)

Characterizing Bots’ Remote Control Behavior 107

10. Butler, J.: Bypassing 3rd Party Windows Buffer Overflow Protection. In: phrack
Volume 0x0b, Issue 0x3e, Phile #0x0, 7/13/2004

11. Chow, J., Pfaff, B., Garfinkel, T., Christopher, K., Rosenblum, M.: Understanding
Data Lifetime via Whole System Simulation. In: Proc. of the USENIX 13th Security
Symposium (August 2004)

12. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis,
and Signature Generation of Exploits on Commodity Software. In: Network and
Distributed Systems Symposium (February 2005)

13. Rabek, J., Khazan, R., Lewandowski, S., Cunningham, R.: Detection of Injected,
Dynamically Generated, and Obfuscated Malicious Code. In: Proc. of the ACM
Workshop on Rapid Malcode (October 2003)

14. Ashcraft, K., Engler, D.: Using programmer-written compiler extensions to catch
security holes. In: IEEE Symposium on Security and Privacy (May 2002)

15. Locking Ruby in the Safe http://www.rubycentral.com/book/taint.html
16. LURHQ. Phatbot Trojan Analysis. http://www.lurhq.com/phatbot.html
17. Christodorescu, M., Jha, S., Seshia, S., Song, D., Bryant, R.: Semantics-Aware

Malware Detection. In: IEEE Symposium on Security and Privacy (May 2005)
18. Overton, M.: Bots and Botnets: Risks, Issues, and Prevention. In: Virus Bulletin

Conference, Dublin, Ireland (October 2005)
19. Ianelli, N., Hackworth, A.: Botnets as a Vehicle for Online Crime. CERT Coordi-

nation Center (December 2005)
20. perlsec http://perldoc.perl.org/perlsec.html
21. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A Sense of Self for Unix

Processes. In: IEEE Symposium on Security and Privacy (May 1996)
22. Kandula, S., Katabi, D., Jacob, M., Berger, A.: Botz-4-Sale: Surviving Organized

DDoS Attacks That Mimic Flash Crowds. In: Network and Distributed System
Security Symposium (May 2005)

23. Strider GhostBuster Rootkit Detection
http://research.microsoft.com/rootkit/

24. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture
for Intrusion Detection. In: Network & Distributed Systems Security (February
2003)

25. Honeynet Project & Research Alliance. Know your Enemy: Tracking Botnets
26. The majority of bot code was obtained from: http://tinyurl.com/3y4cfd
27. Shankar, U., Talwar, K., Foster, J., Wagner, D.: Detecting format string vulnera-

bilities with type qualifiers. In: Proc. 10th USENIX Security Symp. (August 2001)
28. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure execution via program shep-

herding. In: Proc. 11th USENIX Security Symposium (August 2002)
29. Parizo, E.: s New bots, worm threaten AIM network. SearchSecurity (December

2005)
30. Naraine, R.: Money Bots: Hackers Cas. In: on Hijacked PCs. eWeek (September

2006)
31. Cui, W., Katz, R., Tan, W.: BINDER: An Extrusion-based Break-in Detector for

Personal Computers. In: Proc. of the 21st Annual Computer Security Applications
Conference (December 2005)

32. Martin, K.: Stop the bots. In: The Register (April 2006)
33. Keizer, G.: Bot Networks Behind Big Boos. In: Phishing Attacks. TechWeb (No-

vember 2004)
34. Christodorescu, M., Jha, S.: Testing Malware Detectors. In: Proc. of the Interna-

tional Symposium on Software Testing and Analysis (July 2004)

http://www.rubycentral.com/book/taint.html
http://www.lurhq.com/phatbot.html
http://perldoc.perl.org/perlsec.html
http://research.microsoft.com/rootkit/
http://tinyurl.com/3y4cfd

108 E. Stinson and J.C. Mitchell

35. MSDN Library. Using Messages and Message Queues http://tinyurl.com/27hc37
36. Symantec Internet Security Threat Report, Trends for July 05, December 05. vol.

IX, Published (March 2006)
37. Sturgeon, W.: Net pioneer predicts overwhelming botnet surge. ZDNet News (Jan-

uary 29, 2007)
38. Symantec Internet Security Threat Report, Trends for January 06-June 06, vol. X.

Published (September 2006)
39. Barford, P., Yegneswaran, V.: An Inside Look at Botnets. In: Advances in Infor-

mation Security. Special Workshop on Malware Detection, Springer, Heidelberg
(2006)

40. Freiling, F., Holz, T., Wicherski, G.: Botnet Tracking: Exploring a Root-Cause
Methodology to Prevent Distributed Denial-of-Service Attacks. In: European Sym-
posium On Research In Computer Security (September 2006)

41. Rajab, M., Zarfoss, J., Monrose, F., Terzis, A.: A Multifaceted Approach to Under-
standing the Botnet Phenomenon. In: Proc. of ACM SIGCOMM/USENIX Internet
Measurement Conference (October 2006)

42. Jevans, D.: The Latest Trends in Phishing, Crimeware and Cash-Out Schemes.
Private correspondence

43. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting
Malware Infection Through IDS-Driven Dialog Correlation. Manuscript

44. Goebel, J., Holz, T.: Rishi: Identify Bot-Contaminated Hosts by IRC Nickname
Evaluation. In: 1st Workshop on Hot Topics in Understanding Botnets (April 2007)

45. Karasaridis, A., Rexroad, B., Hoeflin, D.: Wide-Scale Botnet Detection and Char-
acterization. In: 1st Workshop on Hot Topics in Understanding Botnets (April
2007)

46. Kristoff, J.: Botnets. NANOG32 (October 2004)
47. Ramachandran, A., Feamster, N., Dagon, D.: Revealing botnet membership using

DNSBL counter-intelligence. In: 2nd Workshop on Steps to Reducing Unwanted
Traffic on the Internet (July 2006)

48. Grizzard, J., Sharma, V., Nunnery, C., Kang, B., Dagon, D.: Peer-to-Peer Bot-
nets: Overview and Case Study. In: 1st Workshop on Hot Topics in Understanding
Botnets (April 2007)

49. Wang, Y., Beck, D., Vo, B., Roussev, R., Verbowski, C.: Detecting Stealth Software
with Strider GhostBuster. Microsoft Technical Report MSR-TR-2005-25

50. Lam, V., Antonatos, S., Akritidis, P., Anagnostakis, K.: Puppetnets: Misusing Web
Browsers as a Distributed Attack Infrastructure. In: the 13th ACM Conference on
Computer and Communications Security (October 2006)

51. Schneier, B.: Semantic Attacks: The Third Wave of Network Attacks. In: the Cryp-
togram newsletter (October 15, 2000)

52. Stinson, E., Mitchell, J.: Characterizing the Remote Control Behavior of Bots.
Manuscript. http://www.stanford.edu/∼stinson/pub/botswat long.pdf

53. mIRC Help, Viruses, Trojans, and Worms.
http://www.mirc.co.uk/help/virus.html

http://tinyurl.com/27hc37
http://www.stanford.edu/~stinson/pub/botswat_long.pdf
http://www.mirc.co.uk/help/virus.html

Measurement and Analysis of Autonomous Spreading
Malware in a University Environment

Jan Goebel1, Thorsten Holz2, and Carsten Willems2

1 RWTH Aachen University
Center for Computing and Communication

2 University of Mannheim
Laboratory for Dependable Distributed Systems

Abstract. Autonomous spreading malware in the form of bots or worms is a con-
stant threat in today’s Internet. In the form of botnets, networks of compromised
machines that can be remotely controlled by an attacker, malware can cause lots
of harm. In this paper, we present a measurement setup to study the spreading
and prevalence of malware that propagates autonomously. We present the results
when observing about 16,000 IPs within a university environment for a period of
eight weeks. We collected information about 13,4 million successful exploits and
study the system- and network-level behavior of the collected 2,034 valid, unique
malware binaries.

Keywords: Honeypots, Malware, Invasive Software.

1 Introduction

In the recent years, we see a shift in how attackers behave and how they try to compro-
mise systems: large-scale worms which compromise tens or even hundreds of thousands
of machines are rare now, mass-outbreaks like Code Red or Slammer did not appear in
the last few years. This could have two main reasons. On the one hand, a worm does not
offer the attacker any type of remote control. Once the worm is released and spreading
in the wild, the attacker can not send any additional commands to the compromised ma-
chines or otherwise influence its behavior. On the other hand, the attacker does not have
any financial advantages by releasing a worm. We observe more and more a change
in the motivation behind attacks in cyberspace. While ten years ago most attacks were
motivated by technical challenges or to prove certain vulnerabilities, today most attacks
have a financial background, a real “underground economy” has developed [3].

One of the main problems in today’s Internet are botnets. A botnet can be defined as a
network of compromised machines which can be remotely controlled by an attacker. On
every compromised machine a so called bot is installed which establishes a connection
to a remote control network by which the attacker can issue arbitrary commands. Typi-
cal examples for these remote control networks are IRC networks or HTTP servers, but
there have also been the first Peer-to-Peer based botnets in the last few years [4]. Bot-
nets can be used by an attacker for many malicious activities: carrying out Distributed
Denial-of-Service (DDoS) attacks, sending out millions of spam or phishing e-mails,

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 109–128, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

110 J. Goebel, T. Holz, and C. Willems

stealing sensitive information from the compromised machines, or seeding new mal-
ware are just a few examples. With most of these activities, an attacker can also have
financial advantages. A detailed introduction to the topic of botnets is given in a paper
by the Honeynet Project [16].

It is hard to measure the extent of this problem and a scientific based measurement
of the number of compromised machines on the Internet is missing. There are some
guesses by different people which greatly vary in size. For example, Vint Cerf estimates
that up to a quarter of the 600 million machines connected to the Internet may be used by
cyber criminals in botnets [10]. Other popular estimates range between 12 million [19]
and 70 million [17] machines infected by bots. Moreover, it remains unclear with which
metrics the size of a botnet should be measured [13].

One of the side effects of botnets is the constant “background noise” in the Internet
caused by propagation attempts of bots: one of the most common commands issued
by the controller of a botnet is the command to scan for other vulnerable machines in
order to exploit a vulnerability found and then infect that machine. Since currently hun-
dreds or even thousands of different bot variants are propagating in the wild, they cause
a measurable amount of malicious network traffic which we can study with different
techniques and tools. Another source of the constant malicious network traffic we see
in the Internet is caused by different kinds of worms which spread even years after their
first release. Worms are similar compared to bots: they also try to exploit vulnerabilities
on other machines and propagate further autonomously, but lack the remote control fa-
cility. We can study both kinds of malware utilizing the same methods. Other kinds of
malware like for example spyware, rootkits, or Trojan Horses typically do not have the
ability to propagate autonomously, thus their prevalence is out of scope of our study.

In this paper, we present the results from studying autonomous spreading malware
during an eight week period which lasted from December 2006 to January 2007. We
studied the malware prevalence within a typical university environment, in this case
the network of RWTH Aachen university, which consists of three class B networks.
The study consists of several steps. In the first step, we capture a binary copy of the
malware that tries to exploit a vulnerability on our sensor: we use the tool nepenthes
to simulate 21 different vulnerabilities which are commonly exploited in the wild. Ad-
ditional information collected by nepenthes allow us to study the extend of malware
within our analysis environment. In the second step, we perform a system-level analy-
sis of all collected malware binaries. We study typical system-level changes applied to
infected systems and common network-level behavior of compromised machines. Fur-
thermore, we study the reaction times of common antivirus engines, which are supposed
to protect end-users against this threat. Moreover, we study the remote control networks
used by bots we captured.

This paper is outlined as follows: Section 2 provides an overview of related work
which studies different kinds of autonomous spreading malware. In Section 3 we de-
scribe our measurement setup and give a brief background on the tools and methods
used during our study. We present the analysis results in Section 4, where we focus on
four different aspects of autonomous spreading malware. Finally, we give an overview
of future work and conclude the paper in Section 5.

Measurement and Analysis of Autonomous Spreading Malware 111

2 Related Work

A study similar to our own was conducted by Yegneswaran et al. [21]. They analyze fire-
wall logs collected over a four month period from over 1,600 different networks world
wide by contributors of the Internet Storm Center. The authors study the distribution,
categorization, and prevalence of exploitation attempts. The collected data shows both
a large quantity and wide variety of exploitation attempts on a daily basis: the authors
estimate that up to 25 billion scan attempts are performed on the whole Internet every
day. Furthermore, they observe that worms like Code Red or Nimda still propagate long
after their original release. Compared to our study, their study is based on a condensed
summary of portscan activity obtained from various firewall and IDS solutions. They
do not collect high-level information like for example the malware binary that causes
the attack. In our study, we also incorporate this information and thus can study the
underlying methods used by the attackers as well.

A study by Moore et al. measures the victims of one particular instance of an au-
tonomous spreading malware [8]. They study the behavior of Code Red and conclude
that 359,000 computers became infected with the Code Red worm in less than 14 hours.
In a similar study, Moore et al. also analyze the effects of the Slammer worm and con-
cludes that about 75,000 hosts were infected by this malware specimen [7]. These stud-
ies only focus on one single instance of autonomous spreading malware, whereas our
analysis focuses on an overview of the overall network activity caused by this kind of
malware. In total, we study the effects caused by more than 2,000 unique malware bina-
ries collected during the analysis period of eight weeks. A binary is considered unique
in this context if it has a different MD5 sum.

Saroiu et al. study the amount and distribution of spyware in a university environ-
ment [14]. They analyze four common types of spyware and derive network signatures
to detect the presence of this kind of malware. By analyzing a week-long passive trace
of network activity, they show that at least 5.1% of active hosts within the campus net-
work were infected with spyware, and that many computers tend to have more than one
spyware program running at the same time. A broader study is performed by Moshchuk
et al. in a crawler-based study of spyware on the World Wide Web [9]. Similar to Honey-
Monkey [18], they crawl large parts of the Web and analyze executables and Web pages
for malicious content. During a crawl in May 2005, in which they examined about 18
million URLs, they found executable files in approximately 19% of the crawled Web
sites and spyware-infected executables in about 4% of the sites. Moreover, they could
identify spyware in 13.4% of the 21,200 executables downloaded. Besides spyware,
they are also interested in so called drive-by download content, i.e., Web pages that
exploit a vulnerability in the visiting browser to install a piece of malware on the vic-
tim’s machine. By crawling 45,000 URLs from 1,353 domains in October 2005 with
an instrumented Web browser instance, they found drive-by download attempts in 0.4%
of all URLs examined and drive-by attacks that exploit browser vulnerabilities in 0.2%
of the examined URLs. Both studies focus on spyware, a specific kind of malware. By
default, spyware does not have the capability to autonomously propagate further. In our
study, we focus on malware that has the capability to autonomously propagate further.
We also examine the additional steps performed by an attacker after he compromised
the victim’s system by observing the remote control network used by common bots.

112 J. Goebel, T. Holz, and C. Willems

There are two studies that measure the prevalence of malware in Peer-to-Peer (P2)
networks. Kalafut et al. study malware in the P2P networks Limewire and OpenFT [5],
whereas Shin et al. perform a similar study for the KaZaA file-sharing network [15]. In
the study by Kalafut et al., they collected data for more than one month and could show
that 68% of all downloadable responses in Limewire, which are either executables or
archives, contain malware. However, this is caused by only a small amount of distinct
malware: the top three most prevalent malware account for 99% of all the malicious
responses. In contrast to this, only about 3% of the executables or archives found in
OpenFT contained some kind of malware. Again, this is caused by a small number of
distinct malware samples: the top three most prevalent malware account for 75% of all
the malicious responses. The study by Shin et al. results in some similar conclusions:
using a light-weight crawler built for KaZaA, they gathered information about more
than 500,000 files returned in response to 24 common query strings. These files were
examined with 364 signatures of known malicious programs, and they found that over
15% of the crawled files were infected by 52 different viruses. In contrast to these
studies, we study active propagation by autonomous spreading malware: the malware
binaries we are interested in actively search for vulnerable machines and exploit these
vulnerabilities to infect the victim. Propagation via P2P networks is just passive: the
malware binary copies itself to the shared folder of popular P2P programs and uses
promising file names in order to trick a victim to open the malicious binary. No actual
vulnerabilities are exploited on the victim’s system, but social engineering is used by
these malware binaries to propagate further.

Rajab et al. use a similar measurement setup to study botnets [12]. They also use ne-
penthes to collect malware binaries, but their malware analysis approach is significantly
different from ours: they use graybox testing to extract only the network fingerprint of
the binary and in a second phase they extract IRC-specific information. In contrast to
this, we study the system-level behavior of the binary by closely monitoring its system
activity. This allows us to analyze the collected binaries in more detail. Similar to our
study, they also track the remote control facility used by botnets. Rajab et al. just track
IRC-based botnets, whereas we also observe botnets that use other protocols for remote
control. In addition, we also study other aspects of autonomous spreading malware,
e.g., the reaction time of antivirus software or the behavior of malware other than bots.

3 Measurement Setup

In this section, we describe the setup of our study and describe the individual building
blocks for the measurement. We use a network-based approach based on nepenthes [1]
to collect malware binaries. Nepenthes is a low-interaction honeypot which aims at
capturing malicious software artifacts that spread in an automated manner, like for ex-
ample worms or bots. The main focus of this application is to get hold of the malware
itself, i.e., to download and store a copy of the malware binary itself for further in-depth
analysis. Unlike other low-interaction honeypots, nepenthes does not emulate full ser-
vices for an attacker to interact with: it offers only as much interaction as is needed to
exploit a vulnerability. For this reason, nepenthes is not designed for any human inter-
action, as the trap would be easily detected. On the contrary, for an automated attack,

Measurement and Analysis of Autonomous Spreading Malware 113

just a few general conditions have to be fulfilled, consequently, maximizing the effec-
tiveness of this approach. These conditions usually include to display the correct banner
information of an emulated service, as well as, some simulated commands. Therefore,
the resulting service is only partly implemented.

In total, we use 21 different vulnerability modules, corresponding to commonly ex-
ploited network services. This is the default setup of nepenthes [1]. These modules
provide a baseline for an estimation of the actual amount of autonomous spreading mal-
ware in the university network: they are common exploits being used by malware. How-
ever, this setup is not complete. There are other methods used by malware to propagate
further, e.g., other exploits not emulated by nepenthes or other propagation strategies
like e-mail. Therefore, we can only give a lower bound for the amount of autonomous
spreading malware in our environment.

The usage of honeypots allows us to carry out a study like this without privacy issues:
since the honeypot is just a network decoy which should not receive any network con-
nections at all, any interaction with the honeypot is malicious by definition. We emulate
vulnerable network services and only automated threats will successfully compromise
our honeypot: a human attacker can easily spot the emulation.

In order to collect as many malware binaries as possible, we assign many IP ad-
dresses to the machine running nepenthes. This way, we can on the one hand collect
autonomous spreading malware that sequentially exploits other systems. On the other
hand, we also have a better chance to collect malware that tries to propagate further
by randomly targeting other systems. The network of RWTH Aachen university, our
analysis testbed, consists of three class B networks. We assigned more than 16.000 IP
addresses from the whole network range to the sensor used in our study.

The sensor itself is running in a virtual machine based on Xen [2] on a Quad-CPU
Pentium Xeon system with two virtual CPUs at 2,6 Ghz speed and 1 GB RAM assigned.
The operating system used is Debian Linux with MySQL 5 as database software to store
the collected information. During the measurement period, we used nepenthes in ver-
sion 0.2.0 and did not perform any updates, in order to have a constant setup during the
whole period. The average load is slightly above 1, depending on whether the antivirus
engines are currently scanning or not. This means that the system is using most of its
resources to emulate vulnerabilities and download malware binaries. Nepenthes itself
uses about 80% of one CPU and an additional 2% to 4% are consumed by the database.
A detailed study on the scalability of nepenthes is given in the paper on nepenthes [1].

In addition to the default nepenthes installation, we are running a few customized
modifications to gather more detailed and statistical information on the autonomous
spreading malware collected. To provide a common platform for the different analysis
tools in use, we have developed a custom logging module for nepenthes, which stores
all gathered information in a local MySQL database. Among these information are the
IP addresses of the hostile hosts, the vulnerability modules which were triggered, the
download location of the malware, as well as, the binary itself. The database is used as
the basis for all other analysis utilities involved.

One of these analysis utilities is CWSandbox [20]. CWSandbox is a tool for au-
tomatic behavior analysis of malware. In contrast to the traditional approach of code
analysis, the malware is viewed as a black box and only its behavior during execution is

114 J. Goebel, T. Holz, and C. Willems

examined. This eliminates all difficulties and disadvantages of code analysis, as aspects
like encryption, packing, and code obfuscation are no more relevant: the binary will
decrypt and/or unpack itself and we can observe its behavior during runtime. The main
disadvantage of this approach is that only one possible execution path is monitored for
each execution and, therefore, analysis reports may be incomplete as not all operations
of the monitored process are performed. However, our experience with CWSandbox
shows that the generated analysis reports contain commonly enough details to get an
overview of what a given malware binary intended to do.

In order to understand the proceeding of CWSandbox, we give a brief overview
of the tool. For monitoring the behavior of a suspect file, it is executed in an instru-
mented Windows environment. All of its security-relevant activities are monitored, and
a summarized and high-level report of the collected data is created afterwards. The
monitoring, and to some degree also the controlling of the binary, is done by installing
hook functions on several Windows API functions. Hook functions for instrumenting
the following Windows objects, amongst others, exist:

– Filesystem
– Registry
– Processes and threads
– Windows service applications and kernel drivers
– Virtual memory of running processes
– Mutexes
– Windows shares
– COM objects
– Windows of running processes
– Accessing the protected storage

Besides operations on these Windows objects, the following operations are hooked
as well, in order to get a more complete overview of the behavior of a given binary:

– implicit and explicit loading of DLLs
– attempt to reboot the system
– sending of ICMP packets
– using the Winsock library to establish TCP/IP connections and send/receive data

via them
– retrieving system information like computer name, name of currently logged in

user, . . .

Each time the malware calls one of these hooked API functions, the call parameters
are examined and stored into a log file. In most cases, the hook function then calls the
original Windows API function, as it would be called directly by the malware. When
returning from this API, the result code is examined as well and then control is delegated
back to the supervised process. This whole re-routed control flow is transparent to the
malware, i.e., it should behave normally, as if it would be running in an uncontrolled
environment. There are some exceptions to the handling of the control flow, where
either the call parameters of the original API function or its return result are modified
by the hook function, or where the API is not called at all. Examples for this are API

Measurement and Analysis of Autonomous Spreading Malware 115

function that can be used to detect the presence of CWSandbox, or particular network
functions, which can be restricted in several ways. For example, we only allow a certain
number of outgoing TCP connections and block certain TCP ports completely in order
to mitigate the risk involved during analysis.

One focus of the information extracted from an analysis run lies on the detection and
recognition of network connections and the extraction of the relevant transmitted data.
Therefore, CWSandbox maintains virtual connection objects for each separate network
connection, analyzes the corresponding traffic data, and tries to determine the underly-
ing protocol. In the current version, which was extended for this study, the protocols
HTTP, FTP, IRC, SMTP, and IDENT can be detected independent of the network port
used. If one of these protocols is detected, all relevant protocol-dependent data, like
for example the username, password, or channel name used during an IRC session, is
extracted and displayed in the analysis report.

As an additional analysis utility, we use four different antivirus scanners to check
each of the downloaded binaries every hour for known malware. The resulting reports
are also stored in the database. Prior to each scan, the scanners update their virus signa-
tures, thus the results always reflect the latest available signature version. To keep track
of changes in malware detection, each binary is always scanned with every antivirus
engine. In case the output of a scanner varies from previous results, an additional en-
try for the affected binary is stored in the database. Thus, for each binary it is possible
to determine whether it was detected by a scanner in the first place, how long it took
until a new signature version detects the malware, and if a signature update modifies
the name of the given malware sample. Therefore, we have some kind of timeline, in-
dicating when a new virus was first recognized by which scanner or if a file, previously
identified as virus A, is classified as virus B after a signature update occurred. The four
antivirus scanners which are currently in use are Avira AntiVir, BitDefender AntiVirus,
Sophos Anti-Virus, and Clam AntiVirus.

As the third analysis utility, we used the tool botspy [11]: if the binary collected by
nepenthes is a bot or another program which offers a remote control facility, we also
want to study this. Botspy is designed to be able to analyze the reports generated by
CWSandbox and, if applicable, to track the remote control facility. This is for example
accomplished by checking the network traffic section of the analysis report for outgo-
ing IRC connections. Other information extracted from the report include the botnet
server address (the so called Command & Control (C&C) server), the nickname, the
user string, the channel name, and any passwords involved. With this information, bot-
spy is able to connect to the IRC-based C&C server of the botnet and keep track of all
instructions issued by the botnet herder. If the remote control facility is not based on
IRC, but uses for example HTTP as the control mechanism, botspy periodically down-
loads the HTTP URL extracted by CWSandbox. Certain kinds of autonomous spreading
malware like for example worms do not offer a remote control. In this case, botspy does
not do anything. Botspy is designed to be able to track several hundred remote control
facilities in parallel and also stores all collected information in a central database.

The whole measurement setup is depicted in Figure 1: with the help of nepenthes,
we collect samples of autonomous spreading malware. These samples are then ana-
lyzed with the help of CWSandbox which results in a behavior based analysis report.

116 J. Goebel, T. Holz, and C. Willems

Fig. 1. Schematic Overview of Measurement Setup

In addition, several antivirus engines periodically check all collected samples and col-
lect information about the detection and analysis rates of common antivirus software.
Finally, we track the remote control facility of malware (if applicable) with the help of
botspy. Thus we collect information about the infrastructure behind all this autonomous
spreading malware as well.

Limitation. With the measurement setup outlined in this section, we are able to collect
autonomous spreading malware with certain characteristics. First, the malware prop-
agates further by exploiting common vulnerabilities on other systems. We only col-
lect the malware binaries that actually exploit the vulnerabilities we emulate, thus we
may miss certain samples. Secondly, we can only study malware that propagates au-
tonomously, thus we miss malware that uses other techniques for propagation. While
our measurement setup does not cover the whole range of malware out there, we never-
theless can study typical malware propagation from bots and worms.

4 Analysis of Autonomous Spreading Malware

In this section, we present measurements and analysis results of autonomous spreading
malware activity within the network of RWTH Aachen University, Germany. With more
than 40,000 computer-using people to support, this network offers us a testbed to study
the effects of bots and worms. Our analysis is based on eight weeks of measurement,
which took place during December 2006 and January 2007.

The network of RWTH Aachen university consists of three Class B network blocks
(three /16 networks in CIDR notation). As noted in the previous section, the nepenthes
sensor listens on about 16,000 IP addresses spread all across the network. Most of the
IP addresses are grouped in a large block in one Class B network, but we have also
taken care of evenly distributing smaller blocks of the sensor IPs all across the network
to have a more distributed setup. This is achieved by routing smaller network blocks to
the machine on which nepenthes emulates the vulnerabilities. We do not need to install
additional software on end-hosts, but use a purely network-based approach.

Measurement and Analysis of Autonomous Spreading Malware 117

4.1 Network-Based Analysis Results

With the help of the MySQL logging module for nepenthes, we can keep track of all
connections which were established to the sensor. That includes the attacker’s IP ad-
dress, the target IP address and port, as well as, the vulnerability module which was
triggered. More than 50 million TCP connections were established during the measure-
ment period. Since the nepenthes sensor is a honeypot and has no real value in the
network, it should not receive any network connections at all. Thus, the vast majority of
these 50 million network connections have a malicious source. On average, more than
900,000 TCP connections were established to the nepenthes sensor per day and about
240,000 known exploits were performed every single day. Thus nepenthes recognized
about 27% of all incoming connection attempts and could respond with a correct reply.

The remaining 73% of network connections are mainly caused by scanning attempts:
about 75% of these connections target TCP port 80 and search for common vulnerable
web applications. An additional 22% contain probe requests used by attackers during
the reconnaissance phase in order to identify the network service running on a given
target. About 3% of network connections contain a payload that nepenthes could not
understand. By manually adding support for these missed exploitation attempts, ne-
penthes could be enhanced. With approaches like ScriptGen [6], the detection rates
could be automatically improved in the future.

A total of more than 13,400,000 times the sensor system was hit. This means that
so many times a TCP connection was established, the vulnerability emulation was suc-
cessful, and a malware binary could be downloaded by the sensor. If one host scans
linearly the whole measurement range, then we count each of these connections as a
separate one. Since this skews the data, we take only the unique hostile IP addresses
into account. Roughly 18,340 unique IP addresses caused those hits. Table 1 depicts the
sanitized IP addresses of the ten most active attackers together with the according coun-
try. As you can see, a small number of IP addresses are responsible for a signification
amount of malicious network traffic.

An analysis revealed that the distribution of attacking hosts follows a classical long-
tail distribution as depicted in Figure 2. About 9,150 IPs, corresponding to about 50%
of the total number of IPs observed, contacted the sensor system less then five times.

Table 1. Top Attacking Hosts with Country of Origin

IP Address: Country: Hits:
XXX.178.35.36 Serbia and Montenegro 216.790
XXX.211.83.142 Turkey 156.029
XXX.7.116.4 France 108.013
XXX.147.192.47 United States 107.381
XXX.92.35.23 Norway 94.974
XXX.206.128.27 United States 91.148
XXX.12.234.94 Japan 91.051
XXX.255.1.194 United States 78.455
XXX.92.35.24 Norway 78.439
XXX.29.103.225 United States 77.580

118 J. Goebel, T. Holz, and C. Willems

Fig. 2. Distribution of Attacking Hosts

These IPs are presumably infected with some kind of autonomous spreading malware
which propagates further by scanning randomly for other victims.

The 18,340 unique IP addresses we monitored during the analysis period connected
to different TCP ports on the sensor. The distribution of target ports is very biased, with
more than 97% targeting TCP port 445. This port is commonly used by autonomous
spreading malware that exploits vulnerabilities on Windows-based systems. Table 2
gives an overview of the distribution.

Table 2. Top Ten TCP Ports Used by Autonomous Spreading Malware

TCP Port Number Number
445 57,015,106
135 184,695
3127 23,076
80 20,746
42 18,653
139 15,112
1023 14,709
5554 13,880
6129 27
1025 1

Closely related to the distribution of target TCP ports is the type of vulnerabilities
exploited. This distribution is also dominated by the most common vulnerability on
TCP port 445: the Lsasrv.dll vulnerability, commonly referred to as LSASS. Ta-
ble 3 gives an overview of the vulnerability modules triggered and we see a heavy bias
towards the Windows vulnerabilities related to network shares.

Measurement and Analysis of Autonomous Spreading Malware 119

Table 3. Top Ten Vulnerabilities Detected by Nepenthes

Dialogue Number
LSASSDialogue 56,652,250
PNPDialogue 361,172
DCOMDialogue 184,696
SasserFTPDDialogue 28,589
MydoomDialogue 23,076
IISDialogue 20,746
WINSDialogue 18,655
NETDDEDialogue 15,112
SMBDialogue 2,341
DWDialogue 27

The 13,4 million downloaded binaries turned out to be 2,558 unique samples. The
uniqueness is determined by the MD5 hash of each binary: two binaries that have the
same MD5 hash are considered to be the same binary. This is not foolproof due to the
recent attacks on MD5, but so far we have no evidence that the attacking community
has released different binaries with the same MD5 hash. On the other hand, this is
also no strong indicator for uniqueness: if the malware binary is polymorphic, i.e., it
changes with each iteration, we collect many samples which in fact are very similar.
In the middle of December 2006, such a polymorphic bot was released in the form of
All.aple worm. Unfortunately, we missed this particular worm since nepenthes could
not analyze the payload send by this worm. In Section 4.2 we show preliminary results
on how we can identify similar malware binaries based on behavior.

Fig. 3. Chronological Analysis of Collected Malware Binaries

The number of collected samples result in an average of one unique malware binary
every 5,240 hits. Considering the number of successful exploits per day, this results
in almost 46 new binaries every 24 hours. Figure 3 gives an overview of the chrono-
logical sequence for the number of collected binaries and number of unique binaries.
The number of collected binary varies from day to day, ranging between 58 and 281.
There are several spikes in this measurement, but no reason for these anomalies could
be identified. The situation is slightly different for the number of unique binaries: in
the first few days, the number of unique binaries collected per day is high, whereas this
number drops after about six weeks. It seems like there is some kind of saturation: in

120 J. Goebel, T. Holz, and C. Willems

the beginning, the number of unique binaries is significantly higher then in the end of
the measurement period. After a certain period of time we have collected the commonly
propagating malware in the measurement network and only a few new binaries are col-
lected per day. This number varies between 6 and 16, presumably corresponding to new
malware binaries released by attackers.

4.2 CWSandbox Analysis Results

In this section, we present some quantitative statistics about the analysis results of our
malware collection. It should be mentioned that our collection cannot give a representa-
tive overview of current malware on the whole Internet, as on the one hand, the sample
set size is not large enough and, on the other hand, it contains only autonomous spread-
ing applications like bots and worms. However, for this particular subset of malicious
activity, our measurement setup can give us an overview of the current threat level for a
typical university environment.

From the overall collected 2,454 sample files, 2,034 could be analyzed correctly by
CWSandbox, 1 failed due to a crash and 419 were no valid Win32 applications. This
means that in roughly 17% of the collected samples, the resulting file was not valid. This
can be explained by aborted transfers or disrupted network connectivity. One additional
file of the remaining 2034 had a valid PE header, but could not be correctly initialized by
the Windows Loader due to an ACCESS VIOLATION EXCEPTION. Each successful
analysis resulted in an XML analysis report, which reflects all the security-relevant op-
erations performed by the particular file. As we are not interested in a detailed malware
analysis for single file instances in this paper, we present quantitative results extracted
from the 2034 valid reports. The main focus of our statistics lies on network activities,
but a few other important results are presented as well.

Table 4. Top Ten Outgoing TCP Ports Used

Remote TCP port # samples
445 1312

80 821
139 582

3127 527
6667 403
6659 346

65520 143
7000 30
8888 28
443 16

1,993 of the 2,034 valid malware samples tried to establish some form of TCP/IP
connection, either outgoing, incoming (i.e., listening connections) or both. Besides
DNS requests, we have not found any single malware in our set that uses only UDP
directly. 1,216 binaries were successful in the attempt to setup an outgoing TCP con-
nection. For all the others, the remote host was not reachable or refused the connection

Measurement and Analysis of Autonomous Spreading Malware 121

for some other reason. Altogether, 873 different TCP remote ports have been used
for outbound connection attempts, and Table 4 shows the top ten of them. Although
CWSandbox is able to recognize the content of a TCP connection and infer the applica-
tion protocol used, these results are not shown in this document for complexity reasons.
However, it is highly probable that most connections on port 445 and 139 are aiming on
further malware propagation, port 80 and 443 are used for HTTP(s) connections, 6667,
66520, 7000, 6659, and 8888 are used for IRC communication, and finally, 3127 is a
backdoor of MyDoom.

Table 5. Top Five Listening TCP Ports Used

Local TCP port # samples
113 497

3067 122
80 9

5554 7
1023 6

Furthermore, we have found 1,297 samples that install a TCP server for incoming
connections, most of them setting up an IDENT server on port 113 for supporting IRC
connections. In Table 5, the top five listening local TCP ports are presented.

Fig. 4. Distribution of IRC Channel:Password Combinations

Since most bots rely on IRC communication, a deeper investigation of these con-
nections is necessary. 505 samples could successfully establish a connection to an
IRC server. Moreover, 352 files tried to send IRC commands over an unestablished
connection. The reason for that is most probably bad software design. 349 of these
files are variants of GhostBot, the other 3 are Korgo worms. Furthermore, we have

122 J. Goebel, T. Holz, and C. Willems

96 samples that try to connect to a remote host on TCP port 6667 or 7000 and fail.
Adding these numbers, we have at least 953 files which try or are successful in set-
ting up an IRC connection. The corresponding samples are most probably IRC bots.
We cannot know, how many of these different binaries belong to the same bot variant
or even to the same botnet. However, by taking the remote IP address, remote TCP
port, IRC channel name and IRC channel password into account, we can give some
estimations. This is a good indication for uniqueness: if a given binary uses the same
tuple of network parameters, we can be sure that it is the same variant, although the
MD5 sum of these binaries is different. Of all established IRC connections, 64 different
host:port:channel:channelpassword-combinations have been used. As the host IP for a
botnet may change, we generalize the results to the different channel:channelpassword-
combinations and assume that each of those represent a different botnet or at least a dif-
ferent bot family. By generalizing the number of different combinations decreases down
to 41. The most common channels are &virtu (no password) and dd (password “dpass”)
with 143 and 141 samples, respectively. These samples have a different MD5 sum, but
based on their network behavior we argue that they are very similar. An overview of
these results is given in Figure 4. Please note that all the combinations with only one
corresponding malware sample are aggregated into others.

Fig. 5. TCP Ports Used for IRC Connections

When looking at the different remote TCP ports which are used for establishing an
IRC connection, we see that not only the default IRC port 6667 is used, but many more.
It is interesting to see that, beside some probably random ports, a lot of well known
ports of other well-known protocols are used, e.g., port 80 (HTTP), port 443 (HTTPS)
or port 1863 (MSN). This allows the bot to communicate through a firewall that is open
for these standard protocols. Thus it is necessary to also closely observe these port when
thinking about vulnerability assessment. Figure 5 shows a distribution diagram of the
TCP ports observed during the study.

Measurement and Analysis of Autonomous Spreading Malware 123

Table 6. Services and Kernel Drivers Installed by Collected Malware Samples

Servicename Filename (base directory is C:\Windows\) Kernel driver # samples
SVKP system32\SVKP.sys x 15
DLLHOST32 system\dllhost.exe 8
WINHOST32 system\services.exe 2
Print Spooler system32\spooler.exe 1
hwclock system32\hwclock.exe 1
oreans32 system32\drivers\oreans32.sys x 1
Windows System 32 services.exe x 1
Windows Terminal Services system32\vcmon.exe 1
Advanced Windows Tray system32\vcmon.exe 1
Windows MSN wmsnlivexp.exe 1
Windows Process Manager system32\spoolsc.exe 1
mside system\mside.exe 1
TCP Monitor Manager system32\symon.exe 1
Client Disk Manager system32\symon.exe 1
Monitor Disk Manager system32\spoolcs.exe 1
System Restore Manager system32\symon.exe 1

As already mentioned above, a few other interesting, system-level related results
can be drawn from our analysis reports as well. After infecting a new host, nearly all
malware tries to install some auto-start mechanism, such that it is activated each time
the infected system reboots. This is commonly done by adding some auto-start registry
keys, but some malware install a Windows Service Application or even a kernel driver.
By doing that, it is much harder to detect the presence of malware. Especially in the case
of kernel drivers, the malware binaries can get higher security privileges on the local
system. Table 6 provides an overview of the services and kernel drivers installed by the
samples we collected. In total, 21 of our collected files install a service application and
17 install a kernel driver. Since some of these binaries use the same servicename and
filename for the given processes, we can learn that these were most probably installed
by variants of the same malware family.

Table 7. Injection Target Processes Observed for Collected Malware Samples

Injection target process (base directory is C:\Windows\) # samples
explorer.exe 787
system32\winlogon.exe and explorer.exe 101
system32\winlogon.exe 74

The observed system-level behavior can also be used to classify malware samples:
if two binaries with a different MD5 sum behave similarly, we can argue that these
samples belong to the same family of malware. There are several features we can use
for classification. One is the registry keys created during the analysis: 1,842 samples
created a registry key of the form HKLM\Software\Microsoft\CurrentVersion\Run in
order to have an auto-start mechanism. A closer analysis revealed that only 283 unique
registry keys were created, taking into account randomly created names.

124 J. Goebel, T. Holz, and C. Willems

As a final statistic result, Table 7 shows a summary of the windows processes, into
which the malware samples injected malicious code. It is a common approach to cre-
ate a new thread (or modify an existing one) in an unsuspicious windows process, e.g.,
explorer.exe or winlogon.exe, and perform all malicious operations from that
thread. Via this proceeding, the malware becomes more stealthy and, furthermore, cir-
cumvents local firewalls or other security software that allows network connections only
for trusted applications.

4.3 Antivirus Engines Detection Rates

In order to evaluate the performance of current antivirus (AV) engines, we scanned
all 2,034 binaries, which we had captured with nepenthes and successfully analyzed
with CWSandbox, with four common antivirus engines. This helps us to estimate the
detection rate for common autonomous spreading malware and also for vulnerability
assessment. These binaries are currently spreading in the wild, exploited a vulnerability
in our measurement system, and could be successfully captured. In contrast to common
antivirus engine evaluation tests, which rely on artificial test sets, our test set represents
malware successfully spreading in the wild.

Table 8. Detection Rates for 2,034 Malware Binaries for Different AV Scanners

AV software Absolute detection number Relative detection rate
AntiVir 2015 99.07%
ClamAV 1963 96.51%
BitDefender 1864 91.64%
Sophos 1790 88.00%

Table 8 displays the current detection rates of each scanner with the latest signature
version installed. This scan was performed one week after the measurement period, in
order to give AV vendors some additional time to develop signatures and incorporate
them into their products. Nevertheless, none of the tools was able to detect all malicious
files and classify them accordingly. The malware reports vary significantly from one
tool to another. Figure 6 gives an overview of the detected malware binaries by the four
different antivirus engines.

We focus on the ClamAV results in the following and analyze the different malware
families more closely. ClamAV detected 137 different malware variants in the test set
of 2,034 samples. In total, 27 different families of malware could be identified. Table 9
gives an overview of the top ten different malware variants. Two families of malware
clearly dominate the result: Padobot and Gobot are the two main autonomous spreading
malware families we could observe within our measurement environment.

Besides these two families, also many other forms of autonomous spreading mal-
ware are currently spreading in the wild. Although Padobot and Gobot dominate the list
of malware variants, the largest number of different variants was captured for SdBot:
35 different variants of the same family could be captured, whereas Padobot (14) and
Gobot (8) had significantly less different variants.

Measurement and Analysis of Autonomous Spreading Malware 125

Fig. 6. Malware Variants Detected by Different Antivirus Engines

Some of the malware binaries are already known for a long time. For example, the
first variants of Blaster were observed in the wild in August 2003. More than three
years later, we captured four different variants of Blaster which are still propagating
in the Internet. Similarly, three different variants of Sasser were captured during the
measurement period. We conclude that there are still systems on the Internet which are
infected for a long time, helping “old” malware binaries to propagate further.

4.4 Botspy Analysis Results

With the help of botspy, we can study the remote control networks used by the au-
tonomous spreading malware: in case we have captured a bot, it connects to this remote
control network so that the attacker can send him commands. We just want to briefly
present our results when tracking these botnets for a short amount of time.

In total, we could observe 41 different botnet Command & Control (C&C) servers.
Again, this behavior can be used to classify malware samples: if two binaries con-
nect to the same C&C server, we can argue that they are similar despite the fact that
they have a different MD5 sum. For example, 149 binaries connected to the IP address
XXX.174.8.243 (home.najd.us). The system-level behavior of these samples is also
very similar, so presumably these are just minor variants of the same malware family.

When connecting to the botnets, we could observe 33 different topics in the chan-
nel used to command the bots. The most common command used by the bot herder
was related to propagation: most bots are instructed to scan for other vulnerable ma-
chines and exploit vulnerabilities on these systems. An example of such an instruction
is !asc dcom135 150 3 0 -r -b -s, where the bots try to exploit the DCOM

home.najd.us

126 J. Goebel, T. Holz, and C. Willems

Table 9. Top Ten Different Malware Variants

Malware Variant Number of Samples
Worm.Padobot.M 426
Worm.Padobot.P 274
Trojan.Gobot-3 118
Trojan.Gobot-4 106
Worm.Padobot.N 101
Trojan.Downloader.Delf-35 100
Trojan.IRCBot-16 76
Trojan.Gobot.A 61
Trojan.Ghostbot.A 53
Trojan.Gobot.T 37

vulnerability on TCP port 135 and scan randomly (parameter -r) for vulnerable ma-
chines in their local class B (parameter -b) network with 150 threads in parallel. This
is done for an unlimited amount of time (parameter 0) and with a delay of three seconds
(parameter 3). More and more common are botnets that use non-standard IRC or en-
crypted communication mechanisms. For example, the command sent by the bot-herder
to the bots could be an encrypted string. In total, we found 10 different botnets that use
encrypted, IRC-based communication. Without a proper decryption routine, it is hard
to study this kind of botnets. Currently it is unclear how we can efficiently study this
kind of botnets.

Estimating the size of a given botnet is hard [13]. One possibility to estimate the size
is to rely on the statistics reported by the C&C server upon connect: if the IRC server is
not configured properly, it reports the number of connected clients. Moreover, we can
query the server for the number of connected clients and various other status messages.
Based on these numbers, the typical botnet size in our sample set varied between only
a few hundred up to almost 10,000 bots.

Besides the IRC-based bots, we also found several samples of HTTP-based bots.
These bots periodically query a given HTTP server and the response contains com-
mands which are executed by the bot. Due to the rather stealthy communication channel
of such bots, detection becomes harder. In addition, measuring the size of such a botnet
is hard since we can only passively monitor the HTTP server. In total, we could identify
three different botnets that use HTTP-based communication.

5 Conclusion and Future Work

In this paper, we have introduced a measurement method to study autonomous spread-
ing malware in a university environment. We use several tools and techniques to capture
a malware binary and then analyze the sample in detail. Based on this information, we
can derive an overview of the current situation of network attacks. Moreover, we can
study the typical system-level behavior of malware binaries and their activity after a
successful infection. Based on more than 13,4 million downloads and 2,000 malware

Measurement and Analysis of Autonomous Spreading Malware 127

binaries, we presented several statistics and patterns to point out the current prevalence
of malware on the Internet.

Some of the tools used in this paper can also be used in other areas. As a future re-
search, we examine how a behavior-based analysis can be used for automated malware
classification: the main problem in the area of automatic malware comparison and clas-
sification is that nowadays nearly all malware files are encrypted, compressed, or even
use polymorphism to complicate their analysis and to fool signature based anti-virus
software. Two versions of the very same malware may result in completely different bi-
naries, when encrypted with different algorithms or encryption parameters. Therefore,
one needs to decrypt and/or unpack the binaries before classification, which is not a triv-
ial task. For that reason, the analysis reports created by CWSandbox are very helpful in
comparing and classifying malware based on their behavior instead of their code. It is
obvious that the behavior analysis of two different binary representations of the same
application will result in the same, or at least very similar, reports. At the moment, we
have no automated mechanisms to reduce CWSandbox analysis reports to such a high
level of summarization, such that they can be compared directly. There are still a lot
of side effects contained in the reports, that differ between several Windows operating
systems or system environments. In the next months, we plan to build a system for
behavior-based malware classification, in order to extend the results presented here.

With our current method, we can not study malware that uses other propagation
vectors like e-mails or P2P-based propagation. With different other honeypot solution
like for example client-side honeypots or crawler-based honeypots it should be possible
to fill this gap and also study other kinds of malware.

Acknowledgments

We would like to thank the anonymous reviewers and our shepherd Marc Dacier for
helpful feedback on earlier versions of this paper.

References

1. Baecher, P., Koetter, M., Holz, T., Dornseif, M., Freiling, F.C.: The nepenthes platform:
An efficient approach to collect malware. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006.
LNCS, vol. 4219, pp. 165–184. Springer, Heidelberg (2006)

2. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the art of virtualization. In: Proceedings of the 19th ACM Symposium
on Operating Systems Principles, pp. 164–177 (2003)

3. Cymru, T.: The underground economy: Priceless. login 31(6) (2007)
4. Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B., Dagon, D.: Peer-to-peer botnets:

Overview and case study. In: Proceedings of 1st Workshop on Hot Topics in Understand-
ing Botnets (HotBots ’07) (2007)

5. Kalafut, A., Acharya, A., Gupta, M.: A study of malware in peer-to-peer networks. In: IMC
’06: Proceedings of the 6th ACM SIGCOMM Internet Measurement Conference, pp. 327–
332 (2006)

6. Leita, C., Dacier, M., Massicotte, F.: Automatic handling of protocol dependencies and re-
action to 0-day attacks with scriptgen based honeypots. In: Zamboni, D., Kruegel, C. (eds.)
RAID 2006. LNCS, vol. 4219, pp. 185–205. Springer, Heidelberg (2006)

128 J. Goebel, T. Holz, and C. Willems

7. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: Inside the slammer
worm. IEEE Security and Privacy 1(4), 33–39 (2003)

8. Moore, D., Shannon, C., claffy, k: Code-red: A case study on the spread and victims of an
internet worm. In: MW ’02: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
Measurment, pp. 273–284. ACM Press, New York (2002)

9. Moshchuk, A., Bragin, T., Gribble, S.D., Levy, H.M.: A crawler-based study of spyware
in the web. In: Proceedings of 13th Network and Distributed System Security Symposium
(NDSS’06) (2006)

10. BBC News. Criminals ’may overwhelm the web’. Internet Accessed February 2007 (Febru-
ary 2007) http://news.bbc.co.uk/1/hi/business/6298641.stm

11. Claus, R.F.: Overbeck. Efficient Observation of Botnets. Master’s thesis, RWTH Aachen
University (May 2007)

12. Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to understanding
the botnet phenomenon. In: IMC ’06: Proceedings of the 6th ACM SIGCOMM Internet
Measurement Conference, pp. 41–52 (2006)

13. Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: My botnet is bigger than yours (maybe,
better than yours): Why size estimates remain challenging. In: Proceedings of 1st Workshop
on Hot Topics in Understanding Botnets (HotBots ’07) (2007)

14. Saroiu, S., Gribble, S.D., Levy, H.M.: Measurement and analysis of spyware in a university
environment. In: Proceedings of Networked Systems Design and Implementation (NSDI’04),
San Francisco, California, United States (2004)

15. Shin, S., Jung, J., Balakrishnan, H.: Malware prevalence in the kazaa file-sharing network.
In: IMC ’06: Proceedings of the 6th ACM SIGCOMM Internet Measurement Conference,
pp. 333–338 (2006)

16. The Honeynet Project. Know Your Enemy: Tracking Botnets (March 2005)
http://www.honeynet.org/papers/bots/

17. New York Times. Attack of the zombie computers is growing threat. Internet (January 2007)
http://www.nytimes.com/2007/01/07/technology/07net.html

18. Wang, Y.-M., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King, S.T.: Auto-
mated web patrol with strider honeymonkeys: Finding web sites that exploit browser vul-
nerabilities. In: Proceedings of 13th Network and Distributed System Security Symposium
(NDSS’06) (2006)

19. McAfee Whitepaper. Adware and spyware: Unraveling the financial web. Internet: Accessed
February 2007 (August 2006) http://www.mcafee.com/us/local content/
white papers/threat center/wp ad ware.pdf

20. Willems, C., Holz, T., Freiling, F.: CWSandbox: Towards automated dynamic binary analy-
sis. IEEE Security and Privacy 5(2) (2007)

21. Yegneswaran, V., Barford, P., Ullrich, J.: Internet intrusions: Global characteristics and preva-
lence. In: SIGMETRICS ’03: Proceedings of the 2003 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, pp. 138–147. ACM Press,
New York (2003)

http://news.bbc.co.uk/1/hi/business/6298641.stm
http://www.honeynet.org/papers/bots/
http://www.nytimes.com/2007/01/07/technology/07net.html
http://www.mcafee.com/us/local_content/white_papers/threat_center/wp_ad ware.pdf
http://www.mcafee.com/us/local_content/white_papers/threat_center/wp_ad ware.pdf

Passive Monitoring of DNS Anomalies

(Extended Abstract)

Bojan Zdrnja1, Nevil Brownlee1, and Duane Wessels2

1 University of Auckland, New Zealand
{b.zdrnja,nevil}@auckland.ac.nz

2 The Measurement Factory, Inc.
wessels@packet-pushers.com

Abstract. We collected DNS responses at the University of Auckland In-
ternet gateway in an SQL database, and analyzed them to detect unusual
behaviour. Our DNS response data have included typo squatter domains,
fast flux domains and domains being (ab)used by spammers. We observe
that current attempts to reduce spam have greatly increased the number
of A records being resolved. We also observe that the data locality of DNS
requests diminishes because of domains advertised in spam.

1 Introduction

The Domain Name System (DNS) service is critical for the normal functioning
of almost all Internet services. Although the Internet Protocol (IP) does not
need DNS for operation, users need to distinguish machines by their names so
the DNS protocol is needed to resolve names to IP addresses (and vice versa).

The main requirements on the DNS are scalability and availability. The DNS
name space is divided into multiple zones, which are a “variable depth tree”
[1]. This way, a particular DNS server is authoritative only for its (own) zone,
and each organization is given a specific zone in the DNS hierarchy. A complete
domain name for a node is called a Fully Qualified Domain Name (FQDN). An
FQDN defines a complete path for a domain name starting on the leaf (the host
name) all the way to the root of the tree. Each node in the tree has its label that
defines the zone. An example of an FQDN is “www.auckland.ac.nz.”. A domain
is a subdomain when it is contained in another domain; in the previous example
“auckland.ac.nz” is a subdomain of “ac.nz”.

As DNS is not centrally controlled, the domain names can be abused by at-
tackers outside any organization. Besides domain name trading, attackers can
shift domain name records quickly, making access blocking difficult. Another ad-
vantage for attackers is that from the client point of view security is often relaxed
around DNS traffic, even in tightly controlled organizational networks. Most or-
ganizations have strict firewall policies at least on their perimeter firewalls, but
DNS traffic is usually unrestricted because it is used by many other protocols.
Attackers are commonly abusing this fact, not only to covertly send data over
DNS, but also to deploy rogue DNS servers that can be used to completely
control victim’s Internet behavior.

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 129–139, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

130 B. Zdrnja, N. Brownlee, and D. Wessels

This paper describes a passive DNS anomaly detection project based on data
captured at the University of Auckland Internet gateway. Our original moti-
vation for deploying the passive DNS monitor was to detect and correlate do-
mains used for botnet controls. We quickly realized that the database is also a
rich source of information about spam, anti-spamming tools, typosquatting, and
other anomalies.

2 Related Work

Florian Weimer presented a passive DNS replication project at the FIRST 2005
conference [17]. As a result of his project a web site was established by RUS
CERT [2] that allows public access to data collected “from the public Domain
Name Service (DNS) system.” Weimer’s software, dnslogger consists of sensors
deployed around a network that send captured DNS responses to a central collec-
tion service. Sensors encapsulate captured DNS responses in new UDP packets
which are then relayed (in real time) to the collector. The collector analyzes
received UDP packets and imports them into a database. Weimer’s passive DNS
replication project is very similar to the one deployed at the University of Auck-
land, however, our setup is simpler and our database stores more information,
for a longer period of time.

The University of Amsterdam [3] based their DNS capture project on Weimer’s
work. Schonewille et al modified Weimer’s program to capture outgoing
DNS queries in order to identify machines in the local network that have been
compromised. Malware-infected machines tend to emit DNS queries that allow
them to be easily identified.

John Kristoff’s DNSwatch [4] software can be used in a similar manner, as
described by Elton et al [5], but it requires an external black list of well known
malicious IP addresses (servers used to spread malware or contacted by mal-
ware).

3 Data Capture Methodology

DNS traffic uses either UDP or TCP on port 53 for communication [7]. Most
DNS communication happens over UDP, which is the default protocol used by
resolvers, i.e. applications that communicate with DNS servers on behalf of other
applications when they need to resolve a DNS query. TCP was originally used
only for zone transfers, but RFC 1123 [18] expanded the use of TCP as a backup
communication protocol when the answer needs to be larger than 512 octets.
In cases like this, the first UDP DNS response contains only partial answers.
The truncation bit is set so that the resolver can repeat the query over TCP.
However, RFC 2671, “EDNS0” [19], defined a new opcode field/pseudo resource
record that allows UDP DNS traffic to be bigger than 512 octets. Because almost
all of today’s DNS traffic uses UDP as its transport protocol, the deployment at
the University of Auckland ignores TCP traffic.

Passive Monitoring of DNS Anomalies 131

DNS data is captured passively by sensors at the network edge, using an
architecture designed to make implementation of sensors as simple as possible.
A sensor is connected to a router SPAN port in order to get complete access to
all network traffic. Sensors run tcpdump, configured to write captured packets to
a pcap file. Since we are only interested in DNS messages, we used the following
tcpdump filter: udp port 53 and (udp[10] & 0x04 != 0)

Note that our filter only captures UDP DNS replies from authoritative sources,
since we filter on their ‘Authoritative Answer’ bit [7]. We ignore TCP (for now)
to simplify our parsing code, and because we observe relatively little TCP DNS
traffic at the router. Since DNS replies always include the query data (in the
Question section), there is little need to also collect DNS queries. Alas, our filter
can cause some problems on certain large responses. If the DNS reply is larger
than the path MTU, the UDP message will be fragmented. If that occurs, the
first fragment usually contains enough information for anomaly detection.

Since our sensor is placed at the network perimeter, we see two types of
DNS responses: those destined for the University’s local caching resolvers, and
responses leaving the University’s own authoritative nameservers. The former
are most interesting for our purposes here, but we did not attempt to filter out
the latter from our database.

The sensors have a cron job that runs every hour. First, a new tcpdump
process is launched. Then, the existing tcpdump process is killed. The pcap file
containing data from the previous hour is compressed and sent to the collector.

Our database resides on the collector. The database holds only collected DNS
data relevant for our research. The relevant data includes:

– Query name (name of the original query)
– Resource Record (RR) type (query type [7], ie A for address records)
– Resource Record data (answer returned by the authoritative DNS server)
– TTL (Time To Live) – value in seconds, set by the authoritative server, that

allows the client DNS server or resolver to cache the answer
– First Seen Timestamp – timestamp showing when our sensor first saw this

record

Rows in the database correspond to resource records in the Answer section of the
DNS reply. We do not store records from the Authority or Additional sections.

Incoming pcap files are preprocessed by a program that unpacks the DNS
messages and removes any duplicate entries. Duplicates typically occur for pop-
ular names with short TTLs. Since the only timestamp in our database is the
First Seen column, a duplicate answer does not update the database and can be
safely discarded. The collector runs on a system with an Intel Pentium 4D 3GHz
processor and 2 GB of RAM. During peak times the collector imports 270,000
DNS messages in approximately 3 minutes.

Our sensors and collector have been running at the University of Auckland
since 15 May 2006. As of 15th of January 2007 we have 260 GB of raw DNS
data (uncompressed pcap files) and 50 million DNS records in the database. We
archive raw pcap files on the collector, but only after zeroing out the source and
destination IP addresses with Minshall’s tcpdpriv utility [8].

132 B. Zdrnja, N. Brownlee, and D. Wessels

4 Results

4.1 Collected Data

Captured DNS data shows a high number of NX (non existent) DNS domains.
Fig. 1 shows received authoritative DNS replies for the University of Auckland
sensor, with separate traces showing nonexistant domain (NX) responses and
“valid” (see Table 1) responses. The month of September 2006 exhibits a very

0.0

50.0

100.0

150.0

200.0

250.0

300.0

01 Jun 2006 01 Jul 2006 01 Aug 2006 01 Sep 2006 01 Oct 2006

Thousands of Valid & NXDomain DNS replies, captured at Auckland during 2006

valid replies
NXDomain replies

Fig. 1. Authoritative DNS replies captured at Auckland in 2006

different pattern from the previous months. During this month (and several
months later), the University of Auckland network was flooded with incoming
spam e-mail messages. Since the deployed anti-spam system tries to resolve all
domain names and IP addresses seen in e-mail messages, this resulted in a huge
increase in processed DNS replies.

4.2 Resource Record Type Prevalence

The current version of the dnsparse application running on the collector can
successfully parse 15 resource record types. These types were identified as most
commonly used in the first two weeks of captured data. Table 1 shows the dis-
tribution by resource record type of valid DNS response records in the collected
data.

4.3 Impact of Anti-spam Tools on the DNS System

Table 1 shows that address (A) resource records are responses to the major-
ity of queries. While Jung et al [9] attributed this type of behaviour to user
activities (web site browsing) our analysis shows that the biggest contributors
to a high rate of A queries are anti spam engines. Spam detection depends

Passive Monitoring of DNS Anomalies 133

Table 1. Distribution of resource record types in DNS replies (answer section only)

RR type Number of records Percentage

A (1) 24096932 57.00
NS (2) 757825 1.79
CNAME (5) 652126 1.54
SOA (6) 16281 0.04
PTR (12) 11261024 26.64
MX (15) 2433120 5.76
TXT (16) 3047556 7.21
AAAA (28) 2202 0.005
SRV (33) 705 0.002

Total: 42267771 100%

on DNS to retrieve data from various real time black lists (RBLs). Spam soft-
ware installed at the University of Auckland includes SpamAssassin, which will
query several RBLs by default. For every domain detected in a message that
is scanned, SpamAssassin will attempt to resolve it by issuing an A query for
the domain in question. If the domain is successfully resolved, SpamAssassin
will query various RBLs in order to determine if the IP address has been black-
listed as sending spam. Queries to RBLs are also A type queries and answers.
Depending on whether the tested IP address is present in the block list or not,
the RBL DNS server will either return an authoritative DNS response in the
127.0.0.0/8 range (various codes are used, depending on the queried block list)
or a “no such record” (NX) response. The database contains 12.2 million re-
source records that were responses to RBL queries. This accounts for 29% of all
valid DNS responses received by the University of Auckland. We believe that this
number is even higher for NX domain responses. The number of TXT resource
records, while not very high, is also related to e-mail processing. The gateway at

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

20 May 2006 27 May 2006 03 Jun 2006 10 Jun 2006 17 Jun 2006

Millions (10e6) of DNS replies collected in database at Auckland during 2006

Fig. 2. Size of the database (distinct FQDNs) at Auckland during 2006

134 B. Zdrnja, N. Brownlee, and D. Wessels

the University of Auckland uses SPF [10] to verify whether the e-mail sender’s
address has been spoofed, and SPF uses TXT resource records to list legitimate
e-mail servers for a particular domain.

Figure 2 shows the size of our database as more FQDNs were added to it
during 2006. Clearly, the database growth shows no sign of slowing; further
evidence that spammers continue to fill DNS with more and more domains.

4.4 Typo Squatter Domains

Typo squatting is based on incorrect URLs entered by end users in their browsers.
Mistyping of domains is very common and can be generally divided into several
categories [11]:

– Spelling mistakes (www.aukcland.ac.nz or www.aukland.ac.nz)
– Typing mistakes (www.eikipedia.org)
– Top-level domain appending(www.auckland.ac.nz.com) [12]

We found, by manual inspection, several highly exposed typo squatting domains
in the database. Some of these are shown in Tables 2 and 3. The IP address
shown in Table 2 hosted 1377 domain names, all of which were typo squatter
domains. The content on all hosted web sites was the same and consisted of a
search engine with various advertisements. Microsoft recently published a list of
temporarily unused (parked) typo squatting domains as a result of the Strider
URL Tracer with Typo-Patrol [13].

Table 2. Typo squatting domains based on mistyped words

DNS query Answer RR type Entry added TTL

www.gmaio.com 64.20.33.131 A 16/5/2006 7200
openopffice.org 64.20.33.131 A 17/5/2006 7200
www.forcasts.org 64.20.33.131 A 18/5/2006 7200
www.hontmail.com 64.20.33.131 A 19/5/2006 7200
www.eikipedia.org 64.20.33.131 A 19/5/2006 7200
economist.com 64.20.33.131 A 23/5/2006 7200

A lot of typo squatter domains that have been identified in our database use
wildcard DNS records. As wild card DNS zones allow an administrator to setup
resolution of any query in the zone he is controlling (for example, a “*.auk-
land.ac.nz” wildcard shown below will return the same response for any query
for a host or subdomain in the aukland.ac.nz domain), all records that have
been collected for such zones are directly a result of end users’ activities. While
the investigation of detected typo squatter domains targeting large populations
(such as those targeting Wikipedia or University of Auckland) did not reveal any
malicious activities, the risk associated with them is high as users who mistyped
a subdomain rely on visual detection. Using cryptographic technologies for ver-
ification, such as SSL, is also of no help in this example if the attacker can install

Passive Monitoring of DNS Anomalies 135

Table 3. Typo squatter domains attacking University of Auckland users

DNS query Answer RR type Entry added TTL

aukland.ac.nz 70.85.154.28 A 16/5/2006 43200
aukland.ac.nz 64.111.218.142 A 22/12/2006 43200
www.aukland.ac.nz aukland.ac.nz CNAME 16/5/2006 43200
www.cs.aukland.ac.nz aukland.ac.nz CNAME 17/5/2006 43200
webmail.ec.aukland.ac.nz aukland.ac.nz CNAME 29/5/2006 43200
gateway.aukland.ac.nz aukland.ac.nz CNAME 18/7/2006 43200

a SSL certificate for the hosted, typo squatter domain. In such an attack, the
victim would have to detect the mistyped URL in order to detect the attack.

4.5 Fast Flux Domains

Fast flux DNS domains are those that have rapidly changing resource records.
They also typically have low TTLs. Fast flux DNS domains are typically used
for command and control servers [14] by worms. Once a target machine has
been infected, it will talk to a central command and control server for further
instructions (other stages of malware download, attacks etc.). To prevent easy
location and take-down of the control and command server, attackers hard code a
DNS domain in malware and frequently change the IP address it points to. This
makes address-based perimeter network control of infected machines difficult
as an administrator can not block IP traffic towards a particular IP address.
Instead, an administrator needs to block access to a certain domain name, which
can be done only on the main DNS server in an organization.

We have also observed another typical use of fast flux DNS domains, on web
sites running on compromised machines. Spamming operations typically use fast
flux domains to change IP addresses of the target web sites per different spam
runs. The domain shown in table 4 was used only for three days, for a limited

Table 4. Fast flux domain records

DNS query Answer RR type Entry added TTL

contryloansnow.com 82.155.116.90 A 22/5/2006 07:52:15 5
contryloansnow.com 80.192.79.212 A 22/5/2006 07:52:17 5
contryloansnow.com 217.209.81.86 A 22/5/2006 08:21:18 5
contryloansnow.com 62.167.58.207 A 22/5/2006 08:22:21 5
contryloansnow.com 68.85.56.47 A 22/5/2006 08:22:24 5
contryloansnow.com 193.77.253.115 A 22/5/2006 08:25:07 5

spam run and changed its IP address 80 times. By reverse resolving IP addresses
and geographically locating them we see (table 5) that they are scattered around
the world and mainly located on cable/DSL line connected machines. Fast flux
DNS domains can be detected by deploying external agents that query the data-
base and sort results by number of associated resource records in various time

136 B. Zdrnja, N. Brownlee, and D. Wessels

Table 5. PTR records and geographical location of hosts used for a fast flux domain

IP address PTR record(s) Geographical location

82.155.116.90 bl6-116-90.dsl.telepac.pt Portugal, Europe
80.192.79.212 80-192-79-212.cable.ubr01.edin.blueyonder.co.uk U.K., Europe
217.209.81.86 h86n2fls33o1110.telia.com Sweden, Europe
62.167.58.207 adsl-62-167-58-207.adslplus.ch Switzerland, Europe
68.85.56.47 c-68-85-56-47.hsd1.ga.comcast.net United States
193.77.253.115 BSN-77-253-115.dial-up.dsl.siol.net Slovenia, Europe

intervals. This way it is possible to detect potentially malicious DNS domains, if
a certain threshold has been reached. TTL will generally have a low value for fast
flux domains as the attacker needs client machines to resolve the domain name
frequently, otherwise they will try to connect to the old cached IP addresses.

4.6 Anomalous Records

Sorting the captured records by various criteria can be used to detect unusual
records or activities. While searching for records with low TTL values can gen-
erally be useful in detection of fast flux domains, in order to detect anomalous
records we need to perform a full database search.

A typical abuse can be detected by sorting DNS names (queries) by number
of associated responses. Besides easy detection of fast flux domains, which will
have hundreds, and sometimes thousands, of associated A records, this method
detected some anomalous activities, as shown in Table 6, for the ntc.net.pk
domain. The ntc.net.pk domain has in total 1319 A records associated. It is

Table 6. DNS records for ntc.net.pk domain

DNS query Answer RR type Entry added TTL

ntc.net.pk 202.83.160.238 A 15/5/2006 22:15:27 15
ntc.net.pk 202.83.168.98 A 16/5/2006 11:16:17 15
ntc.net.pk 202.83.168.7 A 16/5/2006 15:34:34 15
ntc.net.pk 202.83.174.29 A 16/5/2006 15:39:53 15
ntc.net.pk 202.83.175.65 A 16/5/2006 15:40:17 15
ntc.net.pk 202.83.174.174 A 16/5/2006 15:41:14 15

not clear what is the purpose of such DNS responses nor how and why were
they resolved by systems or users at the University of Auckland. The WHOIS
database [15] confirms that addresses 202.83.160.0–202.83.175.255 belong to the
National Telecom Corporation in Pakistan so it seems that the name ntc.net.pk
resolves to almost all IP addresses used by NTC. Manually querying the DNS
server for ntc.net.pk returns only 8 IP addresses, which seem to randomly change
every time this domain is resolved. This means that, in order to populate the
DNS database, this DNS domain was resolved at least 480 times (3840 addresses
in the block divided by 8 addresses per reply) by University of Auckland users.

Passive Monitoring of DNS Anomalies 137

4.7 Record Reputation

In a vast majority of cases, spammers sell their product through various web sites.
The creation of SURBL (Spam URI Realtime Blocklist [16]) caused spammers
to increasingly start using different domains per spam run, so called ‘throw
away’ domains. The idea behind this is to register a new domain, run a spam
campaign using that domain and then switch to a different domain. By doing
this, spammers are trying to avoid their domain being blacklisted on SURBL;
by the time the domain is blacklisted, the spammers have sent enough e-mails
and will switch to a different domain.

By checking historical behavior of an IP address and associated DNS resource
records with it, particularly NS records, it is possible to calculate the ‘reputation’
of a new DNS domain. The link in establishing whether the new domain is
good or bad is through one of its NS records. The reputation can be calculated
by checking the history of a particular record to see how many (and which)
domains referred to it, or to a particular IP address. Table 7 lists domains

Table 7. Domains using ns0.quijindeshkinmas.com DNS server

DNS query Answer RR type Entry added TTL

funhderinmdasewio.com ns0.quijindeshkinmas.com NS 24/9/2006 300
vertionmdefunshjin.com ns0.quijindeshkinmas.com NS 24/9/2006 300
...
saderuijtungandsunastre.com ns0.quijindeshkinmas.com NS 8/12/2006 300
...
badesuijintunfeungan.com ns0.quijindeshkinmas.com NS 13/12/2006 300

that have been used in various spam runs, and are pointing to one DNS server.
These are also the only domains associated with the ns0.quijindeshkinmas.com
DNS server. Checking the ‘reputation’ of a DNS server in this way, we can
determine whether a newly registered/seen domain has spam/malicious elements
or not. For example, if the anti-spam system detects a new domain that has
ns0.quijindeshkinmas.com as its NS record, the system can automatically deduce
that this domain is malicious or used for spam because historically there have
been no legitimate records related to this DNS server. This information can then
be used similarly to all other rules in SpamAssassin.

Detected spam related domains shared the following characteristics:

– FQDNs end in a top level domain, such as .com
– Domain names are not English words
– All domains use ns0.quijindeshkinmas.com and ns0.kilonherunhasedun.com

as their DNS servers.
– A records for particular domains are used only while the spam run associated

with this domain is active. After it ends, the domain is left idle. A records
are also spread around various providers.

138 B. Zdrnja, N. Brownlee, and D. Wessels

5 Conclusion and Future Work

Passively collected DNS data stored in a database allows one to determine histor-
ical behavior of particular DNS records, and of the linkages between them. Since
the quality of data and possibilities for analysis rise with the number of sen-
sors (or the clients whose DNS traffic is being monitored), installing additional
sensors, around the world should enable better detection of anomalies.

Automated analysis of data in the database could quickly detect anomalies
and malicious attacks and thereby serve as an early alert system against spam
and worm attacks.

The data should be crawled with specialized agents, such as Microsoft’s Strider
URL Tracer [13] to allow for near to real time detection of malicious domains.
Unfortunately, our data has been already seen, i.e. a client tried to resolve it, but
it should still be possible to black list the domain and alert other users which
makes the viable time for an attack shorter and an attackers job more difficult.

We hope to establish a set of six to ten geographically dispersed sensors that
would allow collection of DNS data from different user groups. We invite readers
to contact us if they are willing to participate. We will also make the web interface
for querying the database available to the public.

References

1. Mockapetris, P.V., Dunlap, K.J.: Development of the Domain Name System. In:
ACM Symphosium proceedings on Communications architectures and protocols
(SIGCOMM 88), vol. 18(4) (1998)

2. RUS-CERT: Passive DNS replication, http://cert.uni-stuttgart.de/stats/
dns-replication.php

3. Schonewille, A., Helmond, D.v.: The Domain Name Service as an IDS. Research
Project for the Master System- and Network Engineering at the University of
Amsterdam (February 2006)

4. Kristoff, J.: DNSWatch, http://aharp.ittns.northwestern.edu/software/
dnswatch

5. Elton, N., Keel, M.: A Discussion of Bot Networks. EDUCAUSE 2005 (April 2005)
http://www.educause.edu/ir/library/pdf/SPC0568.pdf

6. TCPDUMP/libpcap public repository, http://www.tcpdump.org
7. Mockapetris, P.: Domain Names Implementation and Specification. RFC 1035 (No-

vember 1987)
8. Tcpdpriv – A program for eliminating confidential information from packets col-

lected on a network interface (October 2005)
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html

9. Jung, J., Sit, E., Balakrishnan, H., Morris, R.: DNS Performance and the Effec-
tiveness of Caching. ACM Transactions on Networking 10(5), 589–603 (2002)

10. Wong, M.: Sender Authentication What To Do. A Messaging Anti-Abuse Working
Group White Paper (November 2004) available at
http://www.openspf.org/whitepaper.pdf

11. Sequitur IPS: Domain name disputes, cybersquatting and UDRP cases.
http://www.sequitur-ips.com/domain-name-disputes/library.html

http://cert.uni-stuttgart.de/stats/dns-replication.php
http://cert.uni-stuttgart.de/stats/dns-replication.php
http://aharp.ittns.northwestern.edu/software/dnswatch
http://aharp.ittns.northwestern.edu/software/dnswatch
http://www.educause.edu/ir/library/pdf/SPC0568.pdf
http://www.tcpdump.org
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html
http://www.openspf.org/whitepaper.pdf
http://www.sequitur-ips.com/domain-name-disputes/library.html

Passive Monitoring of DNS Anomalies 139

12. Gavron, E.: A Security Problem and Proposed Correction With Widely Deployed
DNS Software. RFC 1535 (October 1993)

13. Wang, Y., Beck, D., Wang, J., Verbowski, C., Daniels, B.: Strider Typo-Patrol:
Discovery and Analysis of Systematic Typo-Squatting. Microsoft Research Tech-
nical Report (to be submitted to the 2nd Usenix Workshop on Steps to Reducing
Unwanted Traffic on the Internet (SRUTI 06))
http://research.microsoft.com/URLTracer

14. Evron, G., Blog, S.: Looking behind the smoke screen of the Internet: DNS recursive
attacks, spamvertised domains, phishing, botnet C&Cs, International Infrastruc-
ture and you, http://blogs.securiteam.com/index.php/archives/298

15. Daigle, L.: WHOIS: Protocol Specification. RFC 3912 (September 2004)
16. SURBL Spam URI Realtime Blocklists, http://www.surbl.org
17. Weimer, F.: Passive DNS Replication. FIRST 2005 (April 2005)
18. Internet Engineering Task Force: Requirements for Internet Hosts Application and

Support. RFC 1123 (October 1989)
19. Vixie, P.: Extension Mechanisms for DNS (EDNS0). RFC 2671 (August 1999)

http://research.microsoft.com/URLTracer
http://blogs.securiteam.com/index.php/archives/298
http://www.surbl.org

Characterizing Dark DNS Behavior

Jon Oberheide1, Manish Karir2, and Z. Morley Mao1

1 Electrical Engineering and Computer Science
University of Michigan, Ann Arbor MI 48105

{jonojono,zmao}@umich.edu
2 Networking R&D

Merit Network Inc, Ann Arbor MI 48105
mkarir@merit.edu

Abstract. Security researchers and network operators increasingly rely
on information gathered from honeypots and sensors deployed on dark-
nets, or unused address space, for attack detection. While the attack
traffic gleaned from such deployments has been thoroughly scrutinized,
little attention has been paid to DNS queries targeting these addresses.
In this paper, we introduce the concept of dark DNS, the DNS queries
associated with darknet addresses, and characterize the data collected
from a large operational network by our dark DNS sensor. We discuss
the implications of sensor evasion via DNS reconnaissance and empha-
size the importance of reverse DNS authority when deploying darknet
sensors to prevent attackers from easily evading monitored darknets.
Finally, we present honeydns, a tool that complements existing network
sensors and low-interaction honeypots by providing simple DNS services.

Keywords: DNS, reconnaissance, honeypots, sensors, darknets.

1 Introduction

The emergence of sophisticated malware has led security researchers to develop
innovative tools to study and combat its malicious activities. Honeypots, intru-
sion detection systems, and a multitude of other host and network based sensors
have aided researchers extensively in their endeavors. These sensors provide a
wide range of functionality, from simply responding to network requests, to emu-
lating vulnerable services and operating systems, all the way to simulating entire
virtual network and host topologies. Security researchers and network operators
commonly deploy honeypots and other sensors on dark, or unused, address space
to gather malware, analyze new exploit techniques, and study long-term attack
trends.

To maintain their usefulness, it is vital that these sensors be resistant to re-
mote identification and fingerprinting techniques that attackers may employ. As
the arms race between malware authors and researchers continues, increasingly
sophisticated attacks can utilize evasion techniques in order to avoid detection
and identification. By performing reconnaissance to map valuable targets, an
attacker can build specific target lists. Additionally, reconnaissance can identify

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 140–156, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Characterizing Dark DNS Behavior 141

monitoring systems that should be avoided. The use of DNS identifying poten-
tial targets is well known. In this paper we describe how the lack of appropriate
DNS support for sensor address space can be used by malware to identify darknet
monitoring systems. Such DNS reconnaissance utilizes PTR record DNS queries
which attempt to resolve an IP address to a hostname. While current honeypots
and darknet sensors are effective at analyzing traffic targeted at their addresses,
they fail to consider out-of-band probes inquiring about their addresses, namely
DNS queries. We appropriately label these queries as dark DNS. Dark DNS
queries are not received by the darknet sensors themselves; instead, they are
directed at the DNS nameserver that is authoritative for the darknet. Such dark
DNS traffic is due to one of these reasons: DNS mapping efforts, backscatter,
misconfiguration, or malicious reconnaissance.

In this paper, we measure and characterize dark DNS activity. We obtained
DNS authority over two class B (/16) darknets and were able to direct this dark
DNS traffic to our sensor for collection. We measured three distinct datasets, each
collecting a week’s worth of data: one from passively monitoring the incoming
queries, one from actively responding with a NXDOMAIN (non-existent domain)
error code, and one from actively responding with a valid hostname IP address
queries. We present the behavioral patterns of dark DNS via these measurements
and provide insight into the origin of such anomalous traffic.

Reverse DNS probing can be an effective technique for evading darknet mon-
itors. Due to the recursive nature of queries and the hierarchical operation of
DNS, an attacker can perform reconnaissance on a target network without send-
ing any probe traffic directly to that network and without revealing the attacker’s
source. These characteristics make DNS reconnaissance a lucrative feature for
sophisticated malware and a viable method for evasion. We show how this tech-
nique can be used maliciously to evade several large-scale darknet monitoring
systems while still maintaining effectiveness against live hosts.

In order to mitigate the threat posed by this evasive technique, we discuss the
proper methodology for delegating reverse DNS for darknet sensor deployments.
We also present a defensive countermeasure, designed to complement current
honeypot systems, to prevent sensor evasion based on DNS reconnaissance. Our
tool, honeydns, implements a lightweight DNS responder which is able to reply to
PTR queries for large darknets with appropriate records. Honeydns can be easily
used to complement and properly configure a large-scale honeypot deployment.

To summarize, our work has the following contributions. We present the first
detailed study to characterize and illustrate a significant amount of dark DNS
traffic consisting of over 1.48M queries over three weeks. A significant portion
of the dark DNS traffic is observed to originate from DNS mapping efforts by
Akamai. Aside from dark DNS analysis, our work is the first to highlight the
importance of properly configuring darknet DNS servers to prevent the use of
PTR reconnaissance as an effective evasion vector. Our honeydns tool provides
a lightweight and flexible way to build a more complete darknet sensor by facil-
itating the ability to correctly respond to DNS queries for a particular darknet
and making it appear to contain valid hosts.

142 J. Oberheide, M. Karir, and Z.M. Mao

The rest of this paper is organized as follows: In Section 2, we provide an
introduction to the operation of the Domain Name System and describe common
queries types and response codes. Next, in Section 3, we discuss recent related
work. In Section 4, we discuss our collection and experimentation setup. We then
present a thorough analysis of our experiment results in Section 5. In Section 6,
we discuss the implications of our results, and finally, in Section 7, we summarize
our contributions and describe some future work.

2 Domain Name System

The Domain Name System (DNS), defined in RFCs 1034 [1] and 1035 [2], is a
hierarchical, distributed database which provides essential name-resolution ser-
vices to Internet applications. In order to perform a DNS query, a resolver will
traverse the DNS hierarchy to locate the appropriate authoritative server that
can answer its query. Given the address of a root nameserver, which resolvers
are typically seeded with, the resolver can query for the address of the next
level authoritative nameserver. By recursively performing this process through
the hierarchical tree, the resolver will eventually reach the nameserver that is
authoritative for the specified query. Once that server is identified, the answer to
the query is retrieved by the resolver, completing its query. The DNS infrastruc-
ture supports many different query types, of which Address (A) and Pointer
(PTR) are the most common.

Address (A) Records. Address record lookups perform the translation from
a hostname to an IP address and are the most common DNS query performed.
When a user connects to a service which is referred to by a domain name, a DNS
query is performed to determine the endpoint IP address to connect to.

Pointer (PTR) Records. PTR records provide the reverse translation of A
records by mapping an IP address to a hostname. The lookup is performed by
transforming the queried IP address into a special, yet legitimate, domain name.
For example, the domain name formed for a query for the IP address aa.bb.cc.dd
is dd.cc.bb.aa.in-addr.arpa. The ”.arpa” portion is a special top-level domain
created specifically for these reverse PTR queries. A PTR query operates in
the same manner as an A query by starting at the root and traversing the
DNS hierarchy. Once the authoritative zone is reached, the authoritative server
will return the hostname associated with the queried IP address. PTR queries
are commonly used by network services such as SSH and SMTP to validate
connecting clients.

Query Responses. For A record query, the DNS server responds with the ap-
propriate IP address and for a PTR query the server responds with the hostname
associated with the query IP address. Additionally, there are numerous status
codes that are returned for a DNS query, three of the most common ones are
SERVFAIL, NXDOMAIN, and NOERROR. If a resolver is able to determine
the address of an authoritative server, but the server is not responding, the re-
solver will return SERVFAIL. On the other hand, if the authoritative server is

Characterizing Dark DNS Behavior 143

responding but does not possess any records that correspond to the query, it
will return NXDOMAIN. If all goes well and the authoritative server is able to
answer the resolver, the NOERROR code will be sent. If a darknet sensor is
configured without the accompanying DNS configuration changes, PTR queries
for the darknet would result in NXDOMAIN replies being generated.

3 Related Work

Our work is related to several areas of previous studies on DNS and darknets
which we briefly describe here.

DNS has long been a favorite target for attackers due to its critical role in the
Internet infrastructure and the inherent lack of security in the operation of DNS.
One of the earliest uses of DNS for malicious attacks was described in 1990 and
demonstrated how attackers could utilize a weakness in DNS lookups to subvert
system security [3]. Given that the purpose of DNS is provide information about
hosts, it is not surprising that it could be used for attack reconnaissance. A
common way to perform such probing was the use of a zone transfer [4] to obtain
the entire set of hosts that a server is authoritative for. Many administrators
subsequently started to secure their servers with proper access controls. As zone
transfers are rarely effective anymore, attackers have turned to tools such as
TXDNS [5] to map the namespace of a domain strictly through brute-force A
record queries using a dictionary.

While network and host based intrusion detection have been studied exten-
sively, attack detection by monitoring DNS is just starting to get the attention it
deserves. Malware employing spamming services can easily be detected by their
emission of a large number of MX queries [6]. Botnet activity can be inferred via
DNS query patterns and maintained blacklists [7,8]. Correlation of DNS activity
with regular IP traffic can even be used to detect malware scanning and zero-day
worm outbreaks [9]. While these techniques have focused on detecting malicious
activity by observing DNS queries, in this paper we focus on characterizing DNS
activity for unused portions of the IP address space.

Given the very purpose of monitoring darknet is to detect malicious activities,
it is critical to avoid revealing the location of the darknet sensors to prevent
evasion. Previous work demonstrated the ease of detecting the location of general
network sensors [10,11] through active probing. Recent work by Rajab et al. [12]
describes how evasive techniques can be used by malware to detect honeypots by
selective sampling of IP address space. Discrepancy in the behavior in responding
to incoming probes can also be exploited for sensor detection, as shown by a
honeyd scanner called Winnie [13]. Our proposed honeydns tool provides the
darknet sensors with higher resistance to discovery and complements other tools
for configuring darknets such as [14].

Our work builds on previous DNS characterization work of both DNS root
servers [15,16,17] as well as local resolvers [18]. DNS can be used to estimate
network distance between hosts by exploiting a large number of open-resolver
DNS servers [19]. Similar to the AS112 Project, which uses separate servers to

144 J. Oberheide, M. Karir, and Z.M. Mao

answer PTR queries for RFC1918, dynamic DNS updates and other ambiguous
addresses, our work focuses on measuring DNS behavior in address spaces with
no legitimate live hosts.

4 Methodology

For our experiments we obtained two class B (/16) darknet address blocks and
delegated DNS authority for these subnets to our dark DNS collector. We then
proceeded to gather three datasets for our experiments, collecting a week of
DNS traffic for each dataset. For the first dataset we simply passively recorded
all incoming queries to our delegated subnets without any active responses. The
goal of this experiment was to obtain an accurate measure of DNS activity for
these subnets without any external influence. The second dataset was obtained
by repeating the first experiment, but, instead of passively monitoring, replying
to the queries with the NXDOMAIN (non-existent domain) error code. NXDO-
MAIN is the error code usually received when no resource record is found for a
query. The third dataset was obtained by replying to incoming PTR queries with
a valid hostname response. The format used for this hostname was host-{a-b-c-
d}.merit.edu in response to PTR queries for any IP a.b.c.d within our darknet.
The DNS time-to-live of the responses was set to zero to ensure resolvers would
not cache our response. The goal of collecting these three distinct datasets is to
examine DNS probe traffic under three common scenarios.

Table 1. The Measurement Datasets

Response Type A/16 B/16 A/16+B/16 Duration

No Response NR A NR B NR TOTAL 7 days
NXDOMAIN Response NX A NX B NX TOTAL 7 days
Valid Response VR A - VR TOTAL 7 days

Table 1 shows our three datasets and the terminology we will use to refer to
them throughout the rest of the paper. The first dataset where the DNS server
sent out no responses to any queries are called NR A and NR B (No Response)
respectively for the two /16 darknets A and B. Similarly, the second one where
the DNS server responded with NXDOMAIN replies are called NX A and NX B.
The third dataset, where we replied with valid responses to PTR queries, is called
VR A (Valid Response). Due to an administrative issue, response dataset VR B
was not captured. Each of the three datasets represents 1 week of data collection.
We refer to the combined data from both subnets if available as NR TOTAL,
NX TOTAL, and VR TOTAL.

During collection periods, our dark DNS sensor archived each incoming query
in a SQLite database backend for subsequent analysis. An extensive schema
was used to capture various aspects of each DNS query. The information col-
lected includes IP layer details such as the source IP, identification number, and

Characterizing Dark DNS Behavior 145

time-to-live (TTL) value, transport layer details such as the source port, and
DNS details such as the type, id, and query.

For the second part of our study, we obtained one day of NetFlow data from a
regional ISP to help identify the feasibility of using PTR scanning to detect live
hosts on the Internet. We extracted only IP addresses from the NetFlow data
where the TCP ACK flag was set. This ensures that SYN scanning or spoofing
does not influence our results. For each of these addresses we performed a query
to determine whether that particular live host had an associated PTR entry.

5 Data Analysis

Next we describe our analysis of the three datasets illustrating the presence of
potentially malicious DNS activities of the monitored darknets, as aside from
DNS mapping there should not be any legitimate DNS traffic for such address
space. We expect the darknet DNS traffic to be caused by one of these reasons:
(1) DNS mapping efforts such as that by Internet Systems Consortium [20],
(2) Backscatter [21] due to spoofed darknet traffic triggering subsequent DNS
queries by monitoring systems, (3) misconfiguration, (4) PTR reconnaissance by
attackers to identify live hosts for attack targeting.

5.1 Basic Statistics

Table 2 illustrates the basic statistics of our three datasets. As described earlier,
our first dataset is designed to gather the raw queries that are associated with
the addresses of our delegated darknets. The second dataset shows the continued
query activity despite correct NXDOMAIN responses. By comparing these two
datasets we can establish the primary characteristics of dark DNS queries. We
observe an order of magnitude more queries for the first dataset, which we believe
is due to query timeout retries. Interestingly, the unique target probed in the first
dataset is more than 88% of all the addresses covered by the two /16s monitored,
indicating the behavior of PTR scanning for these two address blocks.

Table 2. Basic dark DNS query statistics. Query rates are per 5 minute interval.

Dataset Queries Unique Sources Unique Targets Avg Query Rate Max Query Rate

NR A 714K 11.2K 64.1K 353.70 5501
NR B 606K 11.8K 52.2K 300.34 2725

NR Total 1.32M 17.0K 116K 654.8 5553

NX A 57K 8.59K 28.9K 27.56 552
NX B 58K 9.09K 29.4K 28.79 560

NX Total 115K 13.1K 58.4K 57.1 825

VR A 45K 7.45K 24.2K 22.35 321
VR B - - - - -

VR Total 45K 7.45K 24.2K 22.35 321

146 J. Oberheide, M. Karir, and Z.M. Mao

Table 3. Query Type Distribution for NX Total

Query Code Query Type Count Percentage

1 A 81 0.0704%
6 SOA 683 0.5937%
12 PTR 114214 99.2846%
15 MX 4 0.0035%
33 SRV 32 0.0278%
255 ANY 23 0.0199%

For the third dataset, in which our DNS responder replies with host-{a-b-c-
d}.merit.edu in response to PTR queries for any IP a.b.c.d within our darknet,
we observe slightly lower query rate compared to the second setting with NX-
DOMAIN responses. We conjecture this can be due to resolvers being satisfied
with replies likely to indicate legitimate hosts and therefore stop probing early
rather than continuing its scanning activity.

Over the course of our three-week experiment, our darknet DNS sensor re-
ceived over 1.48 million queries. They originate from more than 8000 IP prefixes
and 3900 ASes. Table 3 shows the distribution of various query type codes ob-
served in the incoming DNS queries for the second dataset. We observed similar
distribution for the other two datasets. The vast majority of these as expected
are PTR queries though we do observe an occasional A record request and even
a few MX queries.

5.2 Query Rate

Figure 1 presents the query rate that is observed via our dark DNS monitor
for the A/16 subnet. The figure shows the number of queries received in 30
minute intervals for the NR A, NX A, and VR A datasets during the course
of our experiments. It shows a fairly high rate of queries over the one week
measurement time period for all three datasets. There are two distinct bands
visible in the data. The lower band represents query rates observed in the NX A
and VR A datasets. These are significantly lower than the query rates observed
in the NR A dataset. We believe that the higher rates observed for the NR A
dataset are caused by servers attempting to repeatedly retrying to resolve the
same IP address in the absence of any reply.

The average number of queries observed in the NX A and VR A datasets
over a 5 minute interval is 27.5 and 22.3 respectively while the query rate for
the NR A dataset is an order of magnitude greater at 353.7. The maximum rate
observed is also significantly different depending on whether our server actively
responds to dark DNS queries.

Figure 1 shows a couple of interesting features as well. The first is the sporadic
peaks in the query rate observed in the NX A and VR A datasets from the
lower band. These peaks are roughly a value of 256 above the lower band, or
the size of a /24 subnet, caused by a deliberate scan of that subnet. The second

Characterizing Dark DNS Behavior 147

 10

 100

 1000

 10000

 100000

7654321

N
um

be
r

of
 Q

ue
rie

s
(L

og
sc

al
e)

Day Intervals

DNS Queries Per 30 Minutes - 7 Days

 NR
 NX
 VR

Fig. 1. Number of Queries per 30 Minute Interval - A/16

interesting feature is the significant reduction in the query rate observed in the
NR A dataset around day 4 following a short-lived spike. We will discuss this
particular anomaly in greater detail in Section 5.4.

5.3 Query Targets

In order to better understand the nature of dark DNS queries, we analyzed the
distribution of IP address that these queries were attempting to resolve. For this
analysis we used all three datasets obtained via our collector on the A/16 subnet
and for each dataset we computed the number of queries for hosts in each /24
subnet of this address space. A clustering or unusually large number of queries
for a particular target address would indicate a bias in query targets. Figure
2 shows the resulting graph from our analysis. The x-axis represents each /24
subnet of our /16 and the y-axis depicts the number of queries. There are no
obvious spikes or clusters visible indicating that the queries are roughly randomly
distributed across the entire A/16 subnet. The NR A query rate is clearly much
higher than the query rates for the VR A and NX A datasets, which exhibit
similar behavior.

5.4 Query Sources

One of the most intriguing characteristics of the dark DNS data is the source
from which the queries originate. In this section, we discuss and illustrate several
important aspects of the source of these dark DNS queries.

148 J. Oberheide, M. Karir, and Z.M. Mao

 100

 1000

 10000

.224.0.192.0.160.0.128.0.96.0.64.0.32.0

N
um

be
r

of
 Q

ue
rie

s
(L

og
sc

al
e)

Target IP

PTR Target Distribution Per /24

 NR
 NX
 VR

Fig. 2. Query Target IP Address Distribution - A/16

Table 4. Top 10 Sources by Percentage of Total Queries

Rank Source IP Percentage

1 69.15.35.X 29.0315%
2 156.45.232.X 1.2431%
3 24.93.41.X 0.5537%
4 65.24.7.X 0.4198%
5 200.169.8.X 0.4172%
6 24.92.226.X 0.4085%
7 212.27.54.X 0.3833%
8 212.27.54.X 0.3712%
9 24.25.5.X 0.3694%
10 216.219.254.X 0.3659%

Top Talkers. Table 4 lists the 10 largest contributors to our dark DNS data
measurements. These measurements are based on the NX TOTAL dataset. What
is perhaps the most interesting feature of this data is that a single source IP
is responsible for almost 30% of the queries. We believe that this is largely a
result of large scale DNS mapping performed during our study. We discuss this
characteristic further in the following sections.

Source Distribution. The left graph of Figure 3 shows the number of unique
source IP addresses we observed in the NX TOTAL dataset over time. As the

Characterizing Dark DNS Behavior 149

figure is of linear shape, indicating that over time we are continuing to receive
queries from more unique sources that have not queried us before instead of
repeated queries from the same set of hosts. This indicates that it is infeasible
to block such traffic from the network via simple firewall rules. However, as this
figure does not show a completely straight line, given fairly constant query rate
over each day, we can conclude that a very small fraction of the total sources
are in fact continuing to send queries to our dark DNS collectors over time.

The right graph of Figure 3 shows the percentage of sources as a function of the
percentage of total queries. The figure shows a sharp initial increase indicating
that a small percentage of the sources are contributing to a large percentage of
queries in our NX TOTAL dataset. The increasing width of the boxes indicate
that an increasingly greater percentage of unique sources is needed to account
for each additional 5% of the total queries.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

7654321

%
 o

f S
ou

rc
e

IP
s

Time - Day Intervals

Source IP / Time Distribution Per 5 Minutes - 7 Days

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f T
ot

al
 Q

ue
rie

s

% of Source IPs

Total Queries / Source IP Distribution

Fig. 3. Source IP distribution: growth over time, query contribution

Table 5. Top 10 Contributing Autonomous Systems by Query Volume

Rank Query Count (% of total) ASN Name

1 33407 (29%) AS17184 ATL-CBEYOND COMMUNICATIONS
2 4678 (4%) AS7132 SBIS-AS - SBC Internet Service
3 4140 (4%) AS12322 PROXAD AS for Proxad/Free ISP
4 2302 (2%) AS3320 DTAG Deutsche Telekom AG
5 1438 (1%) AS22773 CCINET-2 - Cox Communications
6 1430 (1%) AS20170 MARITZFENTONMO - Maritz Inc.
7 1277 (1%) AS19262 VZGNI-TRANSIT - Verizon Internt
8 903 (1%) AS3215 AS3215 France Telecom - Orange
9 890 (1%) AS3269 ASN-IBSNAZ TELECOM ITALIA
10 861 (1%) AS3352 TELEFONICA-DATA-ESPANA Internet

Autonomous Systems. While there are a number of sources sending PTR
queries to our dark DNS sensor, it is helpful to get a high-level view of the orga-
nizations that these IPs belong to. In Tables 5 and 6, we have ranked the top con-
tributing organizations with their Autonomous System Number (ASN). Table 5

150 J. Oberheide, M. Karir, and Z.M. Mao

ranks by the total number of queries received from source IPs owned by the
AS, while Table 6 ranks by the unique number of source IPs. Most of these
networks are well known ISPs offering DSL and Cable modem services, along
with several large ISPs such as Qwest, Deutsche Telekom, and France Telecom.
It is surprising that the top query volume contributor CBEYOND accounts for
more than 29% of all queries, indicating highly nonuniform source distribution
of dark DNS traffic. The distribution for unique source IPs contributed by each
AS is less skewed with SBC accounting for more than 4.5% of all sources ob-
served. Also note that both SBC and Deutsche Telekom appear as the top 10
contributing ASes by query rate as well as by unique sources.

Table 6. Top 10 Contributing Autonomous Systems by Number of Unique Sources

Rank Unique Sources (% of total) ASN Name

1 594 (4.5%) AS7132 SBIS-AS - SBC Internet Service
2 268 (2.0%) AS3320 DTAG Deutsche Telekom AG
3 214 (1.6%) AS7018 ATT-INTERNET4 - AT&T WorldNet
4 204 (1.5%) AS6128 CABLE-NET-1 - Cablevision Systems
5 202 (1.5%) AS4230 Embratel Brazil
6 194 (1.4%) AS5617 TPNET Polish Telecom commerce
7 192 (1.4%) AS209 ASN-QWEST - Qwest
8 190 (1.4%) AS5089 NTL NTL Group Limited
9 174 (1.3%) AS21844 THEPLANET-AS - THE PLANET
10 164 (1.2%) AS577 BACOM - Bell Canada

Operating Systems. Figure 4 shows the distribution of IP header TTL values
from the PTR queries. The three distinct clusters signify the three classes of
initial TTL values: 64, 128, and 255. As these initial TTL values result from
network stack characteristics of different operating systems, we can estimate
the operating system distribution of the source IPs. Linux/BSD systems set the
initial TTL to 64, Windows systems set it to 128, and Solaris systems set it to
255. Table 7 summarizes the OS distribution percentages observed by our dark
DNS collector.

Table 7. Query source OS distribution based on TTL

Operating System Initial TTL Unique Sources Percentage

Linux/BSD 64 10480 72.93%
Windows 128 1043 7.26%

Solaris/Other 255 2846 19.81%

The vast majority of the resolvers appear to be Linux/BSD based systems,
followed by a modest percentage that may be Solaris based, and finally a small
percentage of Windows based resolvers. This in contrast with the resolver OS
percentages reported in a previous study [17] where, of all the sources querying
the F-root server, 49% were reported to be Linux/BSD based and almost 40%

Characterizing Dark DNS Behavior 151

were reported to be Windows based. It is clear the queries of dark DNS are not
consistent with the behavior expected of a normal DNS system. It is important
to note that the origins of of such queries are not necessarily end hosts, but also
local resolvers querying on behalf of the end hosts via recursive DNS queries.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0 20 40 60 80 100 120 140 160 180 200 220 240

O
cc

ur
re

nc
es

TTL Value

IP Time-To-Live Distribution

Fig. 4. TTL Distribution in PTR query packets

Akamai Mapping. Akamai is a company that provides a distributed content
delivery network (CDN) to accelerate and cache web content. Their platform
depends on the ability to determine network locality and distance between hosts.
During our experimentation, we noticed that the majority of the top queriers
were from hosts deployed by Akamai. These hosts were verified as belonging to
Akamai via hostname, Internet routing registries, and SSH banner strings. Our
hypothesis that Akamai is using PTR querying to supplement their network
locality algorithms is partially confirmed by the DNS-based distance estimation
techniques described in previous work [19].

We also determined that 11 distinct Akamai-deployed hosts are responsible
for the anomalous spike in the query rate in Figure 1 of Section 5.2. Around
day 3 of our NR A dataset, an order-of-magnitude increase was observed and
abruptly followed by an overall decrease in the query rate. By separating out the
11 Akamai hosts from the rest of the source hosts, we are able to more effectively
highlight this anomalous behavior.

As shown in Figure 5, the query rate for the Akamai hosts is steady for the
first couple days, then drops off briefly, then skyrockets up to 12000 queries

152 J. Oberheide, M. Karir, and Z.M. Mao

per 30 minutes, then drops off again and is not observed at all for the rest of
the dataset collection. Whether this sequence of events represents a potential
issue with Akamai’s deployments is unknown. More importantly, separating this
anomaly from the rest of our dataset demonstrates the relative consistency that
all other hosts exhibit in their query rate.

 100

 1000

 10000

 100000

7654321

N
um

be
r

of
 Q

ue
rie

s
(L

og
sc

al
e)

Day Intervals

DNS Queries Per 30 Minutes - 7 Days

 11 Akamai Hosts
 All Other Hosts

Fig. 5. Query rate distinguishing Akamai hosts from others

6 Discussion

Detailed analysis in the previous section demonstrates significant DNS activities
for dark address space, originating from diverse operating systems and a large
number of networks, but with a small number of hosts or networks contribut-
ing to a large percentage of queries. This data provides preliminary evidence
of potentially malicious darknet DNS activities, given the presence of scanning
activities and slightly lower query rate for valid response compared to the no
domain response. In this section, we discuss the implications of PTR reconnais-
sance, verify the assumption that most live hosts have valid PTR records, and
propose a solution to prevent sensor evasion using PTR reconnaissance.

6.1 PTR Reconnaissance

The PTR query type, as previously discussed, is used to perform the mapping
from an IP address to a hostname. Given an address range selected for attack, an

Characterizing Dark DNS Behavior 153

attacker can send a PTR query for each address in the range and note the result.
Operating under the assumption that IP addresses with associated PTR records
are usually live hosts with potentially exploitable services, an attacker can easily
determine whether certain hosts or subnets are worthy of attention. Therefore,
if an attacker sees a valid PTR response with an associated hostname, he can
continue to attack that target with an increased level of confidence. Otherwise,
he can move on to potentially more valuable targets. It is important to note that
these PTR queries will not be seen by the sensors monitoring the traffic of the
dark address space, but instead by the DNS server authoritative for that address
space.

More importantly, an attacker can mask his identity and source IP address
while performing this reconnaissance. The DNS infrastructure and its resolvers
offer functionality known as recursive querying. If a client requests a recursive
query from a resolver with recursive query enabled, that resolver will perform
all the necessary communication on behalf of that client and simply return the
final result. The other DNS servers involved in the query will have no way of
knowing the attacker’s true identity as they will only be communicating with
the resolver the attacker has chosen. An attacker may choose resolvers located
at his local ISP or, for more anonymity, one of the many open resolvers around
the Internet that accept recursive queries.

6.2 Validating Usefulness of PTR Reconnaissance

To verify our assumption that most live hosts have associated PTR records and
monitored unused address space does not, we performed several measurements.

First, we wanted to determine the distribution of live hosts with PTR records.
We obtained 24 hours worth of NetFlow data (of size 268MB compressed) from
a large regional provider, containing TCP conversations involving a total of
1,234,842 unique IP addresses. By performing a PTR query on each of these
IP addresses, we received a total of 980,835 valid responses, indicating 79.43%
of the hosts have associated PTR records. This high percentage confirms our
assumption and affirms the effectiveness of PTR reconnaissance.

In addition, given that home users on broadband connections are more fre-
quently targeted by malicious activity, PTR scanning techniques would even
more successful against as most ISPs assign PTR records for their addresses.
Table 8 shows the PTR record format template for a number of major broad-
band ISPs obtained from our probes.

We were also able to use PTR reconnaissance to successfully evade several
large-scale, distributed systems that monitor dark address space for malicious
activity. We actively probed one of these systems, which consists of sensors
installed at numerous ISPs around the world monitoring over 17 million routable
IP addresses. Of all the various deployments of this sensor network, only a single
class C subnet (256 addresses) was configured with reverse DNS and responded to
our PTR queries. Utilizing PTR reconnaissance, an attacker would successfully
evade 99.9985% of that sensor’s darknet monitoring.

154 J. Oberheide, M. Karir, and Z.M. Mao

Table 8. Common PTR record formats (anonymized)

Organization PTR Format

AT&T {ID.detroit-ID-ID}.mi.dial-access.att.net
Belgacom {A.B-C-D}.adsl-dyn.isp.belgacom.be
Bellsouth host-{A-B-C-D}.bhm.bellsouth.net

Blueyonder adsl-{A-B-C-D}.blueyonder.co.uk
Charter {A-B-C-D}.dhcp.bycy.mi.charter.com
Comcast c-{A-B-C-D}.hsd1.ma.comcast.net
Earthlink user-{ID}.cable.earthlink.net

Qwest {A-B-C-D}.albq.qwest.net
Roadrunner cpe-{A-B-C-D}.carolina.res.rr.com

Rogers {ID-ID}.cpe.net.cable.rogers.com
SBC Yahoo adsl-{A-B-C-D}.dsl.rcsntx.sbcglobal.net
Shawcable {ID}.vs.shawcable.net
Speakeasy dsl{A-B-C}.sea1.dsl.speakeasy.net

Telus d{A-B-C-D}.bchsia.telus.net
Tiscali {A-B-C-D}.dsl.ip.tiscali.nl
Verizon pool-{A-B-C-D}.esr.east.verizon.net

XO {A.B.C.D}.ptr.us.xo.ne

6.3 Honeydns to Combat PTR Reconnaissance

In order to subvert the effectiveness of sensor evasion via PTR reconnaissance, a
countermeasure must be deployed. The underlying approach is straightforward:
a valid DNS reply must be generated when an attacker performs a PTR query
for a sensor address.

Sending responses for an attacker’s PTR query requires DNS authority for the
targeted address space. Fortunately, as many network sensors have already been
delegated permission to monitor dark IP address space, the additional require-
ment of gaining DNS delegation is not usually a significant technical nor admin-
istrative burden. Once DNS authority has been delegated, it becomes possible
to reply to an attacker’s PTR query with an arbitrary hostname that appears
reasonable for a live host.

While such responses can be provided by existing DNS software packages,
it is desirable to deploy a solution that decreases deployment complexity and
increases functionality and flexibility. DNS servers such as BIND can be cum-
bersome to configure and deploy as an authoritative server, especially when
only a small subset of DNS functionality is required. In addition, many sensor
deployments employ sampling and dynamic topologies which require a flexible
framework that static configuration files cannot provide.

We kept these design goals in mind when implementing honeydns, a simple
yet flexible daemon providing PTR response functionality. Honeydns is writ-
ten in Python and contains less than 200 lines of code. By providing a flexible
response framework, honeydns complements the needs of any low-interaction
honeypot deployment. Honeydns also provides passive monitoring capabilities

Characterizing Dark DNS Behavior 155

to detect and alert an operator when a malicious attacker is employing PTR
reconnaissance techniques.

7 Conclusions and Future Work

Our work is the first detailed study to characterize DNS queries of darknet
address space, known as dark DNS. We observe a significant amount of DNS
queries to these darknets which are likely due to DNS mapping (e.g., by Akamai),
backscatter traffic, misconfiguration, and PTR reconnaissance by attackers. Our
work is the first to describe the importance of properly configuring DNS author-
ity for darknet address space to reduce the possibility of sensor evasion. Towards
this goal, we develop a lightweight tool called honeydns to provide flexible PTR
response functionality in addition to passive DNS traffic anomaly detection ca-
pability. As future work, we plan to correlate observed dark DNS traffic with
data traffic to the associated darknets to further validate the presence of DNS
reconnaissance.

References

1. Mockapetris, P.: RFC 1034: Domain names: concepts and facilities (November
1987), ftp://ftp.internic.net/rfc/rfc1034.txt

2. Mockapetris, P.: RFC 1035: Domain names: implementation and specification (No-
vember 1987), ftp://ftp.internic.net/rfc/rfc1035.txt

3. Bellovin, S.: Using the domain name system for system break-ins. In: Proceedings
of the 5th USENIX UNIX Security Symposium (1995)

4. Samwalla, R., Sharma, R., Keshav, S.: Discovering Internet Topology. Unpublished
manuscript

5. Silveira, A.: TXDNS: an aggressive multithreaded DNS digger,
http://www.txdns.net/.

6. Ishibashi, K., Toyono, T., Toyama, K., Ishino, M.: Detecting mass-mailing worm
infected hosts by mining DNS traffic data. In: Proceedings of the Special Interest
Group on Data Communications (SIGCOMM) (2005)

7. Kristoff, J.: Botnets, detection and mitigation: DNS-based techniques. NU Security
Day (2005)

8. Schonewille, A., van Helmond, D.-J.: The Domain Name Service as an IDS: How
DNS can be used for detecting and monitoring badware in a network (February
2006), http://staff.science.uva.nl/delaat/snb-2005-2006/p12/report.pdf

9. Whyte, D., Kranakis, E., Van Oorschot, P.: DNS-based Detection of Scanning
Worms in an Enterprise Network. In: Proceedings of the Network and Distributed
Systems Symposium (NDSS) (2005)

10. Bethencourt, J., Franklin, J., Vernon, M.: Mapping Internet Sensors with Probe
Response Attacks. In: Proceedings of Usenix Security Symposium (2005)

11. Shinoda, Y., Ikai, K., Itoh, M.: Vulnerabilities of Passive Internet Threat Monitors.
In: Proceedings of Usenix Security Symposium (2005)

12. Rajab, M., Monrose, F., Terzis, A.: Fast and Evasive Attacks: Highlighting the
Challenges Ahead. Proceedings of the 9th International Symposium on Recent
Advances in Intrusion Detection (RAID) (September 2006)

ftp://ftp.internic.net/rfc/rfc1034.txt
ftp://ftp.internic.net/rfc/rfc1035.txt
http://www.txdns.net/.
http://staff.science.uva.nl/delaat/snb-2005-2006/p12/report.pdf

156 J. Oberheide, M. Karir, and Z.M. Mao

13. Oberheide, J., Karir, M.: Honeyd Detection via Packet Fragmentation. Technical
report, Merit Networks Inc. (2006)

14. Sinha, S., Bailey, M., Jahanian, F.: Shedding Light on the Configuration of Dark
Addresses. In: Proceedings of NDSS (2007)

15. Brownlee, N.: DNS Root/gTLD Performance Measurements. IETF Meeting (2001),
http://www.caida.org/publications/presentations/ietf0112/

16. Nemeth, E.: DNS Damage - Measurements at a Root Server. IETF Meeting (2001),
http://www.caida.org/publications/presentations/ietf0112/

17. Wessels, D., Fomenkov, M.: Wow, That’s a Lot of Packets. In: Proceedings of
Passive and Active Measurement Workshop (September 2003)

18. Jung, J., Sit, E., Balakrishnan, H., Morris, R.: DNS Performance and the Effec-
tiveness of Caching. In: Proc. ACM SIGCOMM Internet Measurement Workshop
(2001)

19. Gummadi, K.P., Saroiu, S., Gribble, S.D.: King: Estimating Latency between Ar-
bitrary Internet End Hosts. In: Proceedings of SIGCOMM IMW (2002)

20. Internet Systems Consortium. ISC Internet Domain Survey Background (2006),
http://www.isc.org/index.pl

21. Moore, D., Voelker, G., Savage, S.: Inferring Internet Denial of Service Activity.
In: Proceedings of the 2001 USENIX Security Symposium (2001)

http://www.caida.org/publications/presentations/ietf0112/
http://www.caida.org/publications/presentations/ietf0112/
http://www.isc.org/index.pl

Distributed Evasive Scan Techniques and
Countermeasures

Min Gyung Kang, Juan Caballero, and Dawn Song

Carnegie Mellon University,
{mgkang,jcaballero,dawnsong}@cmu.edu

Abstract. Scan detection and suppression methods are an important means for
preventing the disclosure of network information to attackers. However, despite
the importance of limiting the information obtained by the attacker, and the wide
availability of such scan detection methods, there has been very little research
on evasive scan techniques, which can potentially be used by attackers to avoid
detection. In this paper, we first present a novel classification of scan detection
methods based on their amnesty policy, since attackers can take advantage of
such policies to evade detection. Then we propose two novel metrics to measure
the resources that an attacker needs to complete a scan without being detected.
Next, we introduce z-Scan, a novel evasive scan technique that uses distributed
scanning, and show that it is extremely effective against TRW, one of the state-of-
the-art scan detection methods. Finally, we investigate possible countermeasures
including hybrid scan detection methods and information-hiding techniques. We
provide theoretical analysis, as well as simulation results, to quantitatively mea-
sure the effectiveness of the evasive scan techniques and the countermeasures.

Keywords: scan detection, evasion, distributed scanning, information-hiding.

1 Introduction

Network scans have become a common and useful means for hackers to obtain infor-
mation on a specific network, such as detecting active hosts and ports in service [3]
or as a tool for reconnaissance before attacking the vulnerable hosts. In an effort to
detect and prevent these scan activities, various scan detection methods have been pro-
posed [11,12,15,16,19,20,21,22,23]. These scan detection methods have been widely
deployed, often in combination with scan suppression methods that try to limit the in-
formation obtained by the attacker. Typically, the output of the scan detection method
becomes one input to the scan suppression method. For example, the scan detection
method may output the IP address of a remote host performing a scan on the local net-
work. Then, the suppression method takes care of blocking any further traffic from that
address.

However, despite the importance of limiting the information obtained by the attacker,
and the wide availability of scan detection methods, there has been very little research
on the evasive scan techniques that can potentially be used by attackers to avoid de-
tection. Moreover, the metaphor for security co-evolution, “security arms race”, is also
true for this case as attackers develop new evasive scan techniques to elude scan detec-
tion methods. Multiple techniques have been developed for this purpose such as dumb

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 157–174, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

158 M.G. Kang, J. Caballero, and D. Song

scan [1], distributed scan, and several stealthy port scan techniques [2]. In particular,
distributed scans have recently become cheap to perform due to the wide availability of
botnets, and current state-of-the art scan detection methods such as TRW [12] were not
designed for such a threat. Thus, it is imperative to analyze evasive scan techniques and
explore countermeasures against them.

In this paper, we make the following contributions:

Classify scan detection methods according to their amnesty policy: Scan detec-
tion methods assign anomaly scores to a host’s activities. As this score will only ever
increase, they use an amnesty policy to lessen scores in the case of normal activities.
These amnesty policies usually constitute a vector for evasive scan techniques and thus
need to be properly studied. We present a novel classification for scan detection meth-
ods based on their amnesty policy: Positive-Reward-based and Timeout-based methods.
Such a classification allows us to abstract the essence of these scan detection methods
and facilitates the analysis of evasive scan techniques against each family.

Propose two new evaluation metrics: Scan detection methods have been mostly eval-
uated with respect to their accuracy and detection delay. We propose using two addi-
tional metrics to incorporate the notion of how many resources the attacker needs to
complete the scan, in the presence of that scan detection method, and yet remain unde-
tected. That is, how easy it is to obtain the information while evading that scan detection
method. The metrics are: 1) the time that it takes for an attacker to complete the scan
of a network and 2) the number of IP addresses that the attacker needs to complete the
scan. In both cases we assume the presence of the scan detection method, and that the
attacker wishes to remain undetected.

Introduce z-Scan, a new evasive scan technique: We introduce z-Scan, a new eva-
sive distributed scan technique against Positive-Reward-based methods. In particular,
we show z-Scan to be effective against Threshold Random Walk (TRW), which has
been shown to be one of the most effective scan detection methods in terms of speed
and accuracy. Our z-Scan technique is extremely effective against TRW; it can scan
without being detected, a given address space protected with TRW, using a small num-
ber of source addresses. The number of source addresses is bounded logarithmically
with respect to the size of the address space.

Propose a hybrid solution to z-Scan: We propose using a hybrid scan detection
method that combines Positive-Reward-based and Timeout-based detection to defend
against evasive scan techniques. Through our analysis, we demonstrate that Positive-
Reward-based detection methods and Timeout-based detection methods are synergistic
and when combined, can be much more effective at defending against evasive scan
techniques.

Analyze information-hiding as a solution to z-Scan: We explore information-hiding
techniques as another type of countermeasure against evasive scan techniques. These
information-hiding techniques, rather than trying to detect and block scans, try to hide
the true information about the network, and hence reduce the utility of the scans.
Through theoretical analysis and simulation results, we show that information-hiding

Distributed Evasive Scan Techniques and Countermeasures 159

based countermeasures are promising against evasive scan techniques; in particular, in
the case of TRW, this can completely render z-Scan ineffective.

The rest of the paper is organized as follows. In Section 2, we classify scan detec-
tion methods according to their amnesty policy and introduce the metrics we use to
evaluate them. In Section 3 we introduce and analyze z-Scan, our new evasive scan
technique. Then, in Section 4, we propose a hybrid scan detection method to counter
z-Scan, and provide theoretical analysis and evaluation results on its effectiveness. In
Section 5, we analyze the effectiveness of other countermeasures against z-Scan based
on information-hiding techniques. Finally, we discuss related work in Section 6 and
conclude in Section 7.

2 Classification of Scan Detection Methods and Evaluation
Metrics

In this section, first we introduce a novel classification of scan detection methods based
on their amnesty policy, and then we propose new metrics that can be used to evaluate
the effectiveness of a scan detection method when faced with evasive scan techniques.

2.1 Classification of Scan Detection Methods

There has been ample research on scan detection methods [12,16,19,20,21,23]. How-
ever, all these methods are based on one common principle: if the accumulated score
for a host’s activities exceeds a certain threshold value, the host is considered a scan-
ner. As this accumulated score will only ever increase and eventually hit the threshold,
detection methods usually provide policies to lessen the scores in the case of normal
activities, which we call amnesty policies.

Such policies are important, because attackers try to scan stealthily and amnesty
policies, if exploited maliciously, can provide a way for an attacker to make its behavior
look normal. As such, amnesty policies are a likely vector for evasive scan techniques
and we need to understand how these policies work and how they can be exploited. As
a first step, we propose a novel classification of scan detection methods based on their
amnesty policy, which yields three categories: (1) Positive-Reward-based methods; (2)
Timeout-based methods; and (3) No-Amnesty methods.

Positive-Reward-based Methods. Positive-Reward-based methods lessen the accu-
mulated anomaly score upon the occurrence of normal events such as successful con-
nection attempts or connections to highly visited hosts. Threshold Random Walk
(TRW) [12] and its variants [21,23] as well as Leckie et al.’s probabilistic approach
[15] fall into this category.

TRW uses a random walk to decide whether a new connection initiated by a host is
benign or malicious. We explain it in detail in Section 3 but simply put, it keeps a ratio
for each host and in the case of a successful connection started by that host, multiplies
its ratio by a value less than 1, making the ratio farther from a fixed threshold (and
vice versa in the case of failed connection attempt). Leckie et al. assign anomaly scores
to probes, based on the access probability for each target host and thus connections to
highly visited hosts are considered normal.

160 M.G. Kang, J. Caballero, and D. Song

Timeout-based Methods. Timeout-based methods assign a lifetime to each event. The
lifetime is decreased periodically (i.e. events age) and events expire when their lifetime
is expired. Thus, the amnesty policy is based on expiration of events. Events that have
expired are no longer used to compute the anomaly score for each host. These methods
can be again categorized into two groups according to their methods for assigning a
lifetime to each event:

– Uniform lifetime (Block Scan Detection)
The methods in this class count the number of events (or sum of the anomaly scores
for all events) contained in a fixed time window and check if a threshold is ex-
ceeded. Snort [20] counts the total number of connection attempts, while Kato et
al. [13] consider only failed connection attempts. Basu et al.’s approach [8] uses
neural networks to assess the score for each event and compares the sum of scores,
during a fixed time window, with the threshold.

– Lifetime proportional to how anomalous the event is considered
The Spice engine [22] grants each packet a lifetime proportional to its anomaly
score 1 to impede evasion attacks using delayed scan techniques.

No Amnesty Methods. There are a few traditional scan detection methods that don’t
provide any way to reduce the anomaly score of a host such as Bro2 [16] However,
as this accumulated score will only ever increase and eventually hit the threshold (or
several thresholds in the case of Bro), these scan detection methods are prone to false
positives as any host, given enough time, will eventually be flagged as a scanner.

2.2 Evaluation Metrics for Scan Detection Methods

Evaluation metrics are needed to measure the effectiveness of scan detection methods.
Although previous work has used different metrics to evaluate the effectiveness of a
scan detection method, these metrics have been targeted at measuring the false positive
rate, false negative rate and detection delay of the scan detection method.

In this work we propose two additional metrics that allow us to measure the effec-
tiveness of a scan detection method under a specific scan technique used by an attacker.
The idea behind these metrics is that the more resources the attacker needs to complete
the scan in the presence of that detection method, the more difficult it is to evade the
scan detection method under that scan technique.

Time to complete the scan. The first metric we propose is the time that it takes for an
attacker to complete the scan of a network in the presence of the scan detection method,
using a specific scan technique. Note that this is different from measuring detection
delay, since we are interested in how long it takes for the attacker to complete the scan
of a certain address space without being detected, rather than how long it takes for the
scan detection method to detect an attacker.

1 The Spice engine uses Bayes network to build up a profile for each source address.
2 Here we refer to the classical scan detection method in scan.bro. Bro also has an option to

employ the TRW algorithm for enhanced scan detection and it has also recently introduced
methods to evict state [10].

Distributed Evasive Scan Techniques and Countermeasures 161

Clearly, due to the frequent changes in the address space usage of any network (e.g.
dynamic IP assignments, laptops, hosts being replaced, etc), the longer it takes for an
attacker to complete the scan, the less truthful the information gathered at the beginning
of the scan is compared to the current state. Also, the topological information gathered
by the attacker, can have a lifetime after which it becomes useless. For example after
the public announcement of a vulnerability, an attacker might be interested in promptly
locating all vulnerable hosts in a protected network to try to compromise them. The
time window for the attacker to perform the scan and the following attack is the time
needed by the system administrator to identify the vulnerability, download a patch (if
available) and install it on all vulnerable hosts.

Number of addresses needed to complete the scan. The second metric is the number
of IP addresses that the attacker needs to complete the scan in the presence of the scan
detection method, using a specific scan technique. For example, for a Timeout-based
method, given the attacker has no time constrains, the attacker will need a single IP
address to complete the scan, as it just needs to use a scan rate below the lowest de-
tected by the method. We call the evasive scan technique of probing at a rate below the
minimum detected by a method, a delayed scan.

But when the attacker has a time constraint, it needs to increase the number of
addresses performing the scan in parallel, if it wants to complete the scan satisfying
the time constraint while remaining undetected. For a Positive-Reward-based method,
given an attacker, which randomly probes addresses in the target network using a single
source address, the detection method will eventually flag the address as a scanner. If
the network employs scan suppression, blocking any further probes from that address,
then the attacker needs to use another address to continue with the scan, thus requiring
multiple IP addresses to send scans from.

To summarize, given an IP address space to scan, we can evaluate the effectiveness of
a scan detection method against a specific scan technique, i.e. the amount of resources
needed by the attacker to complete the scan while remaining undetected. For this, we
use a tuple (α, T), where α denotes the number of source addresses needed to complete
the scan and T is the time needed for the attacker to complete the scan.

3 z-Scan: Evasion Attacks Against TRW

Positive-Reward-based methods lessen the accumulated anomaly scores for a scanner
upon the occurrence of benign events. Thus, they provide an opportunity to the intelli-
gent attacker for evading detection if it is able to replicate or forge the existence of such
benign events. In this section we propose new evasive scan techniques to evade detec-
tion by Positive-Reward-based methods that decrease the anomaly score of a scanner
based on successful connections. We focus on TRW [12] as a representative of this
family.

TRW is a well accepted scan detection method mainly used for detecting horizontal
scans, where an attacker probes multiple protected hosts to obtain information about
which hosts/services are available in the protected network. It can also be applied to de-
tect vertical scans, as well as detecting misbehaved hosts inside the protected network.

162 M.G. Kang, J. Caballero, and D. Song

Table 1. Notation

N : the size of address space to scan (number of active hosts + inactive IP addresses)
a: the number of active IP addresses in the address space
Ps: the fraction of active hosts. i.e., a

N

α: the number of source IP addresses for the attack to scan the entire address space
H0: the hypothesis that the source is a benign user
H1: the hypothesis that the source is a scanner
Λ(Y): the likelihood ratio for TRW
θ0: the probability that a connection attempt succeeds given the hypothesis H0

θ1: the probability that a connection attempt succeeds given the hypothesis H1

η1: the upper threshold of the likelihood ratio Λ(Y)
which if crossed, flags the source as a scanner

n: the number of probes that attackers can perform before being blocked
ni: the number of probes which the attacker can perform before

being blocked at i-th round
si: the estimated number of accumulated active known hosts at i-th round
t: threshold of Block Scan Detection method, i.e., the number of

failed connection attempts within the time window.
β: the fraction of correct scan result
w: the size of the time window in Block Scan Detection method (in time ticks)
T : time constraint within which scan should complete
r: probing rate (the number of probes per time tick)

In this paper, for simplicity, we focus on horizontal scans. Similar techniques can be
applied to other cases.

We first show naive scan as a straw-man case, and then describe a more sophisticated
evasive scan technique which we call z-Scan, that is very effective against TRW. For
both techniques we analytically compute the values of α, the number of IP addresses
that the attacker needs to complete the scan. Table 1 shows the notation used in the
analysis.

3.1 Naive Scan Against TRW

Naive scan. A determined attacker who wants to complete the scan of a network, and
controls a set of IP addresses, can perform what we call naive scan. A naive scan is a
distributed scan. In its most basic form the scan is performed sequentially. The attacker
selects one of the addresses it controls and starts scanning the target network. Assuming
that the target network uses scan suppression, after several probes the address will be
flagged as a scanner and further probes will be blocked. At that point the attacker selects
a different scanner address and commands it to scan a new set of addresses, not yet
scanned, until it gets blocked again. The process continues until the complete target
address space has been scanned.

Note that an attacker that wants to optimize the naive scan, rather than use its ad-
dresses sequentially, can make them scan in parallel. This allows the attacker to reduce
the time employed to complete the scan. Here, the attacker divides the target address
space into disjoint subsets of addresses and assigns one such subset to a different

Distributed Evasive Scan Techniques and Countermeasures 163

scanner address under its control. The scanner addresses probe their corresponding sub-
set until being blocked and report back to the attacker any target addresses that it could
not scan before being blocked, so they can be assigned by the attacker to a different
scanner, not yet blacklisted.

Analysis. Here, we compute the number of distinct source IP addresses, α, needed to
scan an address space of size N addresses, when a naive scan technique3 is used against
TRW.

Let H0 be the hypothesis that the source of a connection attempt is a benign user;
and let H1 be the hypothesis that it is a scanner. TRW defines an indicator variable Yi

that represents the outcome of the first connection attempt from a scanner to a target
host, where Yi = 0 if the connection attempt was successful and Yi = 1 if it failed.
Each connection attempt regardless of its success is considered as an event.

Then conditional on the hypothesis H0 and H1, the TRW framework defines:

Pr[Yi = 0|H0] = θ0 Pr[Yi = 1|H0] = 1 − θ0

Pr[Yi = 0|H1] = θ1 Pr[Yi = 1|H1] = 1 − θ1

that is, the parameters θ0 and θ1 represent the conditional probabilities of an event given
the hypothesis H0 and H1.

TRW keeps a likelihood ratio Λ(Y) for each source address that has generated an
event. For every successful connection the likelihood ratio is reduced by multiply-
ing it by θ1

θ0
, and for each unsuccessful connection the likelihood ratio is increased by

multiplying it by 1−θ1
1−θ0

. If the likelihood ratio for a scanner address exceeds the up-
per threshold η1, the address is flagged as a scanner. The reader can refer to [12] for a
detailed explanation of the framework and how to set the associated parameters.

We assume that scan suppression is used in addition to TRW, so that any probes
received from an address that has been determined by TRW to be a scanner are dropped.

Let n be the total number of events generated by the scanner address, that is, the total
number of unique connection attempts to different target addresses, let s be the number
of unique connection attempts that were successful, and let n − s be the number of
unique connection attempts that were unsuccessful. Then the likelihood ratio for the
scanner address is:

Λ(Y) = Πn
i=1

Pr[Yi|H1]
Pr[Yi|H0]

= (
θ1

θ0
)s(

1 − θ1

1 − θ0
)n−s (1)

In order to be flagged as a scanner the likelihood ratio for an address needs to exceed
the upper threshold η1, thus meeting the following condition:

(
θ1

θ0
)s(

1 − θ1

1 − θ0
)n−s ≥ η1 (2)

For simplicity, we assume that the active hosts are uniformly distributed across the
target address space and define Ps to be the fraction of active hosts in the address space

3 In this case, we assume that the attacker selects a random target and sends a probing packet
without any evasion technique.

164 M.G. Kang, J. Caballero, and D. Song

having open the port that the attacker is using for the horizontal scan. Then, s = nPs

and solving (θ1
θ0

)s(1−θ1
1−θ0

)n−s ≤ η1 for n we obtain:

n ≤ log η1

Ps log θ1
θ0

+ (1 − Ps) log 1−θ1
1−θ0

(3)

Equation 3 shows an upper bound on the number of target addresses that a scanner
address can probe before being detected.

For each scanner address used, the attacker is able to gain information about n new
addresses, before the address is blocked by the scan suppression method. Thus, in a
naive scan the number of source addresses needed by the attacker to complete the scan
of the whole address space of size N , which we denote by α as stated in Section 2.2, is:

α ≥ N

n
= N

Ps log θ1
θ0

+ (1 − Ps) log 1−θ1
1−θ0

log η1
(4)

This result shows that the number of addresses that an attacker, using a naive scan
technique, needs to completely scan a target network is bounded by a function which
grows linearly with the size of the address space being scanned.

3.2 z-Scan Against TRW

Section 3.1 introduced a basic attacker that performed a distributed scan on a target net-
work. In this section we propose a more intelligent attacker that takes advantage of the
positive rewards awarded by TRW for successful connections. This attacker performs
what we call z-Scan.

A z-Scan is a distributed scan where the attacker uses each of its available scanner
addresses to scan a subset of the target network. The main difference with the naive
scan is that in a z-Scan the set of scanners controlled by the attacker collude, sharing
the addresses of previously-found active hosts.

A known limitation of TRW is that if the attacker knows a set of active hosts in the
target network, it can evade detection by alternating a random probe with a probe to a
known active host, thus making the likelihood ratio oscillate without reaching the upper
threshold η1.

Assuming that the attacker has no information whatsoever about the target network at
the beginning of the scan and that the target network once again uses scan suppression,
the attacker proceeds as follows. First, the attacker selects one of its scanner addresses
and performs random probing until the address becomes blocked. At that point, it com-
mands the host owning that address to pass the set of active hosts found to another host
which starts scanning alternating a known active host with a random probe till exhaust-
ing the set of known active hosts. Once that set is exhausted the new host continues
with random probes until being blocked. The procedure is repeated until the complete
address space of the target network has been scanned. Note that the attacker could also
split the target address space into smaller spaces and perform z-Scan in parallel on them
using multiple addresses.

We will refer to the sequence of scan probes from a scanner address before it gets
blocked as a round. Intuitively, we can anticipate that the number of active hosts probed

Distributed Evasive Scan Techniques and Countermeasures 165

at each round will increase exponentially, thus bounding the value of α, the number of
IP addresses needed to scan an address space of size N , logarithmically with respect to
N . This technique is named “z-Scan” because it zigzags its targets from known active
hosts to unknown hosts and vice versa.

Analysis. In round i, the attacker uses a scanner address to probe part of the target
address space, using information gathered in all previous rounds. Let ni denote the
total number of probes to distinct target addresses performed by the scanner address
in round i, and si denote the number of successful connections (or probes) to distinct
target addresses performed by a scanner address in round i. Since we defined α to be
the number of addresses needed by z-Scan to complete the scan of the target network,
we know that i ∈ [1, α].

Note that the attacker begins probing with no known active hosts, then the number
of probes the attacker can perform at the first round n1 before being blocked, is given
by Equation 3:

n1 ≤ log η1

Ps log θ1
θ0

+ (1 − Ps) log 1−θ1
1−θ0

Thus, the number of active hosts found at the first round, s1 = Psn1.
Since the attacker has yielded s1 active host addresses, he can move to another source

address and repeat this process until being blocked by TRW. At this second round, the
attacker can employ s1 known active hosts to alternate probing between the known ac-
tive host addresses and the unknown, making TRW oscillate below the threshold, η1.
However, after consuming all the known active addresses, the attacker needs to per-
form naive random probing. Therefore, we can find the accumulated number of active
addresses by the second round, s2, by solving the following two equations for s2:

(
θ1

θ0
)s2(

1 − θ1

1 − θ0
)n2−s2 ≥ η1 (5)

s2 = s1 + (n2 − s1)Ps (6)

Therefore,

s2 = (1 −
Ps log θ1

θ0

Ps log θ1
θ0

+ (1 − Ps) log 1−θ1
1−θ0

)s1 +
Ps log η1

Ps log θ1
θ0

+ (1 − Ps) log 1−θ1
1−θ0

Since (1 − Ps log
θ1
θ0

Ps log
θ1
θ0

+(1−Ps) log
1−θ1
1−θ0

) and Ps log η1

Ps log
θ1
θ0

+(1−Ps) log
1−θ1
1−θ0

are constants, we

can simplify s2 by replacing them with k and l respectively. Hence:

s2 = ks1 + l

If the attacker repeats this process, the estimated number of accumulated active
known hosts in the i-th round, si, is:

si = ksi−1 + l (7)

166 M.G. Kang, J. Caballero, and D. Song

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
9

0

0.5

1

1.5

2

2.5
x 10

9

Address Space Size (N)

N
um

be
r

of
 S

ou
rc

e
A

dd
re

ss
es

 N
ee

de
d

(α
)

Fig. 1. Naive random scan against TRW (Ps =
0.3)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
9

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Address Space Size (N)

N
um

be
r

of
 S

ou
rc

e
A

dd
re

ss
es

 N
ee

de
d

(α
)

P
s
 = 0.01

P
s
 = 0.1

P
s
 = 0.3

Fig. 2. z-Scan against TRW

We can derive the single general form for si:

si = ki−1(s1 +
l

k − 1
) − l

k − 1
(8)

Let mi = ni − si−1, where mi denotes the number of new IP addresses probed in the
i-th round. We can compute mi as mi = ki−2(k − 1)(s1 + l

k−1) 1
Ps

.
By the last round, round α, the total number of new IP addresses probed in all the

rounds should be N . Thus α is the smallest value such that

n1 +
∑

2≤i≤α

mi ≥ N

and solving for α, we obtain:

α =

⌈
logk

(
1 +

Ps(N − n1)
s1 + l

k−1

)⌉
+ 1 (9)

This result shows that the number of addresses needed to completely scan a target
network using z-Scan, is bounded by a function which grows logarithmically with the
size of the address space being scanned.

As an example, we assume an attacker uses z-Scan with the following parameters:
Ps = θ1 = 0.3, θ0 = 0.99, η1 = PD

PF
= 0.99

0.01 where PD and PF are desired detection
probability and false positive probability as in [12]. If this attacker wants to scan a /8
network (i.e. 224 addresses), then it only needs to use 110 addresses to complete the
scan versus 9.5 million when using a naive scan.

Figures 1 and 2 plot Equations 4 and 9 respectively using the above parameters.
Compare the logarithmic bound of z-Scan with the linear bound of the naive scan.
Clearly, an attacker that wants to avoid detection can take advantage of the positive
reward method of TRW to limit the amount of resources (i.e. IP addresses) needed to
complete the scan, which shows the vulnerability of TRW to z-Scan.

Distributed Evasive Scan Techniques and Countermeasures 167

4 Hybrid Detection Method and Evaluation

Section 3 has shown the vulnerability of Positive-Reward-based detection methods to
distributed scans, where the attackers collude to create extra rewards for each other.

The other main type of scan detection methods shown in Section 2 are Timeout-
based methods. It is well known that Timeout-based methods are easily eluded by using
delayed probing, i.e., sending probing packets with enough time delay between them to
allow expiration of previous events, so the anomaly score does not increase.

Positive-Reward-based methods based on successful connections, such as TRW, are
resilient against evasion attacks using delayed probing. For example Weaver et al. [23]
show a TRW variant that can detect attackers probing at a rate larger than one probe per
minute. On the other hand, Timeout-based methods will not be eluded by z-Scan. We
propose then to combine both approaches to create a scan detection method which is
highly resistant to known evasion techniques. We call it a hybrid detection method.

In the remainder of this section, we present a simple example of the hybrid detection
methods using TRW and Block Scan Detection (BSD) and show how the detection
methods can complement each other. After a brief analysis on delayed probing against
BSD, we provide numerical analysis on the robustness of the hybrid detection method.

4.1 Delayed Scan Against BSD

BSD methods usually work as follows. There are two parameters: a time window of
fixed length w and a threshold value t. BSD keeps a counter for the current number
of events for each remote IP address. Examples of usual events are the number of des-
tinations contacted or the number of unsuccessful connections attempted. Every time
a new event occurs, the counter is incremented and compared to the threshold. If the
threshold has been exceeded an alarm is thrown. Each event has an age of length equal
to the value of the time window parameter. The age of an event is set to zero when the
event is observed, and after the age has become larger than the time window, the event
is expired and the counter is decremented.

Timeout-based methods are easily eluded by using delayed probing. In particular,
BSD methods can be eluded by sending probing packets with enough time delay be-
tween them to escape a preset time window and never reach the preset threshold.

When the attacker can determine the values of the window and threshold parame-
ters and is free of time limit, it is able to scan the whole address space using a single
IP address without being detected. However, when a constraint is given on time T ,
the attacker should probe simultaneously using multiple source IP addresses to evade
detection by BSD.

Since α source hosts should complete probing N target addresses in the protected
network address space:

αrT ≥ N (10)

where r is a probing rate (the number of probes per time tick). In addition, the number
of events per time tick should not exceed t

w , where w is the size of the time window,
and t is the threshold for the number of events allowed in that window. Assuming the

168 M.G. Kang, J. Caballero, and D. Song

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

120

140

160

180

200

Address Space Size (N)

N
um

be
r

of
 S

ou
rc

e
A

dd
re

ss
es

 N
ee

de
d

(α
)

z−Scan against Hybrid Detection
z−Scan against TRW

Fig. 3. z-Scan against Hybrid detection,
TRW (Ps = 0.3)

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

Address Space Size (N)

N
um

be
r

of
 S

ou
rc

e
A

dd
re

ss
es

 N
ee

de
d

(α
)

delayed scan against hybrid detection, T = 600
delayed scan against BSD, T = 600
delayed scan against BSD, T = 3600
delayed scan against BSD, T = 180000

Fig. 4. Delayed scan against Hybrid detection
(Ps = 0.3, t = 10, w = 600time ticks)

BSD method uses failed connection attempts as events (e.g. Kato et al [13]), then the
maximum probing rate rmax is:

(1 − Ps)rmax =
t

w

If the BSD method uses any probe attempt as an event (e.g. Snort [20]) then Ps = 0
in the above expression.

By setting r in Equation 10 to rmax:

α ≥ 1 − Ps

T

w

t
N

This result shows that using delayed scan, the minimum number of addresses that an
attacker needs to complete the scan, when subject to a time constraint T , grows linearly
with N .

Figure 4 plots α as a function of the size of the address space of the scanned network
N for different values of T . The window, threshold and fraction of active hosts are set
to: Ps = 0.3, t = 10 probes, w = 600 time ticks. As shown, delayed scan evades BSD
with only one source IP address when it has sufficient time (T = 180, 000 time ticks);
but otherwise α is directly proportional to address space size N .

4.2 Hybrid Detection Method

In our hybrid detection method we adopt a combination of TRW and BSD. We show
that the hybrid detection method forces the attacker to use more addresses in order to
complete the scan when compared with the case where only one of the two methods
is deployed. In this hybrid method, we assume that TRW and BSD are operating inde-
pendently in parallel, and a detected scan source will be blocked regardless of which
detection method detected it. Simply put, the attackers’ scan efficiency is bounded by
the more effective of the two detection methods against the attackers’ strategy.

In the remainder of this section we show how the Hybrid detection method performs
when faced with three different scan techniques: z-Scan, delayed scan and a combina-
tion of both.

Distributed Evasive Scan Techniques and Countermeasures 169

z-Scan against Hybrid detection. When z-Scan is performed against BSD, assuming
that the time needed to send probing packets is relatively small compared to the time
window of BSD, we can suppose that all failed connection attempts will fall within the
window. Thus, the number of times the attacker will be blocked, that is, the number
of source addresses it needs, equals α = N(1−Ps)

t , where t is the threshold of failed
connection attempts within the time window of the BSD methods.

Delayed scan against Hybrid detection. Conversely, if a delayed scan is performed
against TRW, α is equal to that of performing a naive random scan against TRW as
shown in Section 3 since TRW is agnostic to the time frame where the probing events
occur. Thus, from Equation 4:

αtrw ≥ N
Ps log θ1

θ0
+ (1 − Ps) log 1−θ1

1−θ0

log η1

Since the Hybrid detection method uses both TRW and BSD in parallel, then:

α = max (αtrw, αbsd) = max

(
N

Ps log θ1
θ0

+ (1 − Ps) log 1−θ1
1−θ0

log η1
,
1 − Ps

T

w

t
N

)

Accordingly, the values of α in both z-Scan and delayed scan are linearly bounded
by TRW and BSD. As Figures 3 and 4 show, the hybrid detection method forces both
z-Scan and delayed scan to use a number of addresses that is linear with the size of
the address space. However, these results are dependent on multiple parameters for
configuring detection methods and network environment such as t, w, T , and Ps.

Combined scan against Hybrid detection. The attackers can also combine the eva-
sion techniques to elude this hybrid detection method. We give a simple example of
combining delayed scan and z-Scan to evade the hybrid method provided in this paper.
That is, the attacker can perform z-Scan with a low scan rate set to evade the threshold
value of BSD. In order to complete the scan of the address space of size N in time T ,
the attacker needs to divide the address space into different subspaces and simultane-
ously perform z-Scan on each subspace using multiple addresses. If the address space
is divided into D subspaces of the same size, each subspace is of size N

D , and the active
host ratio in that subspace is Ps. Then, the number of source addresses, σ, needed to
scan one subspace using z-Scan is, from Equation 9:

σ = logk

(
1 +

Ps(N
D − n1)

s1 + l
k−1

)
+ 1 (11)

To evade BSD with the threshold value of t and the window size of w, the maximum
scan rate ri in the i-th round of z-Scan should satisfy:

(1 − si

ni
)ri =

t

w

In addition, since each z-Scan task on a subspace should be finished within the con-
straint T , the sum of time consumed in each round of z-Scan should be equal to or less
than T .

170 M.G. Kang, J. Caballero, and D. Song

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

700

Address Space Size (N)

N
um

be
r

of
 S

ou
rc

e
A

dd
re

ss
es

 N
ee

de
d

(α
)

T = 60
T = 200
T = 600
T = 3600

Fig. 5. Combined scan against hybrid detection (Ps = 0.3, t = 10, w = 600 time ticks)

σ∑

i=1

ni

ri
≤ T (12)

Finally, the total number of source addresses, α, needed in this combined scan is Dσ.
Since there can be multiple possible values of D which meet constraint T , the attacker
can choose the minimum of the possible Dσ values which satisfy equation 11 and 12.
Therefore:

α = min {Dσ | σ and D satisfy Equation 11 and 12} (13)

Through numerical iterations, we obtain the values of α with respect to N . The
results indicate that the number of source addresses the attacker needs in the combined
scan is proportional to the address space size N. So, as expected, when faced with a
hybrid detection method, the attacker would prefer the combined scan, since it achieves
better performance than the individual z-Scan or delayed scan methods.

Figure 5 shows how the combined scan performs in the face of a hybrid detection
method with varying values for the time constraint T . Clearly, the more constrained the
attacker is (i.e. smaller values of T) the larger the number of addresses it needs to use
to complete the scan in the given time.

Limitations. Even though the hybrid approach provides higher effectiveness in de-
tecting evasion attacks, it has some limitations. In terms of administrative efficiency,
it requires supporting two different scan detection methods, or a new combined one.
Regarding the detection efficiency, simply combining detection results could aggravate
the total false positive rate; i.e., the false positive rate of the hybrid method is additive.

5 Information-Hiding Countermeasures Against Evasion
Techniques

In Section 4 we presented a hybrid detection method to thwart both z-Scan and de-
layed scan. The presented hybrid method tries to thwart the attacker’s evasion attack.
Another promising type of defense is rather than raising the bar for the scan technique,

Distributed Evasive Scan Techniques and Countermeasures 171

trying to hide the address space usage, thus reducing the utility of the scan itself. In this
section, we explore one such countermeasure. Despite its simplicity, we show that the
effectiveness is promising in augmenting the current detection methods to curb evasion
attacks.

The methods we study is All-Positive Response (APR). APR is a technique that gives
false responses when receiving packets destined to unassigned IP addresses or to closed
ports on active hosts. The generated responses falsely indicate that a host exists on that
address and has the probed port open. From the attacker’s point of view, information
obtained during the scan cannot distinguish which host is active and which port is open
since all of them appear active/open. In addition, the APR method can be easily imple-
mented by applying virtual honeypot technology [14,17].

There are other such countermeasures that could potentially help against evasion us-
ing z-Scan, such as Antonatos et al.’s Network Address Space Randomization (NASR)
[7], where hosts are forced to periodically change their IP addresses. We leave the study
of such other countermeasures for future work.

z-Scan against TRW with APR. Since the z-Scan technique is highly dependent on
the set of known active hosts, say sa, we can show that its performance against APR will
be significantly degraded. When TRW is employed with APR, contrary to the attacker’s
expectation, sa is just a set of addresses with active hosts ratio Ps. Without APR, all
hosts in sa would be active.

Therefore, in this case, the z-Scan behaves similarly to a naive scan. Initially, when
an attacker begins the z-Scan, it will be blocked after n probes as shown in Equation 3.
At that point the attacker believes that it knows a set of n active hosts when in fact only
nPs of those are active.

Thus in the next round when the attacker alternates one probe to an unknown address
with one probe to an address it believes to be an active host, TRW will detect it and
block it after n probes because the fraction of active hosts in the probes will be Ps, the
same as in the case of a naive scan. So, in every round each scanner address from the
attacker is allowed to probe n addresses rather than an increasing number with z-Scan.
Even worse for the attacker, in this case only half of n is newly-scanned hosts since the
attacker alternates probing targets between the addresses in sa and a randomly selected
probing target (from the rest of the address space). This cycle will be repeated until the
whole address space is scanned. To summarize, the attacker can probe n new hosts in
the first round and n

2 new hosts each in the subsequent rounds. Thus, the number of
source addresses required for the attacker is:

α =
N − n

n
2

+ 1

that is:

α =
2N

n
− 1 (14)

which is about twice as large as that of naive scan against TRW.
Thus, z-Scan is completely inefficient against APR since a naive scan would ap-

proximately require half the number of addresses. In this case the use of APR in the

172 M.G. Kang, J. Caballero, and D. Song

protected network forces the attacker to use a more sophisticated probing technique.
A nice property of information-hiding countermeasures is that they can be combined
with any scan detection method such as the proposed hybrid detection method, to form
a more complete defense solution that both obscures the address space usage of the
network and raises the bar for the scan techniques used by the attacker.

6 Related Work

There has been a wealth of research on scan detection methods. Early proposals such
as the Network Security Monitor (NSM) and the old Snort scan detection method (port
scan preprocessor) [11,20] counted probes in a fixed window of time, flagging an exter-
nal host as a scanner if the probe count exceeded a preset threshold.

Following work built on the observation that unsuccessful connections are a better
indication of scanning than just the number of probes generated by a host [16,19]. The
performance of these methods greatly varied with the values of its parameters.

More recent work also using unsuccessful connections as events, employs a random
walk framework to decide between the hypothesis that a remote host is a scanner or
benign [12]. Followup work using the random walk framework includes [21] where the
authors focus on detecting internal, rather than remote, scanners present in the mon-
itored network. It also includes [23] where the authors use several approximations in
order to limit to a minimum the resources (e.g. memory) needed to operate it.

There is a separate group of scan detection methods that assigns anomaly scores to
events, based either on the access probability for each internal host [15] or conditional
probabilities extracted from the addresses and ports pairs [22].

There has been little previous research on evasion techniques. Ptacek and Newsham
show different insertion and evasion techniques that affect Intrusion Detection Sys-
tems [18]. There is also previous research work on overloading detection systems [9]
and several tools have been developed with the same purpose [5,6]. Some tools have
been created for information-hiding at the end host, such as Morph which allows the
user to emulate any operating system by forging replies to probes [4]. In general, most
evasion work comes from the underground literature [1,3].

7 Conclusion

Numerous approaches have been proposed to detect network scans. However, despite
the importance of limiting the information obtained by the attacker, and the wide avail-
ability of such scan detection methods, there has been very little research on the evasive
scan techniques, which can potentially be used by attackers to avoid detection. In this
paper, our contributions are five-fold.

First, we categorize current scan detection methods using a novel point of view,
their amnesty policy. Such a classification allows us to distill the essence of each class
of detection methods and facilitate us in analyzing their vulnerability to evasive scan
techniques and countermeasures. Second, we propose two novel metrics to measure the
resources that an attacker needs to complete a scan without being detected: the time

Distributed Evasive Scan Techniques and Countermeasures 173

and the number of IP addresses; needed by an attacker to complete the scan of a certain
network space, while remaining undetected.

Third, as a concrete example demonstrating evasive scans against Positive-Reward
based detection methods, we propose a new distributed evasive scan attack, z-Scan,
which is extremely effective against TRW. With z-Scan, an attacker can complete the
scan of a given IP address space using only a small number of different source IP
addresses (where the number is only logarithmic to the size of the IP address space to be
scanned). Fourth, as a countermeasure, we propose a hybrid approach which combines
Positive-Reward and Timeout-based methods and demonstrate its effectiveness against
evasive scans through analysis and simulation.

Finally, we also study information-hiding countermeasures, where we actively re-
spond to scans with false information, and demonstrate that this type of countermea-
sures are extremely effective against evasive scan attacks. Moreover, the hybrid ap-
proach and the information-hiding based countermeasures are complementary, and can
be combined for even greater benefits. To conclude, evasion techniques and counter-
measures have not been thoroughly studied before. We hope this work will serve as a
first step and encourage more study in this direction.

Acknowledgments

The authors would like to thank Xeno Kovah and the anonymous reviewers for their
insightful feedback. Support for this material was provided by the National Science
Foundation under Grants No. 0433540 and 0448452. Partial support was also provided
by the U.S. Army Research Office under the Cyber-TA Research Grant No. W911NF-
06-1-0316 and under Grant DAAD19-02-1-0389 through CyLab at Carnegie Mellon.
The views and conclusions contained here are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either ex-
pressed or implied, of ARO, CMU, the U.S. Government or any of its agencies.

References

1. antirez. IP ID reverse scan,
http://www.kyuzz.org/antirez/papers/dumbscan.html

2. Fyodor. The Art of Port Scanning. Phrack 51, vol. 7 (September 1, 1997),
http://www.phrack.com/phrack/51/P51-11

3. hybrid Distributed information gathering. Phrack 51, vol. 9 (September 9, 1999)
http://www.phrack.org/phrack/55/P55-09

4. Morph, http://www.synacklabs.net/projects/morph/
5. Snot. http://www.l0t3k.org/security/tools/ids/
6. Stick. http://www.l0t3k.org/security/tools/ids/
7. Antonatos, S., Akritidis, P., Markatos, E., Anagnostakis, K.G.: Defending against Hitlist

Worms using Network Address Space Randomization. In: ACM Workshop on Rapid Mal-
code (Fairfax, VA, USA, 11 (November 2005)

8. Basu, R., Cunningham, R.K., Lippmann, R.P.: Detecting Low-Profile Probes and Novel
Denial-of-Service Attacks. In: Proceedings 2nd Annual IEEE Systems, Man, and Cyber-
netics Information Assurance Workshop (West Point, NY, USA) (June 5–6, 2001)

http://www.kyuzz.org/antirez/papers/dumbscan.html
http://www.phrack.com/phrack/51/P51-11
http://www.phrack.org/phrack/55/P55-09
http://www.synacklabs.net/projects/morph/
http://www.l0t3k.org/security/tools/ids/
http://www.l0t3k.org/security/tools/ids/

174 M.G. Kang, J. Caballero, and D. Song

9. Crosby, S., Wallach, D.: Denial of Service via Algorithmic Complexity Attacks. In: Pro-
ceedings of the 12th USENIX Security Symposium (Washington DC, USA) (August 4–8,
2003)

10. Dreger, H., Feldmann, A., Paxson, V., Sommer, R.: Operational Experiences with HighVol-
ume Network Intrusion Detection. In: 11th ACM Conference on Computer and Communica-
tions Security, Washington DC, USA, October 25–29, 2004, ACM Press, New York (2004)

11. Heberlein, L.T., Dias, G.V., Levitt, K.N., Mukherjee, B., Wood, J., Wolber, D.: A network
security monitor. In: Proceedings of the IEEE Symposium on Research in Security and Pri-
vacy

12. Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast Portscan Detection Using Sequen-
tial Hypothesis Testing. In: IEEE Symposium on Security and Privacy, Berkeley/Oakland,
CA, USA, May 9–12, 2004, IEEE Computer Society Press, Los Alamitos (2004)

13. Kato, N., Nitou, H., Ohta, K., Mansfield, G., Nemoto, Y.: A Real-Time Intrusion Detection
System(IDS) for Large Scale Networks and its Evaluations. IEICE Transactions on Commu-
nication E82B(11), 1817–1825

14. Kreibich, C., Crowcroft, J.: Honeycomb –Creating Intrusion Detection Signatures Using
Honeypots. In: 2nd Workshop on Hot Topics in Networks Boston, MA, USA (November
20–21, 2003)

15. Leckie, C., Kotagiri, R.: A Probabilistic Approach to Detecting Network Scans. In: Proceed-
ings of the Eighth IEEE Network Operations and Management Symposium. Florence, Italy
(April 15–19, 2002)

16. Paxson, V.: Bro: a system for detecting network intruders in real-time. Computer Networks
(Amsterdam, Netherlands) 31(23–24), 2435–2463 (1999)

17. Provos, N.: A Virtual Honeypot Framework. In: Proceedings of the 13th USENIX Security
Symposium San Diego, CA, USA (August 9–13, 2004)

18. Ptacek, T.H., Newsham, T.N.: Insertion, Evasion, and Denial of Service: Eluding Network
Intrusion Detection. Technical report

19. Robertson, S., Siegel, E.V., Miller, M., Stolfo, S.J.: Surveillance Detection in High Band-
width Environments. In: Proceedings of the 2003 DARPA DISCEX III Conference Wash-
ington DC, USA (April 22–24, 2003)

20. Roesch, M.: Snort-Lightweight Intrusion Detection for Networks. In: Proceedings of
LISA’99: 13th Systems Administration Conference Seattle, WA, USA (November 7–12,
1999)

21. Schechter, S.E., Jung, J., Berger, A.W.: Fast Detection of Scanning Worm Infections. 7th In-
ternational Symposium on Recent Advances in Intrusion Detection Sophia Antipolis, French
Riviera, France (September 15–17, 2004)

22. Staniford, S., Hoagland, J.A., McAlerney, J.M.: Practical Automated Detection of Stealthy
Portscans. In: Proceedings of the 7th ACM Conference on Computer and Communications
Security. Athens, Greece (November 1–4, 2000)

23. Weaver, N., Staniford, S., Paxson, V.: Very Fast Containment of Scanning Worms. In: 13th
USENIX Security Symposium. San Diego, CA, USA (August 9–13, 2004)

On the Adaptive Real-Time Detection of
Fast-Propagating Network Worms

Jaeyeon Jung1, Rodolfo A. Milito2, and Vern Paxson3

1 Mazu Networks
jyjung@mazunetworks.com

2 Consentry Networks
rodolfo@consentry.com

3 International Computer Science Institute
and Lawrence Berkeley National Laboratory

vern@icir.org

Abstract. We present two light-weight worm detection algorithms that offer sig-
nificant advantages over fixed-threshold methods. The first algorithm, RBS (rate-
based sequential hypothesis testing), aims at the large class of worms that at-
tempts to quickly propagate, thus exhibiting abnormal levels of the rate at which
hosts initiate connections to new destinations. The foundation of RBS derives
from the theory of sequential hypothesis testing, the use of which for detecting
randomly scanning hosts was first introduced by our previous work developing
TRW [6]. The sequential hypothesis testing methodology enables us to engineer
detectors to meet specific targets for false-positive and false-negative rates, rather
than triggering when fixed thresholds are crossed. In this sense, the detectors that
we introduce are truly adaptive.

We then introduce RBS+TRW, an algorithm that combines fan-out rate (RBS)
and probability of failure (TRW) of connections to new destinations. RBS+TRW
provides a unified framework that at one end acts as pure RBS and at the other
end as pure TRW. Selecting an operating point that includes both mechanisms ex-
tends RBS’s power in detecting worms that scan randomly selected IP addresses.
Using four traces from three qualitatively different sites, we evaluate RBS and
RBS+TRW in terms of false positives, false negatives, and detection speed, find-
ing that RBS+TRW provides good detection of high-profile worms as well as
internal Web crawlers that we use as proxies for targeting worms. In doing so,
RBS+TRW generates fewer than 1 false alarm per hour for wide range of para-
meter choices.

1 Introduction

If a network worm penetrates a site’s perimeter, it can quickly spread to other vulnerable
hosts inside the site. The infection propagates by the compromised hosts repeatedly
attempting to contact and infect new potential victims. The traffic pattern of fast worm
propagation—a single host quickly contacting many different hosts—is a prominent
feature across a number of types of worms, and detecting such patterns constitutes the
basis for several worm detection approaches [2,8,13].

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 175–192, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

176 J. Jung, R.A. Milito, and V. Paxson

The problem of accurately detecting such worm scanning becomes particularly acute
for enterprise networks comprised of a variety of types of hosts running numerous, dif-
ferent applications. This diversity makes it difficult to tune existing worm detection
methods [2,13] that presume preselected thresholds for connection rates and window
sizes over which to compute whether a host’s activity is “too quick.” First, finding a
single threshold rate that accommodates all (or almost all) benign hosts requires exces-
sive tuning because of diverse application behaviors (e.g., a Web browser generating
multiple concurrent connections to fetch embedded objects vs. an SSH client connect-
ing to a server). Second, the window size chosen to compute the average rate affects the
detection speed and accuracy; if too small, the detection algorithm is less resilient to
small legitimate connection bursts, but if too big, the detection algorithm reacts slowly
to fast propagating worms, for which brisk response is vital.

In this paper, we first develop an algorithm for detecting fast-propagating worms that
use high-quality targeting information. We base our approach on analyzing the rate at
which hosts initiate connections to new destinations. One such class of worms are those
that spread in a topological fashion [11,16]: they gather information on the locally in-
fected host regarding other likely victims. For example, the Morris worm examined
.rhosts files to see what other machines were known to the local machine [4,10]. A re-
lated technique is the use of meta-servers, such as worms that query search engines for
likely victims [5]. These targeting worms can spread extremely quickly, even using rela-
tively low-rate scanning, because the vulnerability density of the addresses they probe is
so much higher than if they use random scanning. Furthermore, these worms can evade
many existing worm defense systems that rely on the artifacts of random scanning such
as number of failed connections and the absence of preceding DNS lookups [2,8,17,18].

Our detection algorithm, rate-based sequential hypothesis testing (RBS), operates
on a per-host and per-connection basis and does not require access to packet contents.
It is built on a probabilistic model that captures benign network characteristics, which
allows us to discriminate between benign traffic and worm traffic. RBS also provides an
analytic framework that enables a site to tailor its operation to its network traffic pattern
and security policies.

We then present RBS+TRW, a unified framework for detecting fast-propagating
worms independent of their scanning strategy. RBS+TRW is a blend of RBS and our
previous threshold random walk (TRW) algorithm, which rapidly discriminates be-
tween random scanners and legitimate traffic based on their differing rates of connection
failures [6]. Wald’s sequential hypothesis testing [14] forms the basis for RBS+TRW’s
adaptive detection.

We begin with an overview of related work in §2. §3 then presents an analysis of
network traces we obtained from two internal routers of a medium-size enterprise. The
traced traffic includes more than 650 internal hosts, about 10% of the total at the site.
We examine the distribution of the time between consecutive first-contact connection
requests, defined by [8] as a packet addressed to a host with which the sender has
not previously communicated. Our analysis finds that for benign network traffic, these
interarrival times are bursty, but within the bursts can be approximately modeled using
exponential distributions with a few hundred millisecond average intervals.

On the Adaptive Real-Time Detection of Fast-Propagating Network Worms 177

In §4, we develop the RBS algorithm, based on the same sequential hypothesis test-
ing framework as TRW. RBS quickly identifies hosts that initiate first-contact connec-
tion requests at a rate n times higher than that of a typical benign host. RBS updates
its decision process upon each data arrival, triggering an alarm after having observed
enough empirical data to make a distinction between the candidate models of (some-
what slower) benign and (somewhat faster) malicious host activity.

In §5, we evaluate RBS using trace-driven simulations. We show that computing a
simple trimmed mean suffices to automatically discover an effective set of parameters
for running RBS. Moreover, we show that RBS triggers few false positives when n
is small (0 false positives when n ≤ 5) when assessed against a trace that includes a
variety of applications.

§6 presents RBS+TRW, which automatically adapts between the rate at which a
host initiates first-contact connection requests and observations of the success of these
attempts, combining two different types of worm detection. Using datasets that contain
active worms caught in action, we show that RBS+TRW provides fast detection of
scanners and two hosts infected by Code Red II worms, while generating less than
1 false alarm per hour.

2 Related Work

Williamson first proposed limiting the rate of outgoing packets to new destinations [19]
and implemented a virus throttle that confines a host to sending packets to no more
than one new host a second [13]. While this virus throttling slows traffic that could
result from worm propagation below a certain rate, it remains open how to set the rate
such that it permits benign traffic without impairing detection capability. For example,
Web servers that employ content distribution services cause legitimate Web browsing
to generate many concurrent connections to different destinations, which a limit of one
new destination per second would significantly hinder. If the characteristics of benign
traffic cannot be consistently recognized, a rate-based defense system will be either
ignored or disabled by its users.

Numerous efforts have since aimed to improve the simple virus throttle by taking into
account other metrics such as increasing numbers of ICMP host-unreachable packets
or TCP RST packets [2], number of failed first-contact connections [8,17], and the
absence of preceding DNS lookups [18]. However, these supplementary metrics will
be not much of use if worms target only hosts that are reachable and have valid names
(e.g., topological worms).

This work is inspired by our previous paper [6], which first used sequential hy-
pothesis testing for scan detection. Our previous paper develops the threshold random
walk (TRW) portscan detection algorithm based on the observation that a remote port
scanner has a higher probability of attempting to contact a local host that does not exist
or does not have the requested service running.

Weaver et al. [17] present an approximation to TRW suitable for implementation
in high-performance network hardware for worm containment. For the same problem
of detecting scanning worms, Schechter et al. [8] combine credit-based rate-limiting
and reverse sequential hypothesis testing optimized to detect infection instances. In

178 J. Jung, R.A. Milito, and V. Paxson

comparison, our RBS+TRW provides a unified framework built on sequential hypothe-
sis testing with two metrics, a rate and a probability of success of a first-contact connec-
tion, that cover a broad range of worms, mostly independent of their scanning strategy
or propagation speed.

There have been recent developments of worm detection using content sifting (find-
ing common substrings in packets that are being sent in a many-to-many pattern) and
automatic signature generation [7,9,15]. These approaches are orthogonal to our ap-
proach based on traffic behavior in that the former require payload inspection, for
which computationally intensive operations are often needed. Moreover, although our
approach requires a few parameter settings, it requires no training nor signature up-
dates. However, content-based approaches are capable of detecting slowly-propagating
(stealthy) worms that are indistinguishable from benign hosts by their connection-level
traffic behaviors.

3 Data Analysis

We hypothesize that we can bound a benign host’s network activity by a reasonably low
fan-out per unit time, where we define fan-out as the number of first-contact connection
requests a given host initiates. This fan-out per unit time, or fan-out rate, is an impor-
tant traffic measure that we hope will allow us to separate benign hosts from relatively
slowly scanning worms. In this section, we analyze traces of a site’s internal network
traffic, finding that a benign host’s fan-out rate rarely exceeds a few first-contact con-
nections per second, and time intervals between these connections can be approximately
modeled as exponentially distributed.

We analyze a set of 22 anonymized network traces, each comprised of 10 minutes’
of traffic recorded at Lab on Oct. 4, 2004. These were traced using tcpdump at two
internal routers within Lab, enabling them to collect bidirectional traffic originated by
internal hosts to both external hosts outside Lab and to other internal hosts inside Lab.
Although we present the results from one particular site in this section, we studied 4
additional traces collected from three different sites. We used the additional traces to
double-check empirical findings and later to evaluate our detection algorithm.

Table 1 summarizes the Lab dataset after some initial filtering to remove periodic
NTP traffic and “triggered” connections in which a connection incoming to a host
causes the host to initiate a secondary connection outbound. Such triggered connec-
tions should not be considered as first-contact connections when assessing whether a
host is probing. The table shows that the traffic between internal Lab hosts consists
of about 70% of the total outbound traffic recorded in the datasets. Had we traced the
traffic at the site’s border, we would have seen much less of the total network activity,
and lower first-contact connections accordingly.

For each 10-minute trace, we observe a varying number of internal hosts initiating
outbound traffic during the observation period. The last row in Table 1 shows that the
largest number of active internal hosts in a 10-minute trace is 652.1

1 Because each trace was anonymized separately, we are unable to tell how many distinct internal
hosts appear across all of the traces.

On the Adaptive Real-Time Detection of Fast-Propagating Network Worms 179

Table 1. Lab dataset summary: This analysis does not include NTP traffic or triggered outgoing
connections such as Ident, Finger, and FTP data-transfer

Outgoing connections 49,049 (100%)
to internal hosts 32,967 (67.21%)
to external hosts 16,082 (32.79%)

Internal hosts ≥ 652

From the traces we observe that over 99.5% of the hosts contacted fewer than 60 dif-
ferent hosts in 10 minutes, corresponding to an average fan-out rate below 0.1/sec. We
categorize these hosts as benign. (Note that Twycross and Williamson [13] use fan-out
rate of 1/sec as a maximum allowed speed for throttling virus spreads.)

Only 9 hosts exceed this threshold in this trace. Of these, 4 were aliases (introduced
by the traces having separate anonymization namespaces) for an internal scanner used
by the site for its own vulnerability assessment. Of the remainder, 3 hosts are main
mail servers that forward large volumes of email, and the other 2 hosts are internal
web crawlers that build search engine databases of the content served by internal Web
servers. By manual inspection, we also later found another appearance of the internal
scanner that we missed using our 0.1/sec fan-out rate threshold, as in that instance the
scanner contacted only 51 different IP addresses during the 10-minute period. We ex-
clude the scanners and the crawlers2 from our subsequent analysis. In what follows, we
develop a model that captures fan-out rate statistics of this set of “purely” benign hosts.

3.1 Time Interval to Visit New Destinations

A host engaged in scanning or worm propagation will generally probe a significant
number of hosts in a short time period, yielding an elevated first-contact connection
rate. In this section, we analyze our dataset to determine the distribution of first-contact
interarrivals as initiated by benign hosts. We then explore the discriminating power of
this metric for a worm whose first-contact connections arrive a factor of n more quickly.

Figure 1 shows the distribution of the amount of time between first-contact con-
nections for individual hosts. Here we have separated out the scanners (identified as
discussed above). While the average interarrival time is 39.2 sec, we often see benign,
non-scanner hosts initiating multiple first-contact connections separated by very little
(< 1 sec) time. In fact, these short time intervals account for about 40% of the total in-
tervals generated by benign hosts, which makes it impractical to use 1/sec fan-out rate
to identify possible worm propagation activity.

However, when focusing on sub-second interarrivals, we find that a benign host’s
short-time-scale activity fits fairly well to an exponential distribution, as illustrated in
Figure 2. Here the fit to the empirical data uses μ = 261 msec. We note that a scanner
could craft its probing scheduling such that its fine-grained scanning behavior matches
that of benign users, or at least runs slower than what we model as benign activity.
However, this will significantly slow down the scanning speed, so compelling attackers

2 Note that we do not include the mail servers in the set of scanners, as they are not scanners
per se, but rather applications that happen in this environment to exhibit high fan-out.

180 J. Jung, R.A. Milito, and V. Paxson

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10-3 10-2 10-1 100 101 102 103 104 105 106

C
D

F

Millisecond

Fig. 1. Cumulative distribution of first-contact
connections’ interarrival time, per host

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Milliseconds

C
D

F

Non−Scanner Interarrivals
Exponential Fit

Fig. 2. First-contact interarrivals initiated by
benign hosts roughly follow an exponential
distribution with mean μ = 261 msec

to make this modification constitutes an advance in the ongoing “arms race” between
attackers and defenders.

We also note that we could extract significantly more precise interarrival models—
including differing mean interarrival rates—if we partitioned the traffic based on its ap-
plication protocol. While investigating this refinement remains a topic for future work,
in our present effort we want to explore the efficacy of as simple a model as possible.
If our algorithm can prove effective without having to characterize different protocols
separately, we will benefit a great deal from having fewer parameters that need to be
tuned operationally.

In the next section, based on these characteristics of benign activity, we develop our
detection algorithm, RBS, for quickly identifying scanners or worm infectees with a
high accuracy.

4 RBS: Rate-Based Sequential Hypothesis Testing

In this section, we develop a rate-based sequential hypothesis testing algorithm, RBS,
which aims to quickly identify hosts issuing first-contact connections at rates higher
than what we model as benign activity.

Let H1 be the hypothesis that a given host is engaged in worm propagation, and
let H0 be the null hypothesis that the host exhibits benign network activity. A host
generates an event when it initiates a connection to a destination with which the host has
not previously communicated, i.e., when the host initiates a first-contact connection. As
discussed in the previous section, we assume that the interarrival times of such events
follow an exponential distribution with mean 1/λ0 (benign host) or 1/λ1 (scanner).
When a host generates the ith event at time ti, we can compute an interarrival time,
Xi = ti − ti−1 for i ≥ 1 and t0 the initial starting point, and update the likelihood ratio
of the host being engaged in scanning (or benign).

Define X1, X2, . . . , Xn as a sequence of such interarrival times. Since we model
each Xi as IID non-negative exponential random variables, their sum, Tn, is the n-
Erlang distribution:

On the Adaptive Real-Time Detection of Fast-Propagating Network Worms 181

fn(Tn|H1) =
λ1(λ1Tn)n−1

(n − 1)!
exp−λ1Tn (1)

Based on Equation (1), we can develop a sequential hypothesis test in which we
define the likelihood ratio as:

Λ(n, Tn) =
fn(Tn|H1)
fn(Tn|H0)

=
(

λ1

λ0

)n

exp−(λ1−λ0)Tn (2)

and the detection rules as:

Output =

⎧
⎨

⎩

H1 if Λ(n, Tn) ≥ η1

H0 if Λ(n, Tn) ≤ η0

Pending if η0 < Λ(n, Tn) < η1

where we can set η1 and η0 in terms of a target false positive rate (the proportion of
benign hosts that are erroneously reported as scanners), α and a target detection rate (the
proportion of scanners that are correctly reported as scanners), β [14]:

η1 ← β

α
(3)

η0 ← 1 − β

1 − α
(4)

Wald shows that setting thresholds as above guarantees that the resulting false pos-
itive rate is bounded by α

β and the false negative rate is by 1−β
1−α [14]. Given that β is

usually set to a value higher than 0.99 and α to a value lower than 0.001, the margin of
error becomes negligible (i.e., 1

β ≈ 1 and 1
1−α ≈ 1).

An essential advantage of RBS over a simpler scheme using a fixed-rate threshold
is that RBS is more robust to legitimate bursty connections. Figure 3 illustrates how an
average arrival rate can fluctuate a great deal depending on the window size over which
we compute the average. However, RBS effectively can adapt its window size until it
finds consistency over a sufficient number of observations to reach a decision.

0 31 2 4 5 6 7 8 9 10 time (sec)

4/sec
2/sec

1.6/sec
1/sec

Fig. 3. 10 first-contact connection arrivals in 10 seconds: The figure illustrates that the average
arrival rate can vary depending on the window size

For instance, if a host has initiated n first-contact connections and the elapsed time
for the nth connection is Tn, RBS chooses H1 (scanner) only if the likelihood ratio

182 J. Jung, R.A. Milito, and V. Paxson

Λ(n, Tn) exceeds η1. Using Equations (2) and (3), we can obtain a threshold on the
elapsed time, TH1 , below which we arrive at an H1 (scanner) decision:

β

α
≤ Λ(n, Tn)

β

α
≤

(
λ1

λ0

)n

exp−(λ1−λ0)Tn

ln
β

α
≤ n ln

λ1

λ0
− (λ1 − λ0)Tn

Tn ≤ n
ln λ1

λ0

λ1 − λ0
−

ln β
α

λ1 − λ0
= TH1 (5)

Likewise, we can obtain a threshold elapsed time TH0 , above which we conclude H0

(benign host):

TH0 = n
ln

λ1
λ0

λ1−λ0
− ln 1−β

1−α

λ1−λ0
(6)

-1

-0.5

 0

 0.5

 1

 1.5

 0 1 2 3 4 5 6 7 8 9

T
n

(s
ec

)

n

H0

Pending

H1 TH1TH0
 worm

(a) Fast spreading worm with 100 first-contact
connections/second will be detected by RBS at
the 8th connection attempt

-1

-0.5

 0

 0.5

 1

 1.5

 0 1 2 3 4 5 6 7 8 9

T
n

(s
ec

)

n

H0

Pending

H1 TH1TH0
 benign

(b) Benign host with 4 first-contact connec-
tions/second will bypass RBS at the 4th connec-
tion attempt

Fig. 4. TH1 and TH0 when λ0 = 3/sec, λ1 = 20/sec, α = 10−5, and β = 0.99. The X axis
represents the nth event and Y axis represents the elapsed time for the nth event.

Figure 4 shows how those threshold elapsed times, TH1 and TH0 , partition the area
into three decision regions—H1, H0, and Pending. Figure 4(a) illustrates Tn of a host
issuing first-contact connections at 100/second. At the 8th event, T8 falls below TH1 ,
which drives the likelihood ratio to reach the H1 decision. Note that with the set of
parameters used in Figure 4, RBS defers making a decision until it sees at least 7 events;
this occurs because the elapsed time, Tn, is always greater than TH1 up to n = 6. (Ti

is a non-negative, non-decreasing random variable and TH1 becomes positive when
n > 6.1, given λ0 =3/sec, λ1 =20/sec, α = 10−5, and β = 0.99.) This initial holding
period makes RBS robust against small traffic bursts. We can shorten this initial holding
period, however, if we use a smaller β or larger α.

On the Adaptive Real-Time Detection of Fast-Propagating Network Worms 183

In general, Equation (5) provides important insights into the priors and the perfor-
mance of RBS. TH1 is a function of n, taking a form of g(n) = a(n − c), where
a = (ln λ1

λ0
)/(λ1 − λ0) and c = (ln β

α)/(ln λ1
λ0

):

1. α and β affect only c, the minimum number of events required for detection (i.e., the
minimum window size). For fixed values of λ1 and λ0, lower values of α or higher
values of β (i.e., greater accuracy in our decisions) let more initial connections
escape before RBS declares H1. One can shorten this initial holding period by
increasing α or decreasing β. But we can only do so to a limited degree, as c needs
to be greater than the size of bursty arrivals that we often observe from Web or
P2P applications, in order to avoid excessive false alarms. Another different way to
prevent damage from those initially allowed connection attempts is to hold them at
a switch until proven innocent [8].

2. λ0 and λ1 determine a, the slope of TH1 over n. The inverse of the slope gives the
minimum connection rate that RBS can detect. Any host generating first-contact
connections at a higher rate than λ1 intercepts g(x) with probability 1. There is
a built-in robustness in this, because the slope is strictly larger than 1

λ1
(what we

model as a scanner), which follows from the inequality ln(x) < x − 1, 0 < x < 1.
3. Although we use λ1 to model a scanner’s first-contact connection rate, RBS can

detect any scanner with a rate λ′ provided that:

λ′ >
1
a

=
λ1 − λ0

ln λ1 − ln λ0
(7)

because a host with a rate higher than λ′ will eventually cross the line of TH1 and
thus trigger an alarm.

Finally, Equations (5) and (6) show that RBS bases its decision on two parameters—
the number of attempts, n, and the elapsed time, T (n)—and not the actual realization
of the arrival process.

5 Evaluation

We evaluated the performance of RBS in terms of false positives using a trace-driven
simulation of the Enterprise dataset. RBS is in essence an algorithm that provides
a tight bound of benign hosts’ fan-out rate, enabling us to detect worms and scanners
that employ higher-than-normal fan-out rates.

The Enterprise packet trace was captured at internal routers of a small enterprise
network in November 2006. The trace contains 184 active hosts that initiated 238,407
TCP connections during the 1-hour collection period. To establish a ground truth, we
extensively analyzed the trace using well-known application signatures and the Ethereal
program [3] and found that about 76 applications were running at the time, including
P2P clients such as BitTorrent and KaZaA, and VoIP programs such as Skype. More-
over, we found no infected machines nor scanners in the trace, making it suitable for
testing RBS’s accuracy in terms of false positives.

We need to set four parameters (α, β, λ0, and λ1) in order to run RBS. For high
accuracy, we set β = 0.99 (99% target detection rate) and α = 10−6 (0.0001% target

184 J. Jung, R.A. Milito, and V. Paxson

false alarm rate). Note that we set α very low because the detection algorithm executes
for every first-contact connection initiated by a local host, which adds up to a very large
number of tests.

The typical fan-out rate of benign hosts (λ0) can change according to time (e.g.,
weekdays vs. weekend) and site (e.g., a small company where most network traffic is
related to database transactions vs. a big ISP). To accommodate such changes, rather
than asking an administrator to provide a magic number, we automatically infer the
parameter λ0 as follows:

– Observation: We observe interarrival times of first-contact connections generated
by each host (i) and keep a list of mean interarrival times per host (μ1, μ2, μ3, . . .)
for a 10-minute period.

– Inference: At the end of an observation run, we compute a 10% trimmed mean [12]
of the μi’s: we first sort the data and remove the top and bottom 10% of the data be-
fore evaluating the arithmetic mean. As such, the inferred mean will not be affected
by newly infected machines as long as the population of the infected machines stays
below 10%. We set 1/λ0 equal to the inferred mean. Figure 5 shows the inferred
values of λ0 for the Enterprise dataset.

However, there is no obvious pick for λ1, since a worm can choose an arbitrary
propagation rate. If λ1/λ0 is close to 1, RBS takes longer to make a decision; but on the
other hand, it can detect slower scanners than for higher λ1/λ0 ratios, per Equation (7).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

605040302010

λ 0

Time (min)

Fig. 5. 10% trimmed mean of first-contact con-
nection arrival rate updated every 10 minutes

 0

 1

 2

1098765432

F
al

se
 p

os
iti

ve
s

λ1/λ0

0 0 0 0

1 1

2 2 2

Fig. 6. Trace-driven simulation results of RBS
varying λ1 when α = 10−6, and β = 0.99

Figure 6 shows the simulation results of RBS for the Enterprise dataset as we
vary λ1 as a multiple of λ0. As described above, both λ0 and λ1 get updated every
10 minutes. RBS generates no false positives when λ1/λ0 is less than 6. However, RBS
erroneously triggers for 2 hosts (a BitTorrent client and a chatty Web browser) when
the ratio is higher than 7. The main reason for these false positives is short bursts. As
discussed in §4, when λ1/λ0 is high, RBS becomes sensitive to short bursts, making it
prone to generating false positives. Given that bursty connections are somewhat preva-
lent among many applications, this result leads us to recommend a small λ1/λ0 ratio.
A caveat of using a small ratio is that RBS may miss carefully crafted scan traffic if the
scanner repeatedly generates short bursts followed by a long idle time.

On the Adaptive Real-Time Detection of Fast-Propagating Network Worms 185

Thus, while this assessment is against a fairly modest amount of data, we find the
results promising. We conduct a more extensive evaluation in §6.

6 Hybrid Approach: RBS+TRW

RBS uses fan-out rate to differentiate benign traffic from scanners (or targeting worms),
which we model as Poisson processes with rates λ0 (benign) and λ1 (scanner), with
λ0 < λ1. Another discriminatory metric proved to work well in detecting scanners
is the failure ratio of first-contact connections [6,17,8]. TRW [6] works by model-
ing Bernoulli processes with success probabilities, θ0 (benign) and θ1 (scanner), with
1 − θ0 < 1 − θ1. In this section, we develop a combined worm detection algorithm
that exploits both a fan-out rate model and a failure ratio model. We evaluate the hy-
brid using trace-driven simulation, finding that this combined algorithm, RBS+TRW,
improves both overall accuracy and speed of detection.

Suppose that a given host has initiated connections to n different destinations, and
that the elapsed time until the nth connection is Tn. Among those n destinations, Sn

accepted the connection request (success) and Fn = n − Sn rejected or did not re-
spond (failure). Applying the models from RBS and TRW [6], we obtain a conditional
probability distribution function for scanners:

f [(Sn, Tn)|H1] = P [Sn|Tn, H1] × f [Tn|H1]

=
(

n

Sn

)
θSn
1 (1 − θ1)Fn

×λ1(λ1Tn)n−1

(n − 1)!
exp−λ1Tn

where P [Sn|Tn, H1] is the probability of getting Sn success events when each event
will succeed with an equal probability of θ1, and f [Tn|H1] is an n-Erlang distribution
in which each interarrival time is exponentially distributed with mean 1/λ1.

Analogous to f [(Sn, Tn)|H1], for benign hosts we can derive:

f [(Sn, T)|H0] =
(

n

Sn

)
θSn
0 (1 − θ0)Fn

×λ0(λ0Tn)n−1

(n − 1)!
exp−λ0Tn .

We then define the likelihood ratio, Λ(Sn, Tn), as

Λ(Sn, Tn) =
f [(Sn, Tn)|H1]
f [(Sn, Tn)|H0]

=
(

θ1

θ0

)Sn
(

1 − θ1

1 − θ0

)Fn

×
(

λ1

λ0

)n

exp−(λ1−λ0)Tn .

186 J. Jung, R.A. Milito, and V. Paxson

It is interesting to note that Λ(Sn, Tn) is just the product of ΛTRW and ΛRBS . More-
over, Λ(Sn, Tn) reduces to ΛTRW when there is no difference in fan-out rates between
benign and scanning hosts (λ1 = λ0). Likewise, Λ(Sn, Tn) reduces to ΛRBS when there
is no difference in failure ratios (θ1 = θ0).

We evaluate this combined approach, RBS+TRW, using two new sets of traces, each
of which contains different types of scanners that happen to wind up contrasting the
strengths of RBS and TRW. We first categorize hosts into four classes based on their
fan-out rates and failure ratios. In what follows, we discuss types of scanners falling
into each region and detection algorithms capable of detecting such hosts.

– Class LH (low fan-out rate, high failure ratio): Slow-scanning worms or scanners
that probe blindly (randomly or sequentially) will likely generate many failures,
triggering TRW with a high probability.

– Class HH (high fan-out rate, high failure ratio): Fast-scanning worms (e.g., Code
Red, Slammer) that exhibit both a high fan-out rate and a high failure ratio will very
likely to drive both TRW and RBS to quickly reach their detection thresholds.

– Class HL (high fan-out rate, low failure ratio): Flash, metaserver, and topological
worms [16] belong to this class. These worms build or acquire a list of target hosts
and then propagate over only those potential victims, so their connection attempts
tend to succeed. While these targeting worms can bypass TRW, their high fan-out
rate should trigger RBS.

– Class LL (low fan-out rate, low failure ratio): Most benign hosts fall into this class,
in which their network behavior is characterized by a low fan-out rate and a low
failure ratio. Typically, a legitimate host’s fan-out rate rarely exceeds a few first-
contact connections per second. In addition, benign users do not initiate traffic to
hosts unless there is reason to believe the host will accept the connection request,
and thus will exhibit a high success probability. Neither TRW nor RBS will trigger
hosts in this class, which in turn, allows particularly stealthy worms, or passive
“contagion” worms that rely on a user’s behavior for propagation [16], to evade
detection. Worms of this type represent a formidable challenge that remains for
future work to attempt to address.

We use an average 5 Hz fan-out rate (λ0) and 0.5 failure ratio (1-θ0) as baselines in
order to categorize hosts in our trace. Ideally, we should investigate all the hosts in the
traces to obtain a ground truth, but because of the sheer amount of traffic volume (more
than 2 million connections), we resort to this screening process to sift out the many
hosts with quite limited activity.

We compute a fan-out rate with a sliding window of size 5 in order to capture bursty
arrivals that often result from concurrent Web connections addressed to different Web
sites for embedded objects. Figure 7 classifies hosts in the datasets based on the 5 Hz
fan-out rate and 0.5 failure ratio thresholds.

Table 2 shows the details of the datasets we use for evaluation. The Lab-II dataset
was collected at the same enterprise network as Lab. It is composed of 137 one-hour
long traces from December 2004 and Janunary 2005, recorded at internal routers con-
necting a variety of subnets to the rest of the enterprise and the Internet. The ISP dataset
was recorded using tcpdump at the border of a small ISP in April 2003. It contains

On the Adaptive Real-Time Detection of Fast-Propagating Network Worms 187

 0

 0.2

 0.4

 0.6

 0.8

 1

10-4 10-3 10-2 10-1 100 101 102 103 104 105

A
ve

ra
ge

 F
ai

lu
re

 R
at

io

Average Fan-Out Rate (Hz)

S

S

N

C

C

LL

LH HH

HL

(a) Lab-II (S: scanner, N: host running nmap,
C: internal Web crawler)

 0

 0.2

 0.4

 0.6

 0.8

 1

10-4 10-3 10-2 10-1 100 101 102 103 104 105

A
ve

ra
ge

 F
ai

lu
re

 R
at

io

Average Fan-Out Rate (Hz)

WW

S S
S

LL

LH HH

HL

(b) ISP (S: scanner, W: Code Red II infectee)

Fig. 7. Classification of hosts present in the evaluation datasets: Each point represents a local host
that generated more than 5 first-contact connections

traffic from 389 active hosts during the 10-hour monitoring period (The high number of
connections is due to worm infections during the time of measurement.).

The table shows the division of the internal hosts into the four categories discussed
above. Manual inspection of the hosts in HH, HL, and LH3 reveals that there are 5 hosts
each in both of Lab-II and ISPwhose behavior qualifies them as scanners and worms
that we aim to detect (H1) because of their high-fan-out or high-failure behaviors: For
Lab-II, the 2 HH hosts are one internal vulnerability scanner and one host that did a
fast nmap [1] scan of 7 other hosts; 1 LH host is another internal vulnerability scanner;
2 HL hosts are internal Web crawlers that occasionally contacted tens of internal Web
servers to update search engine databases. For ISP, the HH hosts are two Code Red II
infectees plus an HTTP scanner, and the LH hosts are 2 slower HTTP scanners.

The one HH host in the Lab-II dataset that we classify as benign (H0) turns out
to be a NetBIOS client that often (benignly) made connection requests to absent hosts.
The 2 benign HH hosts in the ISP dataset are all clients running P2P applications
that attempt to contact a large number of transient peers that often do not respond.
Most benign LH hosts are either low-profile NetBIOS clients (Lab-II) or P2P clients
(ISP), and most benign HL hosts from Lab-II are caused by Web clients accessing
Web sites with many images stored elsewhere (e.g., a popular news site using Akamai’s
content distribution service, and a weather site having sponsor sites’ images embedded).

Table 2 also shows that while those two thresholds are useful for nailing down a set
of suspicious hosts (all in either HH, LH, or HL), a simple detection method based on
fixed thresholds would cause 66 false positives because of benign hosts scattered in the
LH and HL regions, as shown in Figure 7. However, using dynamic thresholds based
on the previously observed behavior, RBS+TRW accurately identifies those 10 target
hosts while significantly reducing false positives.

3 We looked into each host in those three classes for the ISP dataset, and the 66 of such hosts
for the Lab-II dataset that generated more than 20 first-contact connections in a one-hour
monitoring period.

188 J. Jung, R.A. Milito, and V. Paxson

Table 2. Evaluation datasets: scanning hosts include vulnerability scanners, worm infectees,
and hosts that we use proxies for targeting worms because of their anomalous high-fan-out rate

Lab-II ISP
Outgoing Connections 796,049 1,402,178

Duration 137 hours 10.5 hours
HH scanning 2 3

H benign 1 2
LH scanning 1 2

O benign 34 3
HL scanning 2 0

S benign 26 0
LL scanning 0 0

T benign 1321 260
≤ 5 first-contact connections 2,621 119

S Total scanning 5 5
benign 4,003 384

Total 4,008 389

We evaluate RBS+TRW by varying λ1 from λ0 to 10λ0, and θ1 from 0.2θ0 to θ0. As
discussed in §5, we infer λ0 and θ0 using 10% trimmed means.4 We set β = 0.99, and
α = 10−6. Figures 8 and 9 show the number of detections and false positives for each
pair of λ1 and θ1. In particular, for λ1 = λ0, the combined algorithm reduces to TRW
(dashed vertical lines along the θ axis), and when θ1 = θ0, to RBS (dashed vertical
lines along the λ axis).

λ1/λ0

θ1/θ0

 0
 1
 2
 3
 4
 5

Detection

 1 2 3 4 5 6 7 8 9 10

 0.2
 0.4

 0.6
 0.8

 1

Detection

(a) Detection (out of 5 targets)

λ1/λ0

θ1/θ0

 0
 4
 8

 12
 16
 20
 24

False positives

 1 2 3 4 5 6 7 8 9 10

 0.2
 0.4

 0.6
 0.8

 1

False positives

(b) False alarms (out of 4,008 hosts)

Fig. 8. Simulation results of RBS+TRW for the Lab-II dataset, varying λ1 and θ1

Table 3 compares the performance of the combined algorithm against that of RBS
and TRW alone. First, we find the priors that make RBS (TRW) the most effective (0
false negatives) in identifying scanners in the Lab-II (ISP) dataset. The nature of our
test datasets keeps either algorithm from working better across both datasets. In fact,

4 We placed an upper bound (0.9) on θ0, since a small value of θ0 (e.g., 0.9999) causes TRW to
trigger for a few spurious failures.

On the Adaptive Real-Time Detection of Fast-Propagating Network Worms 189

λ1/λ0

θ1/θ0

 0
 1
 2
 3
 4
 5

Detection

 1 2 3 4 5 6 7 8 9 10

 0.2
 0.4

 0.6
 0.8

 1

Detection

(a) Detection (out of 5 targets)

λ1/λ0

θ1/θ0

 0
 2
 4
 6
 8

 10

False positives

 1 2 3 4 5 6 7 8 9 10

 0.2
 0.4

 0.6
 0.8

 1

False positives

(b) False alarms (out of 389 hosts)

Fig. 9. Simulation results of RBS+TRW for the ISP dataset, varying λ1 and θ1

Table 3. Evaluation of RBS+TRW vs. RBS and TRW. Both Lab-II and ISP each have 5
scanners. N |H1 represents the average number of first-contact connections originated by the
detected hosts upon detection.

Lab-II ISP
λ1 θ1 False - False + N |H1 False - False + N |H1

RBS 10λ0 = θ0 0 2 5.6 2 3 6.4
TRW = λ0 0.2θ0 3 21 18.5 0 7 10.0

RBS+TRW 5λ0 0.6θ0 0 3 6.9 1 3 5.0

when λ1 = 10λ0 and θ1 = θ0, RBS has 0 false negatives for Lab-II, but misses
2 LH scanners in ISP. In comparison, when λ1 = λ0 and θ1 = 0.2θ0, TRW has 0 false
negatives for ISP, but misses 3 scanners in Lab-II, including the two Web crawlers.

We could address the problem of false negatives for either algorithm by running
TRW and RBS in parallel, raising an alarm if either algorithm decides so. However, this
approach comes at a cost of an increased number of false alarms, which usually result
from LH hosts (e.g., Windows NetBIOS connections, often made to absent hosts) or
HL hosts (e.g., a busy mail server or a Web proxy).

In general, improving the accuracy of a detection algorithm requires iterative adjust-
ments of decision rules: first improving the detection rate by loosening the decision rule,
and then decreasing the false positive rate by tightening the decision rule without los-
ing too many correct detections. For this iteration, our combined algorithm, RBS+TRW
provides two knobs, λ1 and θ1, that we can adjust to tune the detector to a site’s traffic
characteristics.

The trace-driven simulation shows that RBS+TRW with λ1 = 5λ0 and θ1 = 0.6θ0

misses only one low-profile target host (a slow HTTP scanner from ISP) while gener-
ating no more than 6 false positives, per Table 3. Had we run RBS and TRW in parallel,
we could have eliminated all the false negatives, but at the cost of 33 false alarms alto-
gether.

Overall, RBS+TRW provides the good detection of high-profile worms and scanners
(no more than 2 misses across both datasets) while generating less than 1 false alarm
per hour for a wide range of parameters (λ1 ∈ [4λ0, 8λ0] and θ1 ∈ [0.4θ0, 0.7θ0]),

190 J. Jung, R.A. Milito, and V. Paxson

and reaching its detection decisions quickly (less than 7 first-contact connections on
average).

7 Discussion

This section discusses several technical issues that may arise when employing
RBS+TRW in practice. While addressing these issues is beyond the scope of this paper,
we outline ideas and directions based on which we will pursue them in future work.

Operational issues: A worm detection device running RBS+TRW needs to maintain
per local host information. For each host, a detector must track first-contact connections
originated by the host, their failure/success status, and the elapsed time. The state thus
increases proportional to the number of local hosts in the network (N) and the sum of all
their currently pending first-contact connections. Given that RBS+TRW requires ≤ 10
first-contact connections on average to reach a decision (§6), we can estimate amount
of state as scaling on the order of 10N . Note that every time RBS+TRW crosses either
threshold, it resets its states for the corresponding host.

When constrained by computation and storage resources, one can employ cache data
structures suggested by Weaver et al. [17] that track first-contact connections with a
high precision. However, we note that running RBS+TRW on aggregate traffic across
hosts (as opposed to the per-host operation for which it is designed) can significantly
affect the detection performance due to the uneven traffic distribution generated by each
end-host [20].

Post-detection response: The results in Table 3 correspond to RBS+TRW generating
0.07 false alarms per hour at the Lab-II site and 0.57 per hour at the ISP site. This
low rate, coupled with RBS+TRW’s fast detection speed, make it potentially suitable
for automated containment, crucial to defending against fast-spreading worms. Alter-
natively, a network operator could employ connection rate-limiting for hosts detected
by RBS+TRW, automatically restricting such hosts to a low fan-out rate.

Extensions: One can complement RBS+TRW with a classification engine and run the
algorithm with specific parameters per application. For instance, many peer-to-peer ap-
plications probe other neighboring hosts in order to find the best peer from which to
download a file. For a peer-to-peer client having a large number of transient peers, this
probing activity can generate many failed connections, leading to an alarm. In such a
case, grouping peer-to-peer traffic and running a separate instance of RBS+TRW with
the parameters particularly tuned for this application should significantly improve the
algorithm’s performance.

Limitations: As indicated in Figure 7, RBS+TRW is unable to detect targeting worms
using high-quality hit lists comprised of at least 70% active hosts and spreading no
faster than several first-contact connections per second. Detecting such worms might
be possible by working on larger time scales. For example, a scanner that generates
first-contact connections at a rate of 1 Hz will end up accessing 3,600 different hosts in
an hour, far outnumbering the sustained activity of a typical benign host. Thus, a natural
avenue for future work is assessing the operation of RBS on longer timescales.

On the Adaptive Real-Time Detection of Fast-Propagating Network Worms 191

Finally, attackers can game our detection algorithm by tricking end users into gen-
erating first-contact connections either at a high rate (RBS), or that will likely end up
failing (TRW). For instance, similar to an attack in [8], an attacker could put content on
a web site with numerous embedded links to non-existent destinations.

8 Conclusion

We have presented a worm detection algorithm, RBS (rate-based sequential hypothesis
testing), that rapidly identifies high-fan-out behavior by hosts based on the rate at which
the hosts initiate connections to new destinations. RBS uses the sequential hypothesis
testing [14] framework. While built using a model that the time between connection at-
tempts to new destinations is exponentially distributed (which we show is a reasonable
approximation for bursts of activity), RBS decisions reflect the aggregate measurement
of the total elapsed time over a number of attempts, not the characteristics of individual
arrivals. We define RBS in terms of a single discriminating metric—the rate of connec-
tion attempts—which differs substantially between benign hosts and an important class
of worms. While the choice of such a metric evokes the measurement of an average
rate over a window of certain size (and the comparison of the measured rate to a fixed
threshold), RBS is more elaborate. The algorithm draws from sequential hypothesis
testing the ability to adapt its decision-making in response to the available measure-
ments in order to meet specified error requirements. We can view this as an adaptation
of both the window size (i.e., how many attempts to make a decision) and the threshold
(i.e., what is the minimum measured rate over that window that leads to a trigger). This
adaptation gives RBS a robustness unseen in fixed window/threshold schemes.

We evaluated RBS using trace-driven simulations. We find that when the factor of
speed difference, n, between a scanner and a benign host is small, RBS requires more
empirical data to arrive at a detection decision but stays robust against short bursts.
When n is less than 6, RBS generates no false positives for a 1-hour trace that includes
P2P clients and VoIP programs known to connect to a set of peers.

We then presented RBS+TRW, a hybrid of RBS and TRW [6] which combines fan-
out rate and probability of success of each first-contact connection. RBS+TRW pro-
vides a unified framework for detecting fast-propagating worms independent of their
scanning strategy (i.e., topological or scanning worms). Using two traces from two
qualitatively different sites, containing 389 active hosts and 4,008 active hosts, we show
that RBS+TRW provides fast detection of hosts infected by Code Red II, as well as the
internal Web crawlers that we use as proxies for topological worms. In doing so, it
generates less than 1 false alarm per hour.

Acknowledgements

Our thanks to anonymous reviewers for their helpful comments. This work was sup-
ported by NSF Awards STI-0334088, NSF-0433702 and CNS-0627320, for which we
are grateful. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors or originators and do not necessarily reflect the
views of the National Science Foundation.

192 J. Jung, R.A. Milito, and V. Paxson

References

1. Nmap — free security scanner for network exploration & security audits,
http://www.insecure.org/nmap/

2. Chen, S., Tang, Y.: Slowing Down Internet Worms. In: Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS’04) Tokyo, Japan (March 2004)

3. Ehtereal.com. Ethereal, http://www.ethereal.com/
4. Eichin, M.W., Rochlis, J.A.: With Microscope and Tweezers: An Analysis of the Internet

Virus of November 1988. In: Proceedings of the IEEE Symposium on Research in Security
and Privacy (1989)

5. F-Secure. F-Secure Virus Descriptions: Santy,
http://www.f-secure.com/v-descs/santy a.shtml

6. Jung, J., Paxson, V., Berger, A. W., and Balakrishnan, H. Fast Portscan Detection Using
Sequential Hypothesis Testing. In: Proceedings of the IEEE Symposium on Security and
Privacy (May 9–12, 2004)

7. Kim, H.-A., Karp, B.: Autograph: Toward Automated Distributed Worm Signature Detection.
In: Proceedings of the 13th USENIX Security Symposium (August 9–13, 2004)

8. Schechter, S.E., Jung, J., Berger, A.W.: Fast Detection of Scanning Worm Infections. In: Jon-
sson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, Springer, Heidelberg
(2004)

9. Singh, S., Estan, C., Varghese, G., and Savage, S. Automated Worm Fingerprinting. In: Pro-
ceedings of the 13th Operating Systems Design and Implementation OSDI (December 2004)

10. Spafford, E. H. A Failure to Learn from the Past. In: Proceedings of the 19th Annual Com-
puter Security Applications Conference. December 8–12, 2003 pp. 217–233 (2003)

11. Staniford, S., Paxson, V., Weaver, N.: How to 0wn the Internet in Your Spare Time. In:
Proceedings of the 11th USENIX Security Symposium Berkeley, CA, USA, August 5–9,
2002 USENIX Association, pp. 149–170 (2002)

12. Turkey, J.W.: A survey of sampling from contaminated distributions. In: Contributions to
Probability and Statistics, Stanford University Press (1960)

13. Twycross, J., Williamson, M.M.: Implementing and Testing a Virus Throttle. In: Proceedings
of the 12th USENIX Security Symposium (August 4–8, 2003)

14. Wald, A.: Sequential Analysis. J. Wiley & Sons, New York (1947)
15. Wang, K., Cretu, G., Stolfo, S.J: Anomalous payload-based worm detection and signature

generation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, Springer, Hei-
delberg (2006)

16. Weaver, N., Paxson, V., Staniford, S., Cunningham, R.: A Taxonomy of Computer Worms.
In: Proceedings of the 2003 ACM Workshop on Rapid Malcode, October 27, 2003, pp. 11–
18. ACM Press, New York (2003)

17. Weaver, N., Staniford, S., and Paxson, V. Very Fast Containment of Scanning Worms. In:
Proceedings of the 13th USENIX Security Symposium (August 9–13, 2004)

18. Whyte, D., Kranakis, E., van Oorschot, P.: DNS-based Detection of Scanning Worms in
an Enterprise Network. In: Proceedings of the Network and Distributed System Security
Symposium (NDSS’05) (February 2005)

19. Williamson, M. M. Throttling Viruses: Restricting propagation to defeat malicious mobile
code. In: Proceedings of The 18th Annual Computer Security Applications Conference (AC-
SAC 2002) (December 9–13, 2002)

20. Wong, C., Bielski, S., Studer, A., Wang, C.: Empirical analysis of rate limiting mechanisms.
In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, Springer, Heidelberg (2006)

http://www.insecure.org/nmap/
http://www.ethereal.com/
http://www.f-secure.com/v-descs/santy_a.shtml

Targeting Physically Addressable Memory

David R. Piegdon and Lexi Pimenidis

Aachen University of Technology,
Computer Science Department Informatik IV,

Ahornstr. 55, D-52074 Aachen, Germany

Abstract. This paper introduces new advances in gaining unauthorised
access to a computer by accessing its physical memory via various means.
We will show a unified approach for using IEEE1394, also known as
firewire, file descriptors and other methods to read from and write into a
victim’s memory. Thereafter we will show the power of this ability in sev-
eral example attacks: stealing private SSH keys, and injecting arbitrary
code in order to obtain interactive access with administrator privileges
on the victim’s computer.

These advances are based on data structures that are required by
the CPU to provide virtual address spaces for each process running on
the system. These data structures are searched and parsed in order to
reassemble pages scattered in physical memory, thus being able to read
and write in each processes virtual address space.

The attacks introduced in this paper are adaptable to all kinds of ope-
rating system and hardware combinations. As a sample target, we have
chosen Linux on an IA-32 system with the kernel-options CONFIG NOHIGH
MEM or CONFIG HIGHMEM4G, CONFIG VMSPLIT 3G and CONFIG PAGE OFFSET=
0xC0000000.

1 Introduction

All modern operating systems do not grant processes and users access to phy-
sically addressed memory, as this addressing mode circumvents any protection
methods provided by virtual addressing to separate processes from each other
and the operating system. Only the operating system may use physical addres-
sing to prepare address spaces for each running process, manage these, access
special memory of extension cards and alike, or even only during bootstrapping
as Linux does. Having access to a computer’s memory is equal to have the same
rights and possibilities as the operating system. Thus access to it should require
system administrator rights or physical access to the hardware of the underlying
system. Therefore it is crucial for a system’s security to prevent attackers from
gaining direct access to a computer’s memory.

Up to recently, protecting access to a computer’s memory was equal to de-
fend against physical attacks on the hardware, given that the operating system
had no vulnerabilities. Thus, reading and writing to a computer’s memory was
only possible by booting custom operating system, opening the case and attack-
ing the hardware directly, stealing the whole system, installing specially crafted
PCMCIA cards, or the like.

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 193–212, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

194 D.R. Piegdon and L. Pimenidis

However, IEEE1394, also known as “firewire” and so called in the rest of the
paper, does not require to boot a custom operating system, to open the case,
steal parts of the hardware, install new hardware (except plugging in the firewire
cable) or specially crafted hardware. Access via firewire is as easy as plugging in
a firewire device, like e.g. an iPod, letting it do its job and unplugging it.

In this paper we will introduce several advances in attacking computers via
firewire. As a foundation for the attacks, we introduce two libraries that are
used as a step stone for further work. These libraries are used to access virtual
address spaces of any process on the victim’s host. They also provide a simple,
generic interface for all kinds of physical memory sources. As an example, we
implemented backends for IEEE1394 and filedescriptors so far, but other sources
can be trivially added.

Once, access to the physical memory of a system is obtained, there are two
obvious ways to extract useful information from it:

– It is possible to parse the operating systems internal data structures holding
all relevant information about loaded drivers, running processes et al.

– It is possible to use the information that the operating system provides to
the hardware to tell it about the virtual address spaces of each process.

The first scenario will not work between different operating systems and ar-
chitectures, since it is necessary to write a parser for each combination of them,
possibly even for different versions of the same operating system.

The latter uses an information structure that only changes between different
architectures, as the architecture relies on it. Furthermore there is a well defined
algorithm for using this information (implemented in hardware in the architec-
ture, but well defined in the reference manuals for this architecture, so system
designers can provide valid data to the hardware). On the other hand, the se-
cond approach does not give as much information about the system as the first,
since the first obtains all information directly from the kernel structures, while
using the second approach we only can enter virtual address spaces of processes.
However, in the following we will use the second approach for most attacks, as
it is more robust.

In [Bur06], an approach is introduced that parses kernel-structures of Win-
dows and Linux kernels. Since the paper is about finding an attacker and not
attacking a system, it can be savely assumed that the architecture, the operating
system and its version are known. An attacker, on the other hand, is usually left
with guessing the architecture and operating system and needs more robust tools
for his attacks.

Latest state of the art was shown in [BDK05], where Dornseif et al. demon-
strated how to connect to a remote computer over an IEEE1394 connection and
changed the user of all running processes to the super user “root”. However,
their work left the victim’s machine in a fragile state, often prone to crashing,
and without direct gain for the attacker.

Other advances in memory analysis have been introduced in [Bur06], where
kernel-structures are searched and parsed to identify processes and meta-infor-
mation about processes and the system itself.

Targeting Physically Addressable Memory 195

Our contributions in to this area are twofold:

– We demonstrate how to access the memory of a remote machine in a struc-
tured and portable manner, making information retrieval as easy as reading
local memory.

– With the help of our tool-set we demonstrate that it is not only possible to
read or change data in the remote machine, but also to execute code and
obtain interactive access, possibly with superuser privileges.

1.1 Roadmap

In Section 2, we will introduce libphysical, a library providing an attacker
with a simple, generic interface to interact with physical memory via a simple
interface. Thereafter, in Section 3, liblinear, an interface to access virtual
address spaces, will be introduced. It incorporates a backend for IA-321 and
functions to find virtual address spaces. We introduce several attacks basing on
these results in Section 4, ranging from simple information gathering up to
obtaining an interactive shell.

In Section 5, prospects will be given, what further kinds of attacks seem to
be possible and are of interest. The paper ends with conclusions in Section 6.

2 Physically Addressable Memory Sources: libphysical

This section presents a simple, generic interface for all kinds of physical me-
mory sources. The implementation is modular, so that backends for new memory
sources may be plugged in with only little extra effort. This interface is called
libphysical and currently includes backends for IEEE1394 and file descriptors.

Modern computer hardware provides many protection and memory mana-
gement mechanisms in hardware. This includes mechanisms implemented in
hardware to provide a virtual address space for each process, and to restrict
a process to its own resources only; paging to extend memory to harddisks and
fragment available memory; caching to access frequently used memory faster,
and more. Obviously, all these features are architecture and operating-system
dependent. An interested reader may read documentation on system program-
ming (e.g. [Int06d, Int06e]) to obtain further information.

Consider a process with its virtual address space and its corresponding set of
pages. Each page in this virtual address space may be:

– a physical memory page that is mapped into the virtual address space, pos-
sibly cached in the CPU’s cache,

– a page that is swapped to other media, like a harddisk
1 This backend is missing algorithms for less-used operation-modes of the IA-32 ar-

chitecture, but it will work at least for most kinds of the Linux kernels (≤ 4GB
RAM). It has not yet been tested with Windows or MacOS X and is missing fea-
tures (Virtual-8086 mode) to work with DOS-processes running inside Windows.

196 D.R. Piegdon and L. Pimenidis

– (depending on the operating system) a mapped buffer or file
– not used, and thus not mapped

Swapped pages will and mapped pages may be loaded only on demand (i.e.
when the process tries to access the page), as access to a non-mapped page by a
process will generate a page fault and the operating system then may map the
demanded page. Access to completely unused pages, via this mechanism, will
create the well known segmentation fault.

When access to physically addressed memory is obtained, each page that an
attacker can access may be either a page of memory of a random process, a buffer
page of a process, a page used by the operating system (kernel code, kernel data,
kernel stack, IO buffer, . . .), an unused page or a page used to give the CPU
information on how to handle virtual addresses, as this is done in hardware. The
latter pages will be called address translation tables (for more information on
these, see section 3).

2.1 Swapping, Multiple Accessors, Caching, Address Translation

Access to physical memory only gives, per definition, access to pages that are
mapped from this physical memory. Thus this kind of access will be unable to
read or write swapped pages and buffers that have not been mapped. There is
no simple solution to circumvent this restriction; it is required to call special
operating system routines to do this. However, access to physical memory does
not include access to the CPU by itself, and these routines may be different from
operating system to operating system.

Depending on the method used to access the memory, a parallel accessor
may be using the same memory at the same time. E.g. when using firewire (see
2.2) to read a page of a currently running task, this task may access, i.e. read
or write, this page at the same time. For instance, if the CPU and another
accessor write at the same moment to the same address location, it depends
on unpredictable timing and caching, which write access will be performed first
and thus is overridden by the other one; as an external accessor we have no
information, when the system’s CPU accesses a page and whether it is cached,
thus leaving us with no simple means to determine the success of a writing
operation. Also, reading and writing at the same time may be impossible via the
given method; thus many atomic commands used for process synchronization,
like “test and set”, do not exist.

Caching may also prevent certain actions from external accessors: if a page is
cached in another, faster memory, a copy of it will typically reside in physical
memory. In the general case it is difficult to know if a page is cached or not;
on IA-32 however the address translation tables contain a flag for each page
telling the CPU if it may be cached or not. Depending on the way used to
access the memory, it may circumvent the cache or not have access to it at all.
When accessing a page, changes made by a task running in parallel may not be
visible immediately and changes made by us may be invisible to a parallel task
or maybe even overwritten by the cache at any time. Special care needs to be

Targeting Physically Addressable Memory 197

taken to minimize this risk. When writing to pages, pages should be chosen that
are not cached or unlikely to be cached while writing; when reading pages, it
must be taken into consideration that the data may change at any time or may
have changed at the time of reading.

On systems using paging, physical memory will mostly be a concatenation of
“random” pages, each one either used by some process or the operating system.
A minor part of these pages will be address translation tables, telling the CPU
what the virtual address space of different processes looks like. Where these
pages are is only known to the operating system and the CPU. For a detailed
discussion, see section 3.

2.2 IEEE1394

IEEE1394, also known as firewire (Apple) or iLink (Sony), is an extension bus
available on many modern computer systems and devices. In contrast to USB,
which is a serial periphery bus, firewire is a high-speed serial expansion bus
with features like guaranteed bandwidth (which is of interest for many real-time
applications, like media crunching), DMA2 and the ability to connect multiple
nodes with a single firewire-bus. The concept of bus master and bus slaves, as
known from USB, is only virtual. Typically when plugging together a firewire
bus, a node is randomly selected to be the master and manages this bus. Most
of these nodes have the ability to be bus master.

DMA is implemented in hardware by the OHCI chip set; it is used to release
the CPU from I/O operations. OHCI filters provide a mechanism to prevent
unwanted access by specific devices identified by their node ID or by all devices
(which negates most of the advantages of firewire), but as the node ID can
change with every bus reset, these filters are rudimental. And even though these
rudimental filters exist, many drivers do not use them.

With every bus reset, these filters need to be reconfigured by the operating
system, but there are no ways to securely identify or authenticate known trusted
devices by means of hardware - a secure software-based authentication protocol
would be required (but none are known to us).

The only thing that may be used to identify “dumb”3 trusted devices like
external storage controllers or video equipment (which are the major clients of
DMA) is the globally unique GUID that a device has branded into its config
ROM - however this GUID may be overwritten until the next hardware reset and
thus faked by an attackers firewire controller. Windows XP on the other hand
does use device class descriptions stored in the config ROM of firewire devices
to allow or deny DMA by means of OHCI filters (e.g. storage devices may use
DMA while other PCs may not). Adam Boileau,“TMASKY” and others have
shown in [Boi06] that, by pretending to be a device like an iPod, which “de-
serves” DMA (in terms of marketdroid4-logik), it is possible to circumvent this
“protection” and to trick Windows into giving an attacker DMA. This attack is
2 Direct Memory Access.
3 Read as “unable to do cryptographic operations”.
4 See jargon-files, http://catb.org/esr/jargon/html/M/marketroid.html

http://catb.org/esr/jargon/html/M/marketroid.html

198 D.R. Piegdon and L. Pimenidis

as simple as reading an iPod’s config ROM from its CSR and using libraw1394’s
raw1394 update config rom() to use the copy. Adam Boileau has implemented
a simple script to do this. We have written our own tool in C using libraw1394,
which can be downloaded on request.

Access to memory of a node will require a 10 bit field for the bus ID, a 6 bit
field for the node ID and a 48 bit address field. On Linux, libraw13945 provides
an easy and portable interface to access the memory of a node. Using libraw1394
under Linux, it is possible to read different block sizes of data via firewire on
the remote computer. Our experiments showed that different hardware allows
bigger blocks to be read at different addresses: 4 byte blocks should always work;
1024 byte blocks may be read with some hardware, if the address resolves to the
physical memory. Control state registers are likely to be readable only in 4 byte
blocks.

For more information on the underlying hardware or protocols, please refer
to [Pro00, And99] or the libraw13945 documentation.

2.3 Filedescriptor: /dev/mem, Memory Dumps

Another source for physical memory may be given to an attacker via a filedescrip-
tor. This filedescriptor may refer to a memory dump or the Linux /dev/mem
device. In case of a plain memory dump, many of the mentioned problems lapse:
no caching will be performed, no concurrent process will change the dumped
data. In the case of a filedescriptor referring to /dev/mem, other accessors will
exist, as /dev/mem is referring to the systems memory; caching on the other hand
should not be a problem as we are not circumventing any caching system (like
the CPU), but using it directly.

2.4 Other Sources

The ideas described in this paper should be easily adoptable to all memory
sources giving access to physically addressable memory, this may include e.g. re-
mote management cards, suspend-2-disk images or virtual machines that have an
interface to access the virtual machines‘ memory. qemu is such a virtual machine,
providing a gdb remote stub to attach a debugger.

To use a new physical source with the methods introduced in the later sections,
it is only required to write a new backend for libphysical.

3 Translating Virtual to Physical Addresses

While we discussed in the last section methods to gain access to a computer’s
memory and their limitations, we will discuss in this section a method for struc-
tured access to these sources.

Multitasking environments that fulfill modern requirements have to provide
virtual address spaces for each running process or thread. For performance and
5 libraw1394: http://www.linux1394.org/

http://www.linux1394.org/

Targeting Physically Addressable Memory 199

security reasons this address translation from a processes virtual address to an
address valid in physical memory is normally performed in hardware. These
mechanisms can include e.g. segmentation and paging.

A normal process’s memory is divisible into several blocks or segments : the
code segment contains all the code that may be run; the data segment contains
the static data that is known at compile time, global structures or deliberately
allocated memory (including the heap); the stack segment contains the stack,
including local variables. On some architectures, it is possible to assign segment
descriptors, referring to defined memory regions, to segment registers. This as-
signment will influence the further behaviour of address translation: all addresses
will from there on be taken to be relative to the bound of the memory region
specified by the segment descriptor. This mechanism is called segmentation.

Paging will divide the virtual address space of a process into several consec-
utive frames of a specific page-size (typically 4096 bytes). Virtual addresses can
be split into frame number and frame offset; the frame number is translated
(mapped) via a translation table into a physical page number and the frame
offset is used as an offset into this physical page. If a frame does not have a
corresponding physical page, it is called to be unmapped. Unmapped pages can
be non-existing pages or can e.g., be swapped to slower media like harddisks.

With liblinear, we provide a software solution for address translation. The
provided interface is similar to libphysical; it needs a physical memory source
(in form of a physical handle), and information about the target architecture.
It provides some functions to find address translation tables in the raw memory
and functions to use them to access the induced virtual address space.

3.1 Example Implementation: IA-32 Backend for liblinear

On the IA-32 architecture, the CPU can run in various modes of operation;
for modern multitasking operating systems the protected mode is the preferred
one. The protected mode can use a two-level address translation: first it will
translate the logical address, consisting of a segment selector (which is an index
into either the local or the global segment descriptor table) and an offset to the
linear address. The linear address is then translated via paging to the physical
address. (The paging translation is optional and needs to be enabled by setting
a special flag in a control register of the CPU.)

A Linux process runs in a simple 4GiB flat virtual address space; no segmen-
tation is required. Thus, Linux will create (among others that are not of interest
for us) four special segments during boot-up: for each privilege level (i.e. ker-
nelspace and userspace), it will create segments for both code and data. These
four so called flat segments will span the full virtual address space of 4GiB,
thus effectively eliminating segmentation. The address of the global descriptor
table, holding the description of these segments, is then loaded into the global
descriptor table register (GDTR) and the specific segment registers are loaded
with segment selectors referring to the segments6.
6 This initialization is done in linux/arch/i386/kernel/head.S, GDTs are defined

at symbols boot gdt table and cpu gdt table

200 D.R. Piegdon and L. Pimenidis

The IA-32 architecture divides the 4GiB virtual address space into 1024 4MiB-
frames. This splitting is defined by the pagedirectory. Each entry of a pagedirec-
tory is 4 bytes long, thus the pagedirectory is 4 · 1024 = 4096 Bytes long. Each
of these pagedirectory entries (PDEs), if present (its PRESENT-flag is set), can
either refer to a 4MiB physical page or a pagetable dividing this virtual 4MiB
frame further into 4KiB frames. A pagetable is again consisting of 1024 4-byte
pagetable entries (PTEs), each corresponding to a 4KiB frame.

Fig. 1. IA-32 Segmentation and Paging process (image taken from [Int06d])

As newer IA-32 CPU features like 36 bit page size extension (PSE-36) and
physical address extension (PSE) are not used in case of the proposed circum-
stances7, their reflection is omitted here. Furthermore it is not always possible
to know from the physical memory only, if these features are enabled. A sample-
installation of a system to be attacked should give these informations. Also, PAE
and PSE-36 are not yet implemented in liblinear. PSE though (not PSE-36)
is enabled with the given options (and implemented), as one can determine by
the use of 4MiB-pages.

7 CONFIG NOHIGHMEM or CONFIG HIGHMEM4G, CONFIG VMSPLIT 3G.

Targeting Physically Addressable Memory 201

For an extensive documentation of the IA-32 architecture one should refer to
the Intel 64 and IA-32 Architectures Software Developer’s Manual
([Int06a, Int06b, Int06c, Int06d, Int06e]), especially [Int06d].

3.2 Finding Address Translation Tables

When accessing a range of memory via physical addressing, it is necessary to
find address translation tables to make sense out of the vast, unsorted number
of pages. Typically, translation tables are not marked as such and as we can
not access the processor or the operating system to ask, where these are, we
have to search them. The following methods have proven themselves when being
combined: for all pages we make a simple test if a page could be a pagedirectory
(3.2) and if so, analyse this page in detail (3.3).

Obviously, address translation tables are architecture and operating system
specific; but within an architecture and an operating system, they will often
share data or specific patterns that are identifiable. For instance, when searching
for Linux IA-32 address translation tables, one can omit searching the segment
descriptor tables (see section 3.1) and concentrate on finding pagedirectories.
There are several special patterns that can be found in a typical pagedirectory
of a Linux process running on IA-32. Following is a layout of the typical virtual
address space of a userspace process:

Fig. 2. Layout of the virtual address space of a typical Linux process

202 D.R. Piegdon and L. Pimenidis

– code and heap will be starting around 0x0800 0000, consecutively following
with a minor number of unused frames in between

– libraries and custom mappings will be mapped below 0xb800 0000
– the userspace stack will be mapped below 0xc000 0000, possibly directly

starting from 0xbfff ffff
– starting from 0xc000 0000 up to approx. 0xf800 0000 the “lowmem” (ap-

prox. lower physical 900 MiB of physical RAM) will be mapped
– the kernelspace stack will be located in this lowmem
– several so far unidentified pages are mapped after 0xf800 0000
– all unused frames will have 4-byte entries consisting of zeroes (0x0000 0000)

Stack- and memory randomization techniques like PaX randomize the base
addresses of these locations within several pages, but the general layout stays
the same.

Besides searching pages that show non-zero values around these positions and
zero values elsewhere, it is much easier and faster to just check, if the virtual
address 0xc000 0000 maps to the physical address 0x0, because typically the
PDE for 4MiB-page no. 0x300 will point to the 4MiB physical page at 0x0. This
test only requires reading the 4byte PDE entry 0x300 and does sort out a vast
majority of non-pagedirectory pages.

Furthermore in the combination Linux/IA-32 we only have to search the lower
1GB of RAM for pagetables.

3.3 Matching Via Statistics: NCD (Normalized Compression
Distance)

For a detailed introduction to and analysis of the NCD and sample applications,
the reader may refer to [LV97] and the text given below.

The normalized information distance (NID), a form of parameter-free simila-
rity distance measurement, can be understood as a measurement for the minimal
amount of changes required to change one information into another one. A NID of
1 means that two informations are totally unrelated; a NID of 0 means that they
are the same. Due to its relation to the Kolmogorov complexity (a measurement
for an information‘s shortest description in a fixed description language) it is
incalculable. As an approximation, it is possible to use data compressors instead
of the Kolmogorov complexity to measure the size of a minimal representation
of information.

The resulting normalized compression distance has proven to be useful in a
vast area of applications; for instance, it has shown its usefulness during analysis
of DNA sequences or languages for relatedness ([CV05, LCL+04]), MIDI music
files for relations in style and creator ([CV05]) and attack schemes of viruses and
worms ([Weh05]).

As the NCD is only an approximation of the NID based on compressors, its re-
sulting “normalized” value can be slightly larger that 1.0 and will never reach 0.

Targeting Physically Addressable Memory 203

liblinear uses the NCD to measure the distance between a known true
pagedirectory and a page of unknown data to determine whether this page could
be a pagedirectory. The NCD has been chosen, because it is a parameter-free
measurement, i.e. it does not depend on specific, known structures of the data
in question. As different architectures will have significantly different address
translation schemes, even depending on the operating systems used, this choice
should be adequate. The complearn-toolkit 8 provides a suite of functions for
generating NCD distance matrices between information, generating relational
trees from these and more. As we only need to compare two pages, this set
of functions is far too big and the interface far too complex for this applica-
tion. Thus, we implemented a very short version of the NCD (simple ncd() in
liblinear/simple ncd.c) using BZip29 as compressor.

4 Attacking

In this section we will show how the two libraries discussed in sections 2 and 3
can be used to gain unauthorized access to remote computer systems.

Subsection 4.1 will discuss passive attacks that only read from a physical
memory source. An overview over gathering information from a virtual address
space is given, including finding processes on a host, obtaining their environment,
arguments and the path of the processes binary. Afterwards, an additional attack
is introduced that is capable of copying public/private keypairs for SSH from a
running ssh-agent process.

In subsection 4.2, we will introduce attacks that change data in the virtual
address space. Further details about executables, libraries and processes will be
given as an introduction. Then we will show how to find mapped libraries, bina-
ries and the stack of a process and how to inject code into a running process. We
then introduce a specially crafted code that can be used to obtain an interactive
shell using firewire access only.

4.1 Information Gathering

Identifying processes. Once an address translation table has been found,
it is of interest, what kind of process resides in this virtual address space.
For userspace applications on IA-32-Linux there is a simple way to identify a
process’s filename, its arguments and even its full set of environment variables:
This information is often required by a process and thus the kernel will provide
it to the process by copying it to the bottom pages of the application’s stack10.

We wrote a tool remote-ps, that uses a function proc info() to seek the
stack-bottom, parse it and return ready-for-use environment vectors, command-
line vectors and the full path of the binary for a given linear address space. For
8 complearn-toolkit: http://complearn.org/
9 BZip2: A high-quality data compressor, http://www.bzip.org/

10 i.e. the stack-pages that are found first when seeking downward from virtual address
0xbfff f000.

http://complearn.org/
http://www.bzip.org/

204 D.R. Piegdon and L. Pimenidis

each found address space it will print a list of all found processes with their
arguments.

Places to find secrets. Many applications keep confidential data in their
memory, some of them even locking them into the main memory11 to prevent
the operating system from swapping them to slower (permanent) media. While
in general this is a good idea, as an attacker may reconstruct the data from e.g.
thrown-away harddisks, it increases the chance of an attacker that can obtain
access to the memory of the system in question, as the confidential material will
be stored in memory completely and not fragmented.

“Secrets” includes, among other information, authentication data, crypto-
graphic key material, random data (e.g. to seed a cryptographic algorithm) and
sometimes even algorithms (proprietary software). Authentication data can be
e.g. passwords or private keys for signature algorithms. Cryptographic key mate-
rial are keys for usage with cryptographic algorithms (like signature algorithms).
The latter two will be of main interest in the remainder of this section.

Many applications using a cryptographic infrastructure for communications
will keep once loaded passwords or keys in their main memory for successive
usage. The operating systems protection model ensures the safety of this infor-
mation from other processes running on the same system; but by accessing the
main memory we do have full access to this material. The only remaining task
is to find and reconstruct the key material and passwords from the memory.

As an example, the following applications are of interest:

– GnuPG and PGP: applications to sign and encrypt arbitrary data with pub-
lic/private keypairs. They are wide spread for email-encryption and -signing.

– sshd, ssh and ssh-agent: the secure shell application is an extended, en-
crypted version of telnet using strong cryptography, including passwords,
skey, x509 certificates, RSA and DSA keys.

– Apache and other SSL-enabled web servers.
– OpenVPN, Cisco-VPN and other VPN-servers and clients
– Instant Messaging Applications, e.g. Psi, keeps the authentication informa-

tion and possibly the GnuPG keypair in memory.
– The computer BIOS password, ATA password or PGP-Wholedisk password:

the computer or its drives can be locked with a BIOS password or the hard-
disk can be encrypted. For a sample attack, see [Boi06].

Example attack: ssh-agent snarfer. To show how easy it is to obtain secret
keys from a process we have written a sample attack to obtain (snarf12) ssh
public/private keypairs from ssh-agents via firewire.

When using ssh for accessing remote computers it is possible to authen-
ticate via passwords, public/private keypairs and various other methods. The
11 e.g. via the mlock function.
12 To snarf: To grab, esp. to grab a large document or file for the purpose of using it

with or without the author’s permission. // To acquire, with little concern for legal
forms or politesse (but not quite by stealing). (source: Jargon Files)

http://catb.org/jargon/html/S/snarf.html

Targeting Physically Addressable Memory 205

usage of public/private keypairs is wide-spread among people using ssh on a
regular basis. These keypairs can either be a DSA or a RSA keypair, they are
typically created with ssh-keygen and stored somewhere in $HOME/.ssh/, e.g.
/root/.ssh/id dsa and /root/.ssh/id dsa.pub. Keypairs can and should be
encrypted with a passphrase to prevent attackers from using them, if they were
able to obtain them by some means. Thus to use a keypair it is required to
enter this passphrase each time. This can be disturbing during frequent usage,
e.g. when using ssh+svn or scp with remote-tab-completion (zsh is capable
of this).

For these and other reasons, the ssh-agent has been developed. This agent
will run in the background; the user can store a keypair into it (once entering
the passphrase to unlock the keypair) and successively use the keypair without
the requirement to enter the passphrase each time. The keypair can be wiped
from memory on demand and also be loaded only for a specified period of time.

During our tests we found that the key is not wiped from memory when the
time limit is hit. It will be wiped the next time the ssh-agent is queried (via
its socket), but the agent is stalled in a read system call until this query and
thus can not wipe the key13. That makes it possible to obtain long overdue
keys from ssh-agents, although their owners believed them to be safe. A simple
timer could have prevented this. But even with such a timer enabled it would
be possible to acquire the key during its lifetime.

To obtain a keypair from an agent via firewire, a staged attack is required:

1. Seek the first GiB of physical memory for pagetables.
2. For each pagetable: check with the introduced proc info(), if the found

userspace belongs to a ssh-agent process. If not, seek next pagetable.
3. Use the obtained environment to resolve the users home directory ($HOME)

and create a path where keypairs most likely reside in the file system (e.g.
“$HOME/.ssh/”) and seek this string in the heap. This approach will only
find keypairs that have been loaded with this key-location.14 Keypairs loaded
from different locations or via a relative path can thus not be found by this
search.

4. All loaded keypairs have a corresponding identity-struct in an agent. Among
other fields, this identity-struct contains a link to a key struct, the above
mentioned path/comment-field and the lifetime of the key. Thus to find the
identity struct corresponding to a found comment-field, one has to search
the address of the comment-field in the heap of the agent.

5. Once the key-struct that is linked to by the identity-struct, has been found, one
can determine whether the found key is a RSA or a DSA key. The key-struct

13 This bug has been fixed upon request in openssh-4.5p1 or earlier.
14 Actually this field is the key’s comment-field that is mostly unused and overwritten

with the filename of the key. Keypairs that are used with SSH protocol version 2
(virtually all) do not have a comment-field; during loading, the comment-field is
always initialized with the keys pathname.

206 D.R. Piegdon and L. Pimenidis

contains a type-field and two pointers to either the RSA or the DSA key.
These referenced structures are the OpenSSL15-structures RSA and DSA.

6. For both RSA and DSA structures , all important fields need to be reco-
vered to obtain valid keypairs. [Sch96, MvOV01] give an overview of both
cryptographic algorithms, [VMC02] introduces OpenSSL concepts and im-
plementation details. OpenSSL‘s arbitrary precision integer implementation
is the BIGNUM-struct (often abbreviated “BN”). It consists of a variable-
length array of bit-vectors forming the value and a length-field defining the
length of this array. As RSA and DSA both operate on finite fields, both are
implemented with BIGNUMs. Therefore, the RSA and DSA structures con-
tain several BIGNUMs that need to be recovered to obtain a valid copy of the
keypair.

7. Some validity tests may be done to verify that the acquired BIGNUMs fulfill
algorithm-specific properties and thus form a valid keypair.

8. Attach the obtained BIGNUMs back into valid RSA or DSA structures and
save these keys to a file using openssl-functions.

Once one identity-struct is found, all structs of the same key-type (RSA or
DSA) could be found by walking the list this key is linked into.

As stated above, the keypairs reside decrypted in the memory of the agent
(even if overtime) and thus, when snarfed and stored to a file, can be imme-
diately used by the command ssh -i keyfile user@host16. Such an attack
will not take much longer than searching the first 1 GiB of physical RAM for
pagedirectories, that is typically no more than 15 seconds. If an attack fails but
an agent was found, it would be possible to just dump the heap of the agent
to a permanent storage and stage a more thorough attack at a later time. Once
the heap is dumped, all required data is obtained. A similar attack via ptrace
should be possible as well.

[SvS99] introduces some schemes to find secret keys in random data and some
countermeasures. It takes a special look at finding private RSA keys if their
corresponding public keys are known and finding keys by searching high-entropy
regions. Though we encourage the reader to read this interesting paper, the
circumstances are most likely very different: cheap and small storage media like
flash-memory and small harddisks have increased portable storage to a huge
size, equal or larger than the memory a computer system typically has. Thus, an
attacker can just dump the full memory or a subset of it (like the virtual address
space of a single process) that is promising to contain a secret. A thorough
attack can then be staged later. Still, searching private keys with the introduced
methods can be very helpful, if reconstruction of the used data-structures is
impossible or more expensive. Furthermore, when trying to obtain a private
key, often enough the corresponding public key is unknown. This invalidates the
approaches introduced to find RSA secret keys that require the public key.
15 OpenSSL (http://openssl.org) is a free open-source implementation of the secure

socket layer protocol also providing a general purpose cryptography library ().
16 Only by stealing a key, an attacker will not know, which hosts can be accessed with

a retrieved key.

http://openssl.org

Targeting Physically Addressable Memory 207

4.2 Userspace Modifications

Each executable object, including libraries and executables, is usually separated
into code and data sections, where the code is marked as read-only during exe-
cution. The data can further be separated into read-only data, read-write data
and uninitialized global variables (local variables will be allocated from the stack,
runtime-allocated memory is allocated from the heap). Thus an executable ob-
ject may be split into four regions: code, rodata (constants), rwdata and dynamic
data (rwdata may also be implemented by copying the initial data from rodata
to dynamic data); stack and heap are process-specific.

As many different processes may use the same executable objects, it would be
a waste of memory if the operating system created a copy of the object for each
reference to it.

Code and rodata may not be written to by a process, thus the operating
system can share these two regions among processes that are using the same
objects (binaries or libraries). Thus, once an operating system ensures that a
process can not write to code-regions and read-only data-regions or introduces
a copy-on-write mechanism, it can map these once loaded regions into multiple
virtual address spaces. This enforcement is done in hardware, on IA-32 by setting
a flag in the page directory or a page table referencing the specific physical
memory pages containing the region.

Newer CPUs provide page-level no-execute enforcements (AMD’s NX No eXe-
cute bit, Intel’s EXB EXecute disable Bit); equal segment-level enforcements ex-
ist for years but never have been used in mainstream as Linux and many other
operating-systems using a flat memory-model (with only one big segment span-
ning the full virtual address space). Once these page-level enforcements are used
in systems, attacks that inject code into data-regions or the stack are rendered
completely useless. However with access to the data-structures (page directory
and page tables) containing the information, which pages are executable and
which not, it is trivial to remove the protection before injecting code e.g. into
an applications stack.

On Linux, programs and libraries are in Executable and Linker Format (ELF).
This format is described in the manpage elf(5). When a binary is mapped into
a process’s memory, it is mapped including the full ELF header containing all
information that is required to link all references between different objects; ELFs
are always mapped at page-bounds. Due to this, all mapped ELFs (that includes
executables and libraries) can be found by scanning all pages for the ELF Magic
(0x7f E L F) at offset 0 in the page. Libraries, executables and other ELF objects
can be distinguished by evaluating the e type field of the ELF header.

Overwriting executable or library code. When code of executables or li-
braries is changed, all programs using these ELF objects are influenced at the
same time. An attacker thus has the ability, but also the burden, to possibly
infect several processes at the same time. Such an attack has to be carefully
prepared and conducted, as each system may have a different version of a binary
and overwriting the wrong parts of an ELF or writing the wrong code may result

208 D.R. Piegdon and L. Pimenidis

in an almost immediate crash of all processes using the ELF. Though this is an
interesting approach, there are easier ways to inject code into a single process
(see 4.2).

Such an attack could be conducted by searching a single virtual address space
for the glibc and then parsing the ELF-headers and searching for the entry-point
of the printf-function (or some other function). Then a piece of code could be
injected into the unused fragment of the last page of the libc-mapping. It is
important to inject the shellcode into the mapping, as all processes that will be
affected have to be able to reach the shellcode. The intention is to overwrite the
printf functions code with a relative17 jump to this injected code. But as we
need to overwrite some instructions inside the function, we need to parse the
functions code to separate each instruction18, so that after our code is executed,
it executes a copy of the overwritten instructions and jumps to a fully intact
instruction right after the injected jump. After this has been done, the jump
can be injected into the functions code. This last write has to be as atomic as
possible, as a process may just be executing these bytes and thus get astray.
On IA-32, entry-points of functions are most likely aligned to 32-bit addresses19.
Firewire also provides an interface to write 32-bit aligned 32-bit values (“quads”)
atomically. Unfortunately, a relative short jump (2 bytes) can only jump within
±256 bytes from the jump itself and relative long and absolute jumps are 5
bytes wide (1 byte command + 4 bytes address). A short jump is most likely
incapable of reaching the last page of the ELF and writing a long relative jump
is not atomic.

A lot of interesting methods to inject code into a running process have been
developed; e.g. [Ano02] gives an introduction into using ptrace, including inject-
ing whole shared objects using the runtime linker libdl. The usability of this
approach has not yet been analysed.

Overwriting the stack and return addresses. Besides stealing SSH-keys,
we have put most of our efforts into injecting code into the stack and overwriting
return-addresses on the stack to point to the injected code. This modification
of the classic stack overflow method has some advantages over the previous
approach:

– Each process, even each thread, has its own stack. Thus only a single thread
will be affected by the attack.

– If the attack fails and the thread dies, only a single thread will fail on
the target system, not e.g. all processes using the glibc or all instances of
/bin/sh.

17 An ELF may be mapped at different locations in different processes, if it is “PIC” or
“PIE” (Position Independent Code/Executable) and the kernel supports this. Thus,
unless the ELF is only mapped in one process or the overwritten function is only
used in one process, the jumps target has to be addressed relative to the current
position.

18 On IA-32, different machine instructions can have different length.
19 Due to optimizations by the compiler.

Targeting Physically Addressable Memory 209

– The process can read and write to the stack as well, thus we can communicate
with the injected shell-code in a rather easy way (see 4.2).

– During the attack we do not need to modify parts of the code of the target-
process, reducing the risk of an astray process. The final part consists of
overwriting 4 byte wide return-addresses on the stack and this can almost
always be done automatically.

The attack consists of the following steps:

1. Search a free location in the stack-pages. If the shellcode is small, we can
use the zero-padded area of the pages containing the environment and ar-
gument vectors (see section 4.1). If the shellcode does not fit into this area,
we could try to just overwrite these vectors. Most programs will parse en-
vironment and arguments only once during startup of the program, thus
overwriting them at a later time usually has no effects. But note that these
vectors are also evaluated whenever someone accesses a processes procfs en-
tries /proc/$PID/environand /proc/$PID/cmdline. Thus if these are over-
written with new data, it is possible to see the difference by querying these
procfs-entries or using ps20.

2. Scan the stack for stack-frames and for each found: overwrite the return
address. This can be simplified into: overwrite all 32-bit aligned 32-bit val-
ues that contain a value that might be a pointer into the main code area
(0x08** ****, see figure 2) with a pointer to the injected code. A more ag-
gressive approach might also overwrite return-values pointing into the library
section (0xB7** ****).

Once the attacked process leaves a stack frame with an overwritten return
value, it will jump to the injected code and execute it.

An implementation of this attack, including some sample shellcodes like a
bindshell and a simple printf has been implemented.

Direct communication with shellcode via DMA. The royal league of at-
tacking remote hosts is to inject code that is executed and spawns an interactive
shell (thus it is also called “shellcode”) and additionally is as invisible on the
target system as possible. An interactive shell has to communicate with its user,
so typically a network-based shell is used for attacking purposes. The downside
of this technique is the visibility of the communication on the network-layer:
an administrator can easily spot the network connection by either sniffing on
the network or by asking the system what kind of sockets and files a process
is using21. A network intrusion system (NIS) can easily spot shell connections
in an automated way or firewalls could be configured in a way that a network
connection is impossible. But when using e.g. firewire to attack a host there is
usually no network connection between the attacker and the victim at all.

In our example attack, we will use a similar attack vector to inject a “beach-
head” with our methods of physical memory access.
20 Ps relies on these procfs entries.
21 e.g. by using lsof -i (LiSt Open Files).

210 D.R. Piegdon and L. Pimenidis

The overall mechanism is introduced in figure 3. The injected shellcode will
fork a shell and communicate with stdin/stdout of the shell via two pipes. The
shellcode then creates a second thread, thus having one thread for each direction
of master to shell and shell to master. If the master (attacker) wishes to send a
command to the shell, it writes the command string into the FromMaster ring-
buffer via DMA. Once the ReaderThread sees that the ring-buffer is not empty,
it reads the data inside the buffer and writes it into the pipe to the shell. The
WriterThread will read data coming from the shell from the pipe and then write
it into the ToMaster ring-buffer, so the master can read it via DMA.

Fig. 3. Functionality of the beachhead

We thus have shown that it is possible to gain interactive, unauthorized,
administrative access to a remote computer system by simply plugging a cable
into the device’s firewire port.

5 Future Prospects

In this section we will show future work that can be done in this area.

5.1 Kernelspace Modifications

The Linux character device /dev/kmem gives a process read and write access
to its virtual address space, including the kernel-space area. /dev/kmem has not
only been used for its legitimate purpose (i.e. debugging the kernel) but also
to inject code into the running kernel and install kernel-based rootkits. [sd01]
describes an attack using /dev/kmem to inject a new syscall-handler (a regularly
used rootkit technique).

With our provided toolkit, we plan to do extend our work to include root-kit
injection in the future.

Targeting Physically Addressable Memory 211

5.2 Bootstrapping Custom Operating Systems

As an attacker has complete access to a systems memory, it is possible to take
over the system completely, reset it to a known state and boot a custom operating
system on it (and e.g. use firewire storage as the root-device for the new system).
A special bootloader would be required to do this and it might also be necessary
to reset the system and attached hardware in a special way, depending on the
operating system running on it before the approach.

6 Conclusion

It has been shown that firewire and other DMA technology are a mature attack
vector having a serious impact on a systems security. DMA interfaces should
always be sealed or disabled if untrusted persons can access them; this partic-
ularly includes laptops, as more and more of them are equipped with a tiny
firewire port. Security “solutions” that deny DMA for some devices and allow
DMA for others should be tested very carefully, as these schemes may be tricked
by pretending to be a different, “trusted” device (see [Boi06]).

Though most of the tools introduced are designed to attack a system,
libphysical and liblinear can also be used for forensic purposes to analyse
memory dumps (with the filedescriptor backend). The statement “There is lit-
tle experience in reconstructing logical/virtual memory from physical memory
dumps” from [BDK05] is no longer true: liblinear can be used to access vir-
tual address spaces of each process (independent of the operating system), e.g.
IDETECT (by Mariusz Burdach, [Bur06]) can be used to analyse kernel data
structures to obtain other information.

References

[And99] Anderson, D.: FireWire System Architecture - IEEE 1394. Addison Wesley,
Reading (1999)

[Ano02] Anonymous. Runtime Process Infection. Phrack, vol. 0x0b(0x3b) Phile
0x08 (2002) http://www.phrack.org/archives/59/p59-0x08.txt

[BDK05] Becher, M., Dornseif, M., Klein, C.N.: FireWire - all your memory are
belong to us (2005), http://md.hudora.de/presentations/firewire/
2005-firewire-cansecwest.pdf

[Boi06] Boileau, A.: Ruxcon 2006: Hit by a Bus: Physical Access Attacks with
Firewire (2006), http://security-assessment.com/

[Bur06] Burdach, M.: Finding Digital Evidence In Physical Memory pdf
(2006), http://forensic.seccure.net/pdf/mburdach physical memory
forensics bh06.pdf

[CV05] Cilibrasi, R., Vitányi, P.M.B.: Clustering by Compression. IEEE transac-
tions on information theory, vol. 51 (2005)
http://www.cwi.nl/paulv/papers/cluster.pdf

[Int06a] Intel Corp. Intel 64 and IA-32 Architectures Software Developer’s Manual,
vol. 1 Basic Architecture (2006), http://developer.intel.com/

http://www.phrack.org/archives/59/p59-0x08.txt
http://md.hudora.de/presentations/firewire/2005-firewire-cansecwest.pdf
http://md.hudora.de/presentations/firewire/2005-firewire-cansecwest.pdf
http://security-assessment.com/
http://forensic.seccure.net/pdf/mburdach_physical_memory_forensics_bh06.pdf
http://forensic.seccure.net/pdf/mburdach_physical_memory_forensics_bh06.pdf
http://www.cwi.nl/paulv/papers/cluster.pdf
http://developer.intel.com/

212 D.R. Piegdon and L. Pimenidis

[Int06b] Intel Corp. Intel 64 and IA-32 Architectures Software Developer’s Manual,
vol. 2A: Instruction Set Reference, A-M (2006),
http://developer.intel.com/

[Int06c] Intel Corp. Intel 64 and IA-32 Architectures Software Developer’s Manual,
vol. 2B: Instruction Set Reference, N-Z (2006),
http://developer.intel.com/

[Int06d] Intel Corp. Intel 64 and IA-32 Architectures Software Developer’s Manual,
vol. 3A: System Programming Guide, Part 1 (2006),
http://developer.intel.com/

[Int06e] Intel Corp. Intel 64 and IA-32 Architectures Software Developer’s
Manual, vol. 3B: System Programming Guide, Part 2 (2006),
http://developer.intel.com/

[LCL+04] Li, M., Chen, X., Li, X., Ma, B.: Vitányi, P.M.P.: The Similarity Metric.
IEEE transactions on information theory (August 2004),
http://arxiv.org/pdf/cs.CR/0111054

[LV97] Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and
Its Applications, 2nd edn. Springer, Heidelberg (1997)

[MvOV01] Alfred, J., Menezes, P.C.: Handbook of Applied Cryptography. CRC Press,
Boca Raton, USA (2001), http://www.cacr.math.uwaterloo.ca/hac/

[Pro00] Promoters of the 1394 Open HCI. 1394 Open Host Controller Interface
Specification (January 2000)

[Sch96] Schneier, B.: Applied Cryptography, 2nd edn. John Wiley & Sons, Inc,
Chichester (1996)

[sd01] sd, devik,: Linux on-the-fly kernel patching without LKM. Phrack, Vol.
0x0b, Issue 0x3a, Phile 0x07 (December 2001),
http://www.phrack.org/archives/58/p58-0x07.txt

[SvS99] Shamir, A., van Someren, N.: Playing Hide and Seek with Stored Keys.
In: Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 118–124. Springer,
Heidelberg (1999)

[VMC02] Viega, J., Messier, M., Chandra, P.: Network Security with OpenSSL.
O’Reilly (2002)

[Weh05] Wehner, S.: Analyzing Worms and Network Traffic using Compression
(April 2005), http://arxiv.org/pdf/cs.CR/0504045

http://developer.intel.com/
http://developer.intel.com/
http://developer.intel.com/
http://developer.intel.com/
http://arxiv.org/pdf/cs.CR/0111054
http://www.cacr.math.uwaterloo.ca/hac/
http://www.phrack.org/archives/58/p58-0x07.txt
http://arxiv.org/pdf/cs.CR/0504045

Static Analysis on x86 Executables for Preventing
Automatic Mimicry Attacks

Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi

Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano

Milano, Italy
Via Comelico 39/41, I-20135, Milano MI, Italy

{bruschi,sullivan,andrew}@security.dico.unimi.it

Abstract. In 2005, Kruegel et al. proposed a variation of the traditional mimicry
attack, to which we will refer to as automatic mimicry, which can defeat existing
system call based HIDS models. We show how such an attack can be defeated by
using information provided by the Interprocedural Control Flow Graph (ICFG).
Roughly speaking, by exploiting the ICFG of a protected binary, we propose a
strategy based on the use of static analysis techniques which is able to local-
ize critical regions inside a program, which are segments of code that could be
used for exploiting an automatic mimicry attack. Once the critical regions have
been recognized, their code is instrumented in such a way that, during the execu-
tions of such regions, the integrity of the dangerous code pointers is monitored,
and any unauthorized modification will be restored at once with the legal values.
Moreover, our experiments shows that such a defensive mechanism presents a
low run-time overhead.

1 Introduction

In their seminal work [13,12] about anomaly-based Host Intrusion Detection System
(HIDS), Forrest et al., introduced the idea that anomalous behavior of a process p can
be detected by learning the sequences of system calls executed by p in a sterile envi-
ronment, comparing them against those executed in a production environment, and de-
tecting any significant deviation among them. Such an approach has been investigated
by many researchers, who proposed several improvements over the original model, thus
obtaining more efficient and more precise (i.e., which recognize broader classes of in-
trusions) anomaly detection HIDS. In [31,30] Wagner et al. observed that all the system
call-based HIDS suffer a particular form of attack called mimicry. In its simplest form,
to which we will refer to as traditional mimicry, it basically consists of forcing a process
to execute an attack vector by mimicking the system calls sequences and learnt by the
HIDS. Subsequently, several strategies (see [23,11,5]) have been proposed for inhibit-
ing traditional mimicry attacks.

In a recent paper, Kruegel et al. [17] observed that even if the introduction of such
techniques in anomaly-based HIDS [5,11,23] has significantly reduced the possibility to
perform successful traditional mimicry attacks [26,25,31], they do not impose any kind
of restriction on the execution of arbitrary code which does not directly invoke system

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 213–230, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

214 D. Bruschi, L. Cavallaro, and A. Lanzi

calls (i.e., system call-free code). For example, a piece of code that is able to mod-
ify writable memory segments represents a threat by itself. This observation, brought
Kruegel et al. to devise a variation of the traditional mimicry attack which is able to
hijack a program execution flow, execute malicious system call-free code, relinquish
the execution flow to the diverted program to regain it later on.

This malicious code is usually executed as a preamble of in-trace syscalls. Its main
objective is either to change the value of the system call parameters in order to even-
tually execute arbitrary code, or to modify the value of some control-dependent data
variable in order eventually influence the process execution flow. In [17] a proof of
concept tool is provided which is able to automatically identify, inside a program, the
instructions which can be used for such a scope. For this reason we refer to such an
attack as automatic mimicry. More precisely, the main goal of the automatic mimicry
is to elude HIDS checks by continuously diverting the process execution flow in order
to execute arbitrary code with the purpose of changing system calls parameters with-
out directly invoking any system call. However, most of the time these steps cannot
be completed at once. Thus, any piece of malicious code has to take care of continu-
ously regaining the control of the execution flow. Such a task is usually performed by
modifying appropriate code pointers.

On the basis of the previous observation we devised a strategy for containing auto-
matic mimicry attacks. Such a strategy consists of localizing, inside a IA32 binary p, all
the dangerous regions ai, · · · , an, where by dangerous region, known also as liveness
area, we mean the code area between the definition d and use u of the values v of the
system calls parameters. After the liveness areas have been determined we collect, at
run-time, for any area ai 1 ≤ i ≤ n, the “trusted values” t1, · · · , tk of the code pointers
defined in ai. Subsequently, we instrument the process p image so that at run-time code
pointers in ai will always be restored to their corresponding trusted values, before their
use. Consequently the attacker will not be able to regain the control of p’s execution
flow and the attack will not be feasible.

A static analysis tool and a kernel-level module on a Linux system have been de-
veloped in order to assess the viability of our approach. Several experiments has been
performed both for verifying the correctness of the approach and its overheads. The
results obtained showed that our strategy defeats the automatic mimicry attack guaran-
teeing a low overhead impact in term of process execution time.

The paper is organized as follows. Related works are described in § 2 while § 3 in-
troduces some preliminary notions about static analysis and automatic mimicry attacks
that will be useful throughout the paper. The core of our code pointers integrity veri-
fication is faced in § 4, and § 5 shows the effectiveness of this defensive mechanism.
Technical details and experimental results are given in § 6 and § 7, while conclusion,
future works and final remarks are given in § 8.

2 Related Works

Generally speaking, memory error exploits which corrupt code pointers aim at pursuing
two main goals (or a combination of them), that is, (i) to perform IPE attacks [30] (to
bypass security critical checks), and (ii) to execute arbitrary malicious code.

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 215

Several strategies have been proposed to deal with this problem. Some of them, such
as StackGuard [7] (SG) and Pro Police Stack Detector (also known as Stack Smashing
Protector, i.e., SSP) [10], aim at protecting the integrity of particular code pointers
(e.g., return address for SG and mainly return address and saved frame pointer for SSP).
However, beside stack smashing attacks [18], they do not address other kind of memory
error exploits based on the corruption of others code pointers (GOT, .dtors, heap
management information, and so on).

In [1], Abadi et al. propose Control-Flow Integrity (CFI), an approach to guarantee
the integrity of the execution control flow of a protected application p. By forcing p’s
execution to dynamically follow only paths defined by its Control Flow Graph (CFG),
their approach defeats attacks which, as a final goal, attempt to hijack a program execu-
tion flow to alter its behavior. CFI leverages on fewer assumptions to achieve its goals.
In particular, it relies on non-writable code, and non-executable data segments. While,
generally, these are common sense requirements, as noted by the authors, the assump-
tions can be somewhat problematic in the presence of self-modifying code, run-time
code generation, and the unanticipated dynamic loading of code.

Program shepherding, proposed by Kiriansky et al., monitors control flow transfers
to enforce a security policy [16]. While CFI could be enforced by program shepherding,
the approach proposed by Kiriansky et al. is more general. In fact, it prevents execution
of data or modified code and ensures that libraries are entered only through exported
entry points, without making any assumption a priori. Moreover, program shepherding
provides sandboxing that cannot be circumvented, allowing construction of customized
security policies. On the other hand, this monitoring technique may impose a quite
moderate overhead for certain types of programs. Moreover, existing code attacks can
be stopped only in some cases.

In [29], a technique based on process address space layout randomization (ASLR)
has been proposed and realized by developing a kernel level patch which is in charge of
loading the process’ memory segments (code, data, heap, stack and mmap’d region) at
different, randomized memory locations. Since no knowledge on the process behavior
or structure is required, the approach can only guarantee the randomization of the seg-
ments base addresses but it lacks a more fine-grained randomization. Unfortunately, the
approach is vulnerable to information leakage attacks or it has been proved to be not so
effective on 32-bit Intel Architecture platforms [14].

Other address obfuscation techniques have been proposed in [21,20] by Bhatkar et
al. as a particular form of program transformations to combat memory error exploits.
Such approaches differ from the one proposed in [29] since they aim at providing a
more fine-grained address space obfuscation. The objectives of these transformations
are to randomize the absolute locations of all code and data in order to achieve pro-
tection from a broad class of memory corruption attacks, and to randomize the relative
distance between different data objects in order to defeat relative addressing attacks,
which are a subclass of non-control data ones [6]. To this end, various obfuscating
transformations have been proposed; they range from the randomization of the base ad-
dresses of common memory regions (stack, heap, mmap’d area, text and static data), the
permutation of the order of variables and routines, and the introduction of random gaps
between objects. A further improvement over such an idea has been proposed in [21],

216 D. Bruschi, L. Cavallaro, and A. Lanzi

where a source-to-source transformation on C programs has been developed to produce
self-randomizing programs.

All the aforementioned randomization approaches share a common concept: they
provide a probabilistic defensive mechanism that, in general, cannot provide certainty
in protecting from memory errors exploits. In this sense, quite recently, newer ap-
proaches have been devised [9,4] that make use of diversified process replicæto provide
protection from a broad class of memory error attacks which mainly corrupt applica-
tion’s code and data pointers. Even if the approach seems sound, promising, and an
on-going research topic, it currently presents a quite high overhead, and fewer practical
not fully solved limitations involving the management of shared memory, signals, and
threads.

In this paper, we address the problem of memory error attacks which corrupt code
pointers in order to perform an automatic mimicry attack. We believe that our technique
can defeat most of the memory error attacks, while experiencing a low overhead and
a transparent deployment1 in all the HIDS architectures. It is worth noting that our
technique is symbiotic with the HIDS and, consequently, several checks about stack
integrity, some form of traditional mimicry and some IPE attacks, are performed by the
HIDS itself.

3 Preliminaries

In this section we recall some basic notions about program static analysis that will be
useful to understand our approach, as well as further remarks on the automatic mimicry
attack.

Liveness Analysis. Given a program p, we use data-flow analysis techniques in order to
gather information about the data used by p. In particular, we use the liveness analysis to
define the liveness region of the program. From our point of view, a liveness region is a
sequence of instructions where a particular system call parameter is alive; a parameter is
alive if it holds a value that will/might be used in the future. Figure 1 shows the liveness
area of the variable a, which is defined at line 6 and used at line 10. All application
paths defined between the definition and use of the variable belong to the liveness area
of the variable itself. More precisely:

– Definition: the definition of a variable occurs when it is defined either by input-
related system call-aware functions, that is, functions that eventually invoke system
calls (e.g., read, recv, fgets), or, in according to the classic definition, with an
assignment of that variable. More precisely, we can classify the assignments in two
main categories:

• dynamic assignment. Such a kind of assignment is associated to the data com-
ing directly from the input. In such an assignment are involved all the input-
related system-call aware functions;

• static assignment. Such a kind of assignment is associated to the data whose
values do not come from input but are statically defined into the application by
constant values.

1 That is, without modifying neither the HIDS nor the binary code.

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 217

– Use: the use of a variable occurs when it is used by some security sensitive system
call (e.g., write, execve, read) or by some function which eventually invokes
security sensitive system calls (e.g., fprintf). Any modification of the variable
achieved through arithmetic transformation, is not considered like an use. Roughly
speaking, we consider the use of a variable when it is only used by some security
sensitive routine.

1 int main(int argc, char **argv)
2
3 int a, b, c;
4 c = 40;
5 b = 30;
6 a = 25;
7 b = 2 * c;
8 c = c * 2;
9 c = c + 1;

10 b = a + 1;
11 c = c + 10;

Fig. 1. The Liveness Area of the Variable a

For the sake of clarity, we have reported in Figure 2 an example of the liveness region
of the parameter cmd of the execl system call-aware function, which is defined be-
tween line 26 and line 30. At line 26 the parameter cmd is defined through the fgets
system call-aware function, whilst at line 30 cmd is used by execl. All the statements
between these lines represent the zone where the cmd parameter is alive. In order to
compute the liveness regions, we will apply the classic data-flow algorithms [19] ac-
cording to the aforementioned description of use and definition.

Automating Mimicry Attack. The main purpose of the automatic mimicry is to com-
promise an application overcoming any protection mechanism provided by an anomaly-
based system call-based HIDS. The applications which can be compromised using an
automatic mimicry attack have to satisfy some particular characteristics. More
precisely, an application a has to contain a vulnerability that allows the injection of
malicious code, and a sequence of system calls s1, . . . , sn which can be triggered for
performing some unauthorized action. The main task which the injected code j has to
perform is (i) to modify the code pointers inside a so that j can be executed before the
legal in-trace syscall si is invoked, (ii) to relinquish the execution flow to a, and (iii) to
eventually regain the execution flow to modify others code pointers used in a to change
the behavior of a system call sj .

For the sake of clarity and to better understand this evasion technique, we describe
two successful automatic mimicry attacks2 performed against the code snippet shown
in Figure 3 and 4 proposed in [17]. In the former attack, the attacker exploits the stack-
based buffer overflow [18] vulnerability related to the strcpy (line 8) in order to
overwrite the return address of check_pw, and point it to the attacker code. In writing
such a code he may follow two options, that is, to either (i) directly invoke an in-trace

2 Assuming no particular OS protection mechanisms, such as Address Space Layout Random-
ization (ASLR) [29,20,27] and non-executable data area [28,15,29] are deployed.

218 D. Bruschi, L. Cavallaro, and A. Lanzi

1 #define CMD_FILE "commands.txt"
2
3 int enable_logging = 0;
4
5 int check_pw(int uid, char *pass)
6 {
7 char buf[128];
8 strcpy(buf, pass);
9 return !strcmp(buf, "secret");

10 }
11
12 int main(int argc, char **argv)
13 {
14 FILE *f;
15 int uid;
16 char passwd[256], cmd[128];
17
18 if ((f = fopen(CMD_FILE, "r")) == NULL) {
19 perror("error: fopen"); exit(1);
20 }
21
22 uid = getuid();
23 fgets(passwd, sizeof(passwd), stdin);
24
25 if (check_pw(uid, passwd)) {
26 fgets(cmd, sizeof(cmd), f);
27 if(enable_logging)
28 printf("uid[%d]: %s", uid, cmd);
29 setuid(0);
30 if (execl(cmd, cmd, 0) < 0) {
31 perror("error: execl"); exit(1);
32 }
33 }
34 }

Fig. 2. The Liveness Area of the Parameter cmd

system call, but, due to the system call coordinates checks [11], he cannot neither in-
voke a system call from an illegal call site nor returning into different location after
the system call-aware function termination, or (ii) set enable_logging, overwrite
the printf GOT entry with the address of the injected malicious code, fix the stack
layout in order to restore the original check_pw return address (the one at line 26,
supposing the function does not return 0) and saved frame pointer and, finally, volun-
tarily relinquish the execution flow to the application code. Since no system call has
been executed so far, no HIDS checks are performed and everything runs smoothly un-
til the execution flow reaches the printf at line 28. At this point, before executing the
real syscall-aware library function that, however, has to be executed in order to keep the
write syscall performed by the printf in-trace, the malicious code is executed in
order to change the content of the cmd “string” so that arbitrary command will eventu-
ally be executed (line 30) with full privileges (thanks to the setuid at line 29). After
this simple little black magic, the attack ends by relinquishing the execution flow to the
application code so that the legal in-trace printf can be executed from the permitted
call site with a correct return address.

Obviously, things can be much harder from the attacker perspective than the one just
described. In fact, if the attacker is not able to find suitable GOT entries to overwrite, he
has to find out different code pointers to play with (e.g., application function pointers),
as depicted in Figure 4. In this scenario, the attacker can exploit the same vulnerability
as in the previous example, but this time no suitable GOT entries are available in order
to regain the control of the execution flow later on. However, by carefully looking at
the code, check_pw return address can be forced to point to a malicious code that will
set enable_logging and uid (a signed 32-bit integer). The former variable will be

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 219

1 #define CMD_FILE "commands.txt"
2
3 int enable_logging = 0;
4
5 int check_pw(int uid, char *pass)
6 {
7 char buf[128];
8 strcpy(buf, pass);
9 return !strcmp(buf, "secret");

10 }
11
12 int main(int argc, char **argv)
13 {
14 FILE *f;
15 int uid;
16 char passwd[256], cmd[128];
17
18 if ((f = fopen(CMD_FILE, "r")) == NULL) {
19 perror("error: fopen"); exit(1);
20 }
21
22 uid = getuid();
23 fgets(passwd, sizeof(passwd), stdin);}
24
25 if (check_pw(uid, passwd)) {
26 fgets(cmd, sizeof(cmd), f);
27 if(enable_logging)
28 printf("uid[\%d]: \%s", uid, cmd);
29 setuid(0);
30 if (execl(cmd, cmd, 0) < 0) {
31 perror("error: execl"); exit(1);
32 }
33 }
34 }

Fig. 3. First Vulnerable Program

used to reach the do_log function that will allow the attacker to regain the control of
the code, while the latter will be used to exploit the vulnerability present in do_log
function (line 14) that will enable the attacker to overflow the buffer and overwrite the
return address with the malicious code address. In fact after the pointer arithmetic is
performed on line 14, do_log return address is overwritten with the cmd_id value
(controlled by the attacker as well), so that it can make it point into the malicious code.
Once the execution flow is regained, the attacker can change the value of cmd parameter
performing any privileged command.

4 Defeating Automatic Mimicry Attacks

In this section we will explain the strategy we devised in order to prevent automatic
mimicry attacks. Our approach is based on the use of the information contained in the
Inter-procedural Control Flow Graph (ICFG) of the binary which has to be protected.

4.1 Defensive Strategy

A fundamental requirement of any automatic mimicry attack is the possibility to modify
a process code pointers in order to execute the injected malicious code. Thus, automatic
mimicry can be defeated if the integrity of such data is guaranteed. This is exactly the
strategy we adopt. It is based on a three phases process: code analysis, data collection,
and code pointers restoring. During the code analysis phase, the ICFG of the program
p we want to protect is computed, and it is used to recognize the dangerous regions.

220 D. Bruschi, L. Cavallaro, and A. Lanzi

1 int enable_logging = 0;
2 int cmd_id = 0;
3 int uid_table[8192];
4
5 int check_pw(int uid, char *pass)
6 {
7 char buf[128];
8 strcpy(buf, pass);
9 return !strcmp(buf, "secret");

10 }
11
12 void do_log(int uid)
13 {
14 uid_table[uid] = cmd_id++;
15 }
16
17 int main(int argc, char **argv)
18
19 if (check_pw(uid, passwd)) {
20 fgets(cmd, sizeof(cmd), f);
21 if (enable_logging)
22 do_log(uid);
23 setuid(0);
24 if (execl(cmd, cmd, 0) < 0) {
25 perror("error: execl"); exit(1);
26 }
27 }
28 }

Fig. 4. Second Vulnerable Program

Afterwards, the data collection phase collects the “trusted” values of the code pointers
contained in p’s dangerous regions. Such a phase is performed by executing p in a sterile
environment. Finally, at run-time, the code pointers restoring phase restores the code
pointers values collected during the data collection phase.

Code Analysis. The purpose of this phase is to determine the dangerous regions of
p, using p’s ICFG. In particular, we consider only nodes (basic blocks) that contain
dangerous system calls, as defined by Xu. et al. [32]. Our method works as follows.
Initially, we build p’s ICFG, then:

– each node of the ICFG which contains a dangerous system call, is marked with u
(i.e., we determine parameters’ use);

– Let p1, · · · , pm be parameters used by a dangerous system call. For any pj , 1 ≤
j ≤ k we collect the program locations where the parameter is defined3, according
to the definition given in § 3. To achieve this goal we use the standard equations
defined by the data-flow analysis [19]. Such equations provide us the list of the
defined variables on a per-basic block granularity. We mark all these nodes with d
(i.e., we determine parameters’ definition);

– subsequently, we visit the entire ICFG, and every time we meet a basic block
marked by u, we perform the following steps. We apply the depth first search al-
gorithm backward, starting from a node t marked with u and visiting the ICFG
until we reach nodes marked by d, which contain the definition of the parameters
used in node t. The sub-graph constituted by all visited nodes represents one of the
dangerous regions we are interested in, and it is stored inside a database.

Figure 5, reports a fragment of a partial ICFG of the code depicted in Figure 3. In
particular, we want to build a dangerous regions that is able to protect the parameter

3 p is an ET_EXEC ELF executable so, code and data hold fixed absolute references.

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 221

cmd used inside the execl dangerous function. Gray nodes represent the dangerous
regions built around the execl dangerous function and the leaf of the dangerous region
is represented by the node marked with 4 (fgets function) in which the variable cmd
is defined.

setuid

printf

fgets

check_pw

fgets

getuid

 execl
exit

exit

1

2

3

4

5

6

7 8
9

dangerous region

Fig. 5. Dangerous Region

Data Collection. After the code analysis phase, we collect the “trusted” addresses
of the potential “dangerous” code pointers defined inside the dangerous regions. In
particular, we collect the following information:

– GOT Function Addresses: For performance reasons we are interested only in the
GOT addresses of the functions which are defined in dangerous regions4. GOT
addresses are collected in two steps. Initially we execute the program p and we force
the corresponding process to resolve all dynamic symbols collecting the address
values; subsequently, we associate the GOT code pointers inside the dangerous
regions with the discovered address values, and we store such relationships inside
the database;

– Function Pointers: Another technique proposed by Kruegel et al. in order to per-
form the automatic mimicry attack is to exploit code pointers such as application
function pointers. In order to collect such code pointers values, first we look for
the program locations where the code pointers are defined, only inside dangerous
regions; afterwards, through data-flow techniques we compute all code pointers
destinations values and we save the correlation between program locations and
such values into a database. Such operands represent the “trusted” values of the
code pointers which will be used to check if an anomaly occurs during the program
execution.

4 We allow the attacker to regain control of the execution flow only in those locations of the
application that are not dangerous to perform a successful automatic mimicry attack.

222 D. Bruschi, L. Cavallaro, and A. Lanzi

Code Pointers Restoring. The code pointers restoring is the last phase and it guaran-
tees the integrity of the code pointers defined inside the dangerous regions. This phase
is composed by two main steps. The first one, which takes place at loading time, per-
forms a run-time code instrumentation of the process p, and loads the code pointers
program locations and their trusted values inside a custom kernel data structures used
by our kernel module component. The second step acts at run-time and performs the
code pointers integrity verification step which is in charge of executing various checks
on the “dangerous” code pointers and to restore the appropriate process execution flow.

run-time process instrumentation. The main goal of this step is to allow the execu-
tion of the integrity verification step in a transparent way without modifying neither
the program source nor the binary code. It is performed as following. Initially it
loads the kernel data structures containing the trusted values of the code pointers
collected during the data collection phase. Subsequently, the code pointers instruc-
tions (i.e. call, ret) found inside the dangerous region (code analysis phase)
are substituted by the int35 assembly instruction. The original instructions are
saved inside the saving instruction table (see Figure 6) and will be restored after
the integrity verification phase takes place.

Such a table will contain the op-codes of the substituted instructions and it is
used to restore the execution flow of the process after the code pointers integrity
verification step. Since the table is stored in p’s address space, to guarantee that
every tampering attempt is detected by the kernel before using the data provided by
the table, its integrity is verified by using common cryptographic hash algorithms
(SHA-1 and MD5). If the integrity cannot be satisfied, the kernel kills the process
being protected, otherwise it is safe to use the data provided by the table to perform
the next steps.

integrity verification. Due to the instrumentation process every time a potential dan-
gerous function terminates its execution, or a (function) code pointer is invoked,
the int3 instruction brings the execution in kernel land to a custom module which
performs the appropriate checks. Such checks are strongly dependent on the type
of code pointers we are trying to protect, and they can be classified in three main
sets:

– GOT entries: the trusted values of GOT entries are retrieved from the entry
in the kernel memory structures associated to the substituted instructions, and
replaced into the appropriate GOT entries locations of p;

– Return addresses: in order to get the appropriate return address we instrument
the call statement associated to the called function f ; consequently, when-
ever f is invoked the integrity verification module v will be able to retrieve
and store inside its own memory structures the “active” f ’s return address (i.e.,
the address of the instruction next to the considered call statement). When f
has to return (ret instruction) v will check if the return address is equal to the
“active” return address retrieved during the call invocation; if so, the module

5 Such an instruction issues a software interrupt and it is usually used by programs debugger.

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 223

will not perform any actions6 and the process will continue its execution. Oth-
erwise, v will restore the appropriate return address retrieved during call
invocation, raising an alarm and allowing the process to continue its execution.

– Function Pointers: whenever a function pointer is invoked, the integrity veri-
fication module v will check if the function pointer belongs to the set learnt
during the static analysis phase; if so, v will not perform any actions and the
process will continue its execution. Otherwise, the module raises an alarm and
stops the process execution.

restoring process control flow. After the integrity verification phase, the module
checker must restores the normal process flow. Such a process is executed by a
kernel module that will perform two actions according on the type of the substi-
tuted instructions:

– call: for each substituted call, the module copies inside the saving instruc-
tion table the call instruction followed by a jmp statement. Once the kernel
restores the process flow after the integrity verification phase, it brings the ex-
ecution flow to the appropriate call inside the table; at this point the call is
executed and the address of the next instruction, that is jmp, is saved onto p’s
stack; afterwards, whenever the function invoked by the call returns, the pro-
gram counter (%eip register) points to the jmp instruction which will jump to
inside the executable process memory after the int3 statement, restoring the
normal execution process flow.

– ret: the module copies inside the saving instructions table the ret statement,
which will bring the control flow to the appropriate process location, after the
checks are performed.

Figure 6, reports the steps of the restoring process flow. In step 1 the process raises
an exception and the control flow is transferred to kernel land then, after the check
on the trusted code pointers is performed, the module checker restores the pro-
gram counter value to the entry associated to the substituted instructions (step 2).
At the end, after the execution of the call *%edx, the flow returns to the jmp
instruction inside the saved table, which brings the process execution flow to the
appropriate program location (step 3).

5 Effectiveness

In this section we will describe some properties of our defensive mechanism and in
particular we will show its effectiveness on two practical examples. It is worth noting
that in order to evaluate the effectiveness of our strategy we must consider the goals
of our defensive mechanism and some properties of the application execution context.
More in details:

– our defensive mechanism is symbiotic with the HIDS. Consequently, for perform-
ing a successful attack an attacker must elude both the HIDS and the code pointers
integrity verification checks;

6 The attacker should pick and change the address inside the set learnt in the static analysis
phase. Such an attack, however, fall into the IPE category and the HIDS will be able to detect
it.

224 D. Bruschi, L. Cavallaro, and A. Lanzi

8049aa0: push %ebp
8049aa1: mov %esp,%ebp
8049aa3: sub $0x8,%esp
8049aa6: cmpb $0x0,0x805a410
..............
8049ac8: int3 ## call *edx
8049aca: mov %eax,0x805a008
8049acf: mov (%eax), %edx
............
8049adc: leave
8049add: int3 ## ret
............
8049cc5: call 0x8049aa0
8049cca: mov (%eax),%edx

call *edx

jmp 0x8049aca

ret

INT3 Handler

Code Pointers Checker

KERNEL SPACE

USER SPACE

SAVE INSTRUCTIONS TABLE

INSTRUMENTATION PROCESS CODE

12

3

Fig. 6. Process Execution Flow Restoring Step

– the main goal of our defensive strategy is to defeat the attacks that use code pointers
as a way to divert a process execution flow. It is worth noting that a vulnerability
could occur inside the dangerous regions in some positions where the attacker must
not use any code pointers to change the value of the syscall parameters; such an
attack is generally known as non-control data [6] and it is not currently addressed
by our approach7;

In the following we will show how our technique works on the two examples of
automatic mimicry attack described in [17].

5.1 GOT Protection

We apply the mechanism described in § 4 to the automating mimicry attack presented
in Figure 3 . Our goal is to protect the cmd parameter used by the execl syscall. Af-
ter the code analysis phase, we have defined the dangerous region of the program line
26-30, the Kernel module checker c has loaded inside its memory structures the trusted
values of the code pointers (i.e execl’s GOT line 30, fgets (line 26), printf (line
28), setuid (line 29) etc.) and the process has been instrumented. At this point, dur-
ing the program execution, whenever the attacker exploits the vulnerability inside the
check_pw function, he probably will rewrite the GOT of a function defined inside
the dangerous regions which will be executed before execl function (line 30). The
next attacker’s action is to relinquish the control of the code to the application after the
check_pw function, and regaining it when that particular function will be invoked.
But after the attacker relinquished the control code to the ”original” application, when

7 However, some forms of such attacks can be defeated by protecting the use and definition area
of the sensitive variables.

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 225

the execution flow reaches one of the checks previously set, the program flow will pass
to c that will rewrite the appropriate code pointers, blocking so the attack.

5.2 Code Pointers Protection

In the example shown in Figure 4 the attacker uses a return stack as code pointer to
regain code. During the learning phase the Kernel module checker retrieves the return
addresses of the dangerous functions, do_log function, and during the loading it sub-
stitutes the ret instruction of such a function, with the breakpoint instruction ret.

Whenever the attacker exploits the vulnerability in the function check_pw, he
changes the value of the variable uid writing a value that, once used by do_log func-
tion, will overwrite the function return address of that function bringing the execution
inside the malicious code. Once the attacker has modified the uid value, it relinquishes
the process execution flow back to p which will follow the normal flow. Whenever the
program is about to return from do_log function, the execution flow will pass, by
means of int3, to the code pointers integrity verification module which will overwrite
the function return address with the “trusted” one, preventing to malicious code to re-
gain control on the p’s execution flow later on.

6 Technical Details

In this section we provide technical details of the prototype we developed for a GNU/
Linux system (kernel 2.4.28 version). We will describe the static analysis tool used to
perform the static analysis phase, the process instrumentation performed at load time
after the dynamic linker process takes place, and the modifications of the int3 kernel
handler performed in order to manage the code pointers integrity verification process.

6.1 Static Analysis Tools

Static analysis of p has been performed using a static analysis tool for ELF IA32 binaries,
developed by our group. The core of the tool is written using the Python language and
some parts using the C language. Such a tool is able to obtain the Inter-procedural
Control Flow Graph (ICFG) and to perform the basic data-flow analysis of the program
being analyzed. In particular, the tool works following these steps:

– initially the pre-processing phase is performed in order to recognize some impor-
tant ELF information such as symbol table location, code section location, dynamic
section information, and so on;

– after gathering the preliminaries information, the tool disassembles the instructions
contained inside the code section and converts them to an intermediate form. We
used the well-known recursive traversal algorithm defined in [22] to disassemble
the binary;

– the tool computes the ICFG (§ 3), afterwards the program is converted into the SSA
form using the standard Ferrant’s algorithm [8];

– finally, the tool uses the classic equations of the liveness analysis defined in [2] to
perform this analysis.

226 D. Bruschi, L. Cavallaro, and A. Lanzi

Moreover, the tool is able to compute both the control dependencies and the classic
data-flow analysis equations defined in [2].

6.2 Process Instrumentation

The process instrumentation phase is performed by the instrumentator, a program we
have developed which trace the program p to be protected and, by using the ptrace
system call, substitutes the appropriate instructions with the int3 statement. Moreover,
the instrumentator has to build the saving instructions table. Such a table will be mapped
at a fixed address known by the kernel code pointers integrity verification module as
well; this can be easily achieved by using the mmap system call with a MAP_FIXED
flag.

6.3 int3 Exception Handling

In order to perform the code pointers integrity verification checks, we have modi-
fied the int3 kernel exception handler implemented in the do_trap kernel func-
tion (traps.c). In particular, when the int3 exception is raised the control flow is
transferred from user space application to the kernel code which calls the do_int3
kernel function (see entry.S) which eventually invokes do_trap. Figure 7, reports
a snippet of the do_trap function we modified to add our code pointers integrity
verification.

More in detail, when the exception int3 is executed, the do_trap function checks
the exception number and the process name (line 7 and 8) which raises the exception.
Consequently, if the process name8 and the exception number are appropriate, we per-
form the code pointer checks and restore the flow as already explained in § 4 (line 10
and 11); otherwise the handler will work in the usual way and the code inside the if
statement (line 7) will not be executed.

1 trap_signal(...)
2 {
3 struct task_struct *tsk = current;
4 tsk->thread.error_code = error_code;
5 tsk->thread.trap_no = trapnr;
6
7 if ((trapnr == 3) && !(strcmp(tsk->comm, "process_name")))
8 {
9 check_code_pointers();

10 restore_flow() ;
11 return;
12 }
13 else
14 {
15 if (info)
16 force_sig_info(signr, info, tsk);
17 else
18 force_sig(signr, tsk);
19 return;
20 }
21 }
22 }

Fig. 7. Modified do trap Function

8 Indeed, a check on the program’s i-node number would be better. Otherwise, the check can be
easily bypassed by a local attacker by using symbolic links, for example.

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 227

7 Experimental Results

In this section we will describe the system used in order to make our experimental test
and then present the set of experiments we ran to collect the measurements about the
overhead introduced by our code pointers integrity verification module. All the experi-
ments have been executed on an Intel Pentium IV processor with 3 GHz clock, running
a GNU/Linux Debian operating system, 2.4.28 Linux kernel and 128 MB of RAM.

Our module acts on the code used by the kernel in order to manage the checking
performed at runtime, so we focus our attention on those routines, defined into the file
traps.c. In order to measure time lapses we used the time-stamp counter processor
register (tsc, using the rdtsc assembly instruction). The counter, available on all
kinds of Pentium processors is a 64-bit register that gets incremented at each clock
tick. Using this measure we are able to provide the most accurate measurement of the
system.

In the first phase of our experiments we have measured two main pieces of code of
our obfuscation model, providing three measurements for each of them: the best time,
the average time and the standard deviation of execution; in particular we have:

– Context Switch: this measure represents the amount of time used to perform the
context switch from kernel to user mode context and vice versa, executed during
the code pointers integrity verification process. The overhead in this case is 144μs±
493μs (8.5% overhead) on average (reporting 63μs, i.e., 5%, on the best-case).

– Hash Table access time: this measure represents the amount of time needed to ac-
cess the hash table (saving instruction table) used in order to replace the trusted
code pointers values and for bringing the execution flow back to the process. The
hash table size depends on the number of different instrumentation locations de-
fined by the application. For the test we conducted, our hash table contained 50 lo-
cations on an average. Thus, the obfuscator overhead in this case is 114μs±437μs
(6.5% overhead) on average (reporting 61μs, i.e., 1.6%, on the best-case).

As a second phase of our test we have considered three different kind of applications:
server web dhttpd version 1.02a, the tftpd server version 0.17 − 15, and sudo
application version 1.6.8p12. Table 1 reportes the results of the static analysis phase;
for each service we can see the number of the dangerous regions found and the total
number of the code pointers that must be protected defined inside those regions.

After the static analysis phase we have performed the run-time analysis. For the
HTTP server we have used a small web site with the following features: total size 500
KB, 12 static HTML pages, and 6 pdf documents (document’s size 200 KB); for the
tftpd server we have considered download and upload operations of a file which size

Table 1. Dangerous Regions

Services # Dangerous Regions # Code Pointers found in the Dangerous Regions

dhttpd 6 30

tftpd 7 39

sudo 14 75

228 D. Bruschi, L. Cavallaro, and A. Lanzi

Table 2. Runtime Analysis

Services #Checks Execution Time μs Checking Time μs Overhead

dhttpd 724 1407000 72400 5.1%

tftpd 467 1200000 37600 3.1%

sudo 110 99150 8800 8.8%

is 500 KB, and for the sudo utility we have considered the execution on the cat
command on a small file. In Table 2 we have reported the run-time analysis overhead
for each service, the number of the checks performed during the execution time, the
total amount of the time spent by the process (we do not considered the I/O idle time),
the time spent by the integrity verification process and, in the last column, the overhead
inserted by our integrity verification module for those particular services.

8 Conclusion and Future Works

This paper presents a novel defensive technique based on the Inter-procedural Control
Flow Graph; such a mechanism is represented by the code pointers checker module at
the kernel-level, which is able to protect the HIDS against automatic mimicry attack
with a low overhead.

One of the main problem of our defensive mechanism is represented by the accu-
racy of the static analysis phase performed on x86 binaries. In fact, the imprecision of
such an analysis could increase both the false positive and negative in our system. In
particular, there are two main problems which must be addressed when working on an
executable binary: (1) the CFG’s completeness and (2) the aliasing problem. In order
to improve the CFG’s completeness we can adopt the technique described in [24]. In
this approach, the authors use the data-flow analysis in order to determine the values
of the indirect calls so to improve the completeness of CFG. Instead, for the aliasing
problem we can use the algorithm describe in [3]. This technique works on the x86
executable and has obtained good results. However, in future we think to work on the
source code of the program in order to solve the problems that binary static analysis
techniques arise.

Another problem of our approach is the size of the dangerous regions. In fact, some-
times there exists a great distance between the definition and use of a particular variable;
consequently, if the region’s size is very large, the attacker could have more chances to
perform the attack successfully. In fact, if the vulnerability is positioned inside the dan-
gerous regions the attacker can change the value of the system call parameters success-
fully without using any code pointers. We are investigating for improving our technique
in order to solve these issues and to mitigate other attacks such as the non-control data.

Acknowledgements

We thank the anonymous reviewers for their helpful comments that improved the qual-
ity of the paper. We thank Monirul Sharif for help in reviewing the paper and we

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 229

thank Christopher Kruegel and Lorenzo Martignoni for their extensive comments and
suggestions.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: CCS ’05: Pro-
ceedings of the 12th ACM conference on Computer and communications security, pp. 340–
353. ACM Press, New York (2005)

2. appel, a.w.: Modern compiler implementation in c. Cambridge University Press, Cambridge
(2004)

3. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In: Duesterwald,
E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg (2004)

4. Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J., Nguyen-Tuong,
A., Hiser, J.: N-Variant Systems: A Secretless Framework for Security through Diversity. In:
15th USENIX Security Symposium (2006)

5. Bruschi, D., Cavallaro, L., Lanzi, A.: An Efficient Technique for Preventing Mimicry and Im-
possible Paths Execution Attacks. In: 3rd International Workshop on Information Assurance
(WIA 2007) (April 2007)

6. Chen, S., Xu, J., Sezer, E., Gauriar, P., Iye, R.K.: Non-Control-Data Attacks Are Realistic
Threats. In: 14th USENIX Security Symposium (2005)

7. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle, P., Zhang,
Q., Hinton, H.: StackGuard: Automatic adaptive detection and prevention of buffer-overflow
attacks. In: Proc. of the 7th Usenix Security Symposium, pp. 63–78 (January 1998)

8. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing
static single assignment form and the control dependence graph. ACM Trans. Program. Lang.
Syst. 13(4), 451–490 (1991)

9. Bruschi, D., Cavallaro, L., Lanzi, A.: Diversified Process Replicæ for Defeating Memory
Error Exploits. In: 3rd International Workshop on Information Assurance (WIA 2007) (April
2007)

10. Etoh, H.: GCC extension for protecting applications from stack-smashing attacks (ProPolice)
(2003), http://www.trl.ibm.com/projects/security/ssp/

11. Feng, H., Kolesnikov, O., Fogla, P., Lee, W., Gong, W.: Anomaly Detection using Call Stack
Information. IEEE Symposium on Security and Privacy, Oakland, California (2003)

12. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A Sense of Self for Unix
Processes. In: SP ’96: Proceedings of the 1996 IEEE Symposium on Security and Privacy, p.
120. IEEE Computer Society Press, Los Alamitos (1996)

13. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion Detection Using Sequences of System
Calls. Journal of Computer Security 6(3), 151–180 (1998)

14. Shacham, H., Page, M., Pfaff, B., Goh, E.-J.: On the Effectiveness of Address-Space Ran-
domization. In: CCS ’04: Proceedings of the 11th ACM Conference on Computer and Com-
munications Security, pp. 298–307. ACM Press, New York (2004)

15. iSec.pl Development Team. kNoX - Implementation of non-executable Page Protection
Mechanism (February 2005)
http://www.isec.pl/projects/knox/knox.html

16. Kiriansky, V., Bruening, D., Amarasinghe, S.P.: Secure execution via program shepherding.
In: Proceedings of the 11th USENIX Security Symposium, pp. 191–206, Berkeley, CA, USA,
USENIX Association (2002)

17. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Automating Mimicry Attacks Us-
ing Static Binary Analysis. In: Proceedings of the USENIX Security Symposium, Baltimore,
MD (August 2005)

http://www.trl.ibm.com/projects/security/ssp/
http://www.isec.pl/projects/knox/knox.html

230 D. Bruschi, L. Cavallaro, and A. Lanzi

18. Elias Aleph One Levy. Smashing the Stack for Fun and Profit. Phrack Magazine, vol.
0x07(#49), Phile 14–16 (December 1998)

19. Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis (1999)
20. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address Obfuscation: An Efficient Approach to

Combat a Broad Range of Memory Error Exploits. In: 12th USENIX Security Symposium
(2003)

21. Bhatkar, S., Sekar, R., DuVarney, D.C.: Efficient Techniques for Comprehensive Protection
from Memory Error Exploits. In: 14th USENIX Security Symposium (2005)

22. Schwarz, B., Debray, S., Andrews, G.: Disassembly of Executable Code Revisited. In: Pro-
ceedings of the Ninth Working Conference on Reverse Engineering (2002)

23. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A Fast Automaton-Based Method for De-
tecting Anomalous Program Behaviors. In: IEEE Symposium on Security and Privacy, Oak-
land, California (2001)

24. De Sutter, B., De Bus, B., De Bosschere, K., Keyngnaert, P., Demoen, B.: the static analysis
of indirect control transfers in binaries. In: Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications, Las Vegas, Nevada, USA,
pp. 1013–1019 (June 2000)

25. Tan, K.M.C., Killourhy, K.S., Maxion, R.A.: Undermining an anomaly-based intrusion de-
tection system using common exploits. In: Proceedings of the 5th International Symposium
on Recent Advances in Intrusion Detection (2002)

26. Tan, K.M.C., McHugh, J., Killourhy, K.S.: Hiding intrusions: From the abnormal to the nor-
mal and beyond. In: Information Hiding, pp. 1–17 (2002)

27. The Linux Kernel 2.6 Development Team. The Linux Kernel 2.6 (February 2005),
http://lwn.net/Articles/121845/

28. The OpenWall Development Team. The OpenWall Project (February 2005),
http://www.openwall.com

29. The PaX Team. PaX: Address Space Layout Randomization (ASLR)
http://pax.grsecurity.net

30. Wagner, D., Dean, D.: Intrusion Detection via Static Analysis. In: IEEE Symposium on Se-
curity and Privacy, Oakland, California (2001)

31. Wagner, D., Soto, P.: Mimicry Attacks on Host Based Intrusion Detection Systems. In: Proc.
Ninth ACM Conference on Computer and Communications Security (2002)

32. Xu, H., Du, W., Chapin, S.J.: Context Sensitive Anomaly Monitoring of Process Control
Flow to Detect Mimicry Attacks and Impossible Paths. In: Jonsson, E., Valdes, A., Almgren,
M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 21–38. Springer, Heidelberg (2004)

http://lwn.net/Articles/121845/
http://www.openwall.com
http://pax.grsecurity.net

A Study of Malcode-Bearing Documents

Wei-Jen Li, Salvatore Stolfo, Angelos Stavrou, Elli Androulaki,
and Angelos D. Keromytis

Computer Science Department, Columbia University
{weijen,sal,angel,elli,angelos}@cs.columbia.edu

Abstract. By exploiting the object-oriented dynamic composability of
modern document applications and formats, malcode hidden in otherwise
inconspicuous documents can reach third-party applications that may
harbor exploitable vulnerabilities otherwise unreachable by network-level
service attacks. Such attacks can be very selective and difficult to detect
compared to the typical network worm threat, owing to the complex-
ity of these applications and data formats, as well as the multitude of
document-exchange vectors. As a case study, this paper focuses on Mi-
crosoft Word documents as malcode carriers. We investigate the pos-
sibility of detecting embedded malcode in Word documents using two
techniques: static content analysis using statistical models of typical doc-
ument content, and run-time dynamic tests on diverse platforms. The
experiments demonstrate these approaches can not only detect known
malware, but also most zero-day attacks. We identify several problems
with both approaches, representing both challenges in addressing the
problem and opportunities for future research.

Keywords: Intrusion Detection, N-gram, Sandbox Diversity.

1 Introduction

In this paper, we focus on stealthy and targeted attacks where malcode is deliv-
ered to a host in an otherwise normal-appearing document. Modern documents
and the corresponding applications make use of embedded code fragments. This
embedded code is capable of indirectly invoking other applications or libraries
on the host as part of document rendering or editing. For example, a pie chart
displaying the contents of a spreadsheet embedded in a Word document will
cause Excel components to be invoked when the Word document is opened. As
a result, documents offer a convenient means for attackers to penetrate systems
and reach third-party host-based applications that may harbor vulnerabilities
which are not reachable, and thus not directly exploitable, remotely over the
network. Disturbingly, attackers are simply exploiting deliberate features that
are critical to the way modern document-handling applications operate, instead
of some temporary vulnerabilities or bugs.

Several cases have been reported where malcode has been embedded in docu-
ments (e.g., PDF, Word, Excel, and PowerPoint [1,2,3]) transforming them into
a vehicle for host intrusions. These trojan-infected documents can be served up

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 231–250, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

232 W.-J. Li et al.

by any arbitrary web site or search engine in a passive “drive by” fashion, trans-
mitted over email or instant messaging (IM), or even introduced to a system by
other media such as CD-ROMs and USB drives, bypassing all the network fire-
walls and intrusion-detection systems. Furthermore, the attacker can use such
documents as a stepping stone to reach other systems, unreachable via the regu-
lar network. Hence, any machine inside an organization with the ability to open
a document can become the spreading point for the malcode to reach any host
within that organization. Indeed, a recent attack of this nature was reported
in [4] using Wikipedia. There is nothing new about the presence of viruses in
streams, embedded as attached documents, nor is the use of malicious macros
a new threat [5,6], e.g., in Word documents. However, simply disabling macros
does not solve the problem; other forms of code may be embedded in Word
documents, for which no easy solution is available other than not using Word
altogether.

The underlying problem is that modern document formats are essentially
object-containers (e.g., Object Linking and Embedding (OLE) format for Word)
of any executable object. Hence, one should expect to see any kind of code
embedded in a document. Since malcode is code, one cannot be entirely certain
that a piece of code detected in a document is legitimate or not, unless it is
discovered and embedded in an object that typically does not contain code.
Simply stated, modern document formats provide a convenient object-
container format and constitute thus a convenient and easy to use
“code-injection platform.”

To better illustrate the complexity of the task of identifying malcode in doc-
uments through a concrete study, we limit our investigation to Microsoft Word
document files; Word documents serve as a “container” for complex object em-
beddings that need to be parsed and executed to render the document for display.
In addition to the well known macro viruses, two further possible scenarios are
introduced bellow:

Execution strategies of embedded malcode: From the attackers perspec-
tive, the optimal attack strategy is to architect the injected code as an embedded
object that would be executed automatically upon rendering the document. In
addition to automated techniques such as the WMF, PNG and JPEG vulnera-
bilities, an attacker can also use social engineering whereby an embedded object
in a document, appearing as an icon, is opened manually by the user, launch-
ing an attack including attacks against third-party vulnerable applications. The
left-side screen shot of Fig. 1 is an example of a Word document with embedded
malcode, in this case a copy of the Slammer worm, with a message enticing a
user to click on the icon and launch the malcode.

Dormant malcode in multi-partite attacks: Another stealth tactic is to
embed malcode in documents that does not execute automatically nor by user
intervention when the document is opened, but rather lies dormant in the file
store of the target environment awaiting a future attack that would extract the
hidden malcode. This multi-partite attack strategy could be used to successfully

A Study of Malcode-Bearing Documents 233

embed an arbitrarily large and sophisticated collection of malcode components
across multiple documents. The right screen shot in Fig. 1 demonstrates another
simple example of embedding a known malicious code sample, in this case also
Slammer, into an otherwise normal Word document. The document opens en-
tirely normally, with Slammer sitting idly in memory. Both infected files can
open normally in a Windows environment. However, the right one appears with
no discernible differences from a normal document while a different document
could incorporate this Slammer-laden document when it is opened, and invoke
the malcode contained therein. Although real-world attacks identical to our ex-
ample have not appeared, similar scenarios that combine multiple attacks have
been studied. Bontchev [5] discussed a new macro attack that can be created by
combining two known malicious macros. (e.g., a macro virus resides on a ma-
chine, another macro virus reaches it, and “mutates” into a third virus.) Filiol et
al. [7] analyzed the complexity of another type of viruses named k-ary viruses,
which combine actions of multiple attacks.

Fig. 1. Left: A screen shot of an embedded executable object to entice the user to
click and launch malcode. Right: Example of malicious code (Slammer) embedded in
a normal document.

Our aim is to study the effectiveness of two techniques that have been applied
in the context of “traditional” network worms: statistical analysis of content to
identify portions of input that deviate from expected normal content as esti-
mated from a training corpora, and detection of malicious behavior by dynamic
execution on multiple, diverse platforms. The challenge is to find a method to
inspect the binary content of any document file before it is opened to determine
whether it is suspicious and may indeed be infected with malicious code without

234 W.-J. Li et al.

a priori knowledge of the specific code in question or where it may be embedded
in the document.

Initially, we explore the detection capabilities of statical analysis techniques.
More specifically, we investigate the application of statistical modeling tech-
niques to characterize the typical content of documents. Our goal is to deter-
mine whether we can detect embedded malcode using statistical methods on
the binary file content. Furthermore, we introduce novel dynamic run-time tests
that attempt to expose the attackers’ actions through application diversity: we
open the files using a set of different implementations of document processing
application in a sandboxed environment. To quantify the detection capabilities
of statistical analysis, we perform a series of experiments where statistical anal-
ysis is applied to labeled training documents to characterize both normal and
malicious document content. Our experiments show that statistical analysis tech-
niques outperform generic COTS Anti-Virus (AV) scanners. To further improve
our detection capability, we designed novel tests that harness the application
diversity to expose malicious byte-code. In these tests, documents are opened
in a diverse set of sandboxed and emulated environments exposing malicious
code execution. We show that in most cases, malicious code depend on operat-
ing system or program characteristics for successful completion of its execution.
In the process of our experimentation, we discovered that attackers use existing
benign documents as vehicles for their attack. Thus, we can further improve our
classification if we use benign documents from the Web to train our detectors
since even small deviations from normality can expose an attack.

Our results indicate that both static statistical and dynamic detection tech-
niques can be employed to detect malicious documents. However, there are some
weaknesses that make each method incomplete if used in isolation. For statis-
tical analysis, we would like to be able to determine the “intent” and “effect”
of the malicious code. On the other hand, dynamic tests may fail to detect the
presence of stealthy malcode that is designed to hide its actions. Hence, neither
technique alone will solve the problem in its entirety. We posit that a hybrid
approach integrating dynamic and static analysis techniques will likely provide
a suitable solution.

Paper Organization: The next section discusses related work and research
reported in the literature. Section 3 describes the static statistical approach
including an overview of the byte-value n-gram algorithm, the SPARSEGui pro-
gram and the experimental results. We introduce the dynamic run-time tests
and the use of application diversity in Section 4. Section 5 concludes the paper
with suggestions that perhaps collaborative detection methods may provide a
fruitful path forward.

2 Background and Related Work

2.1 Binary Content File Analysis

Probabilistic modeling in the area of content analysis mainly involves n-gram
approaches [8,9,10]; the file binary contents are measured and the distribution

A Study of Malcode-Bearing Documents 235

of the frequency of 1-gram, as well as each fixed size n-gram, is computed. An
early research effort in this area is the Malicious Email Filter [11], using a naive
Bayes classifier algorithm applied to the binary content of email attachments
known to be viral. The classifier was trained on both “normal” executables and
known viruses to determine whether emails likely included malicious attachments
that should be filtered.

Others have applied similar techniques including, for example, Abou-Assaleh
et al. [12,13] to detect worms and viruses. Furthermore, Karim et al. suggest that
malicious programs are frequently related to previous ones [14]. They define a
variation on n-grams called “n-perms” An n-perm represents every possible per-
mutation of an n-gram sequence, and n-perms can be used to match possibly
permuted malicious code. McDaniel and Heydari [15] introduce algorithms for
generating “fingerprints” of file types using byte-value distributions of file con-
tent. However, instead of computing a set of centroid models, they compute a
single representative fingerprint for the entire class. This strategy may be un-
wise. Mixing the statistics of different subtypes and averaging of the statistics of
an aggregation of examples may tend to loose information. A report from AFRL
proposes the Detector and Extractor of Fileprints (DEF) process for data pro-
tection and automatic file identification [16]. By applying the DEF process, they
generate visual hashes, called fileprints, to measure the integrity of a data se-
quence, compare the similarity between data sequences, and to identify the data
type of an unknown file. Goel [17] introduces a signature-matching technique
based on Kolmogorov Complexity metrics, for file type identification.

2.2 Steganalysis

There exists a substantial literature on the subject of steganography, the means
of hiding secret messages embedded in otherwise normal appearing objects or
communication channels. We do not provide an analysis of this area since it is
not exactly germane to the topic of identifying embedded malcode in documents.
However, many of the steganalysis techniques that have been under investigation
to detect steganographic communication over covert channels may bear resem-
blance to the techniques we applied during the course of this research study.
For example, Provos’ work on defeating steganalysis [18] highlights the difficulty
of identifying “foreign” material embedded cleverly within media objects that
defeats statistical analysis while maintaining what otherwise appears to be a
completely normal-appearing objects, e.g., a sensible image.

The general class of steganographic embedding of secret messages may be
viewed as a “mimicry” attack, whereby the messages are embedded in such a
fashion as to mimic the statistical characteristics of the objects in which the
messages are embedded. Our task in this project was a more limited view of
the problem, to identify embedded “zero day malcode” inside documents. The
conjecture that drives our analysis is that code segments may be limited to a
specific set of statistical characterizations so that one may be able to differentiate
code from other material in which it is embedded; i.e., code embedded in an
image may appear to have a significantly different statistical distribution to

236 W.-J. Li et al.

that of the class of images used to transport it. Unfortunately, this tends not
to be true especially with a crafty adversary capable of generating obfuscation
techniques that shape the appearance of the code’s binary content to have a
user-chosen statistical distribution. One presumes that the attacker knows the
particular statistical modeling and testing technique applied while shaping their
embedded code to pass the test. Such techniques are being honed by adversaries
fashioning polymorphic attack engines that change a code segment and re-shape
it to fit an arbitrary statistical distribution, to avoid inspection and detection.

2.3 Polymorphic Code Generation Tools

Polymorphic viruses are nothing new; “1260” and the “Dark Avenger Mutation
Engine” were considered the first two polymorphic virus engines, written in the
early 90s. Early work focused on making detection by COTS signature scan-
ners less likely. Polymorphic worms with vulnerability-exploiting shellcode, e.g.,
ADMutate [19] and CLET [20], are primarily designed to fool signature-based
IDSes. CLET features a form of padding, called cramming, to defeat simple
anomaly detectors. However, cram bytes are derived from a static source, i.e.,
instructions in a file included with the CLET distribution; while this may be
customized to approach a general mimicry attack, it must be done by hand. An
engine crafted by Lee’s team at Georgia Tech [21] had this purpose in mind; an
attack vector was morphed by padding bytes guided by a statistical distribution
learned by sniffing the environment in which the code would be injected, hence
allowing the code to have a “normal” appearing statistical characterization. This
engine targeted the 1-gram distributions computed by the PAYL anomaly de-
tector; the obfuscation and evasion technique was subsequently countered by
the Anagram sensor that implements higher-order n-gram analysis. The core
algorithm in the Anagram sensor is the basis of the zero-day malcode detec-
tion algorithm employed in SPARSEGui as described briefly later, and which we
consider to be related to the Shaner algorithm [22] devised to classify files into
their respective types. During the course of our tests using thousands of Word
documents provided, we found that performance was hard to improve without
carefully redistributing training data. In addition, Song et al. [23] also suggest
it is futile to compute a statistical model of malicious code, and hence identi-
fying malcode embedded in a document may not be the wisest strategy. Hence,
we also applied a dynamic test approach to compare against the static analysis
approaches, implemented as the VM-based test facility described in Section 4.

2.4 Dynamic Sandbox Tests

Sandboxing is a common technique for creating virtual environments where it is
safe to execute possibly unsafe code. For example, Norman Sandbox [24] simu-
lates an entire machine as if it were connected to a network. By monitoring the
Windows DLLs activated by programs, it stops and quarantines programs that
exhibit abnormal behavior. Since this is a proprietary commercial system, it is
unknown exactly how abnormal behavior is determined. Willems et al. present

A Study of Malcode-Bearing Documents 237

an automated system call analysis in a simulated environment, the CWSandbox
[25]. They use API hooking: system calls to the Win32 API are re-routed to
monitoring software that gathers all the information available to the operating
system. Instead of using a virtual environment, TTAnalyze [26] runs a CPU em-
ulator, QEMU, which runs on many host operating systems. Recently, Microsoft
Research developed BrowserShield [27], a system that performs dynamic instru-
mentation of embedded scripts. Similar in spirit to our approach, BrowserShield
is designed to detect embedded malcode implemented as HTML scripts which
would otherwise be undetectable using static analysis alone.

In this paper, we employ virtual machines running Word-processing applica-
tions on diverse platforms; in one case, the native implementation on Windows,
in another, a Windows emulation environment running under Linux hosted by
a virtual machine. This architecture is easy to implement, and provides a safe
means of learning expected behavior of Word document processing under dif-
ferent implementations, using the multiple platform diversity as an additional
source of information to identify malcode.

3 Statistical Analysis

As a first effort to identify malcode-infected documents, we used static inspection
of the statistical byte sequences of binary content. Our intuition is that the binary
content of malicious Word documents contains substantial portions of contiguous
byte sequences that are significantly different (abnormal) from typical/benign
Word documents. Our approach is reminiscent of corpus-based machine learn-
ing in natural language processing of human-generated content. The goal is to
explore the detection capabilities and limitations of statistical characterization
given the available training data. We will start by introducing the tools we used
to perform the static analysis and experiments.

3.1 The POI Parser and SPARSEGui

A document may contain many types of embedded objects. To achieve any rea-
sonable level of detection performance, we found it necessary to “parse” the
binary file format into its constituent embedded object structure and extract
the individual data objects, in order to model instances of the same types to-
gether, without mixing data from multiple types of objects.

We used the open-source Apache POI [28] application, a Java implementation
of the OLE 2 Compound Document, to decompose Word files into their exact,
correct constituent structures. The parsed object structures in the binary content
of the files will be referred “sections.” We further modified the POI software so
that the location of each object within a Word file is revealed. These sections
include header information, summary information, word document, CompObj,
1Table, data, pictures, PowerPoint document, macros, etc. Fig, 2 displays the
histograms of byte content of four common sections whose differences are easy
to observe.

238 W.-J. Li et al.

Fig. 2. Byte occurrence frequency of WordDocument, 1Table, Macros, and Data. The
byte values were parsed from 120 benign Word documents containing macros. In these
plots, the byte value 0 and FF were removed because they occurred relatively much
more frequent than the others and will mess up the display.

SPARSEGui includes a number of the modeling techniques described and
calls upon the POI parser to provide the means of displaying detailed informa-
tion about the binary content of Word files as well as presenting experimental
results to the user. The experimental results in the remainder of this paper were
produced using this toolkit. This program was designed not only to implement
the methods described herein but also to provide a user-friendly interface which
can extend to analyst information for deeper inspection of a suspect Word file.
A screen shot is shown in Fig. 3 in Section 3.4.

3.2 Statistical Content-Based Detection

To evaluate whether statistical binary content detectors can effectively detect
malcode embedded in documents, we used the Anagram [8] algorithm. Although
Anagram was originally designed to identify anomalous network packet payloads,
it is essentially an efficient approximation of Shaner’s algorithm [22] enabling
us to detect malicious binary content. Anagram extracts and models high-order
n-grams (an n-gram is a sequence of contiguous n byte values) exposing signif-
icant anomalous bytes sequences. All necessary n-gram information is stored to
highly compact and efficient Bloom filters [29] reducing significantly the space
complexity of the detection algorithm. Contrary to the original 1-class modeling
technique applied to the PAYL algorithm [30], we introduce the same mutual-
information strategy as suggested by Shaner. Hence, we utilize both “good” and
“bad” models that are generated using labeled benign and malicious datasets, re-
spectively. In this way, we train one benign and one malicious model and classify
the files by comparing the score computed against both models.

As a next step, we had to determine the optimal n-gram size that best cap-
tures the corpus of our documents. To that end, we evaluated the detection
performance and storage requirements of all Anagram models with gram size

A Study of Malcode-Bearing Documents 239

from 4 to 8 bytes. Although larger sized grams can capture more fine-grained
information, they can significantly increase the space requirements of Anagram
both in terms of runtime memory and in terms of storage. Therefore, for higher
ordered grams, a larger Bloom filter is required to avoid having collision that can
lead to false positives. The detailed discussion of the size of grams and the use of
Bloom filters is beyond the scope of this paper since it depends on the memory
usage, the type of data analyzed, and the implementation of Bloom filters [31].
Based on the results of our experiments, we selected the 5-gram model, which
consumed reasonable memory and accurately detects attacks.

However, the performance of our statistical methodology was also dependent
upon the amount and quality of our training set: without a sufficient training
corpus, the detector may produce too many false positives. On the other hand,
using a very broad set of documents can produce an augmented and under-
trained normality model increasing our false negative rate. To minimize these
issues, we generated a model of what we considered as “normal” behavior us-
ing Anagram on benign documents. Our aim is to then use Anagram in testing
mode on unknown documents to ferret out documents with abnormal content,
indicative of zero-day malcode embedded within the document in question. We
posit that by generating organization or group specific benign and malicious be-
havior models, we can further facilitate the detection. The assumption is that
documents being created, opened and exchanged within a specific group should
be similar, and malicious documents’ byte content should be significantly dif-
ferent from them. For the benign data corpus, we collected 4825 samples from
two anonymous organizations using wget over their public facing web sites (1775
and 3050 documents for each group). In addition, we downloaded 2918 real-world
malicious documents from VX Heavens 1 [32].

We used two different approaches to build the normality models. The first
method is more coarse-grained and involves scanning and storing all the n-grams
from the collected documents creating two separate training sets: one for the be-
nign and one for the malicious model. In the testing/detection phase we compare
the n-grams obtained from the documents under test with both the benign and
malicious models generating a “similarity score.” This score is the ratio of the
number of testing n-grams that exist in the training models to the total number
of testing n-grams. Testing documents are classified according to the similarity
scores they receive from the two models. Documents that receive the same score
for both models are deemed malicious. The other approach involves generating
multiple normality models corresponding to different document sections instead
of using just a single model. Thus, the training documents are parsed and the
models are created using the parsed sections, one model for each section. Differ-
ent sections are text, tables, macros, and other more rare data objects. For each
of the section, a weight is assigned. During testing phase, we compare the grams
of each of the section from the unclassified document to the ones generated dur-
ing training. The final similarity scores for each testing document are computed

1 These experimental datasets can be reached from our web site for interested readers:
http://www1.cs.columbia.edu/ids/SPARSE/Spring07TestFiles/

240 W.-J. Li et al.

by summing up all of the scores for the individual sections. Thus, we categorize
the document under question based on how similar it is to the benign and the
malicious section models. The advantage of this method is that different types
of embedded objects are not mixed together, so the classification will be more
accurate.

For this second method, it is essential to discover the appropriate weights for
each section. Although we can easily parse the documents into different sections,
we cannot identify which of the sections are malicious even when we know that
the whole document is malicious since a document can have section interdepen-
dencies. As a result, an appropriate weight for each section cannot be “learnt”
by repetitive training/testing. To address this problem, we use the normalized
byte size of each testing section as weight.

3.3 Performance Evaluation

We evaluated our statistical content-based techniques using the data we collected
on Web. Furthermore, we compared our approach to a COTS AV scanner to both
verify and measure our detection performance. In our experiments, we used a
standard 5-fold cross-validation scenario, in which data were equally split into
five groups, and when each group was tested, the other four were used as training
data. All of the pre-mentioned 4825 benign and 2918 malicious documents were
tested. In all of our experiments we used an Intel(R) Xeon(TM) CPU 2.40GHz,
with 3.6GB memory, running Fedora 3. Depending on the file size, the overhead
varied when training/testing a document. The average time to parse or test a
file was 0.226 seconds, and the standard deviation was 0.563 seconds. Table 1
presents the experimental results of both methods. The overall performance of
Method 2, taking advantage of the parser, was highly accurate and superior
to the performance of Method 1. However, the false positive rate of Method 2
was slightly higher than that of Method 1 because Method 2 provided a more
detailed comparison. Unfortunately, Method 2 created a more sensitive classifier
leading to a slight increase in false positives.

Table 1. Detection results of 5-fold cross-validation. Method 1: Train one single model
without parsing. Method 2: Train multiple models for the parsed sections.

Method 1 Method 2

TP/FN 92.32% / 7.68% 98.69% / 1.31%

FP/TN 0.02% / 99.98% 0.15% / 99.85%

Total Accuracy 95.79% 99.22%

The most recently patched AV scanners have the signatures of all of the mal-
ware collected from VX Heavens rendering our dataset inappropriate for further
comparing our approach to general COTS AV scanners. Hence, we prepared a
second malicious dataset consisting of 35 (10 benign and 25 malicious) carefully
crafted files where ground truth was unknown to us before the test. A third-party
evaluator created this set of test files for a complete “blind test” of our analysis

A Study of Malcode-Bearing Documents 241

results. For this test, we trained one model over the 2918 malicious documents
and another model using one group of the benign documents we collected (both
groups of data had the same final result). After verifying the testing results
of these 35 files when ground truth was disclosed, 28 were correctly classified,
shown in the first column of Table 2. Note that the numbers in the table are
the actual numbers instead of percentages. We achieved zero false positive, but
a significant number of false negatives appeared.

Table 2. Detection results of the 35 files. Stat.1: Statistical test, Stat.2: Statistical test
with improved strategy, AV: COTS AV scanner

Stat. 1 Stat. 2 AV

TP/FN 18/7 23/2 17/8

FP/TN 0/10 0/10 0/10

Total Correct 28 33 27

Our statistical analysis technique performed slightly better than a COTS AV
scanner, whose result is shown in the third column of Table 2. Our success can be
attributed to the fact that we were able to model enough information from the
malicious document training set to at least “emulate” the AV scanners with up-
to-date signatures. Additionally, the strategy of computing normal models over
an organization’s specific set of normal documents produced a model that could
detect anomalous events, i.e., the zero-day attacks. However, in this 35-file test,
some small, well crafted malcode cleverly embedded in malicious documents were
very hard to detect mainly because of their relatively small size in comparison
to the whole documents. Statistics based detection mechanism performs poorly
in this case. Therefore, we introduce a further strategy.

3.4 File Content Differences Identify Embedded Malcode

It is possible that an adversary may carefully craft malcode and embed it within
a document chosen from a public source. In their effort to blend, attackers would
rather use existing public documents since crafting their own documents could
contain private or proprietary information that might identify them. Further-
more, an attacker may devise an attack without paying particular attention to
the viewable readable document text portion. Malicious documents may contain
what might be regarded as “gibberish” material. To generate a benign-looking
document, an attacker can mine random benign documents from the Web and
embed malcode in them. In that case, comparing the test document to the orig-
inal or even similar benign document found on the Web can narrow down the
detection region and increase the detection accuracy.

Fig. 3 presents a screen shot of SPARSEGui comparing an original benign host
document and the infected version of the same document. (The host document
was a document accessible on the Internet.) The left two charts represent the
byte values, ranging from -128 to 127, of these two documents, the original and

242 W.-J. Li et al.

infected one respectively. In addition to the byte values, the n-gram entropy
values, defined as the number of distinct byte values over an n-gram, are shown
in the right two charts. To clearly exhibit the anomalous portion, n is assigned
to 50 (i.e., 50-gram) in this figure. In this case, the infected document has a
clearly discriminable high entropy portion. Having observed several similar cases,
we also discovered that such portions bearing malcode usually contain foreign
grams, i.e., never-seen-before grams, which is displayed by using bold characters
in the bottom panel of Fig. 3. To evaluate if foreign grams or entropy of foreign
grams can provide information to locate suspicious code remains an item for
future work.

Fig. 3. SPARSEGui screen-shot: parse a benign document and compare its infected
version

In the prior experiments, the detector produced 7 false negatives. It appears
that some of them were crafted based on random benign documents found on
the Web. Such “mimic attacks” could evade our statistical content-based de-
tector. Therefore, we developed the following detection strategy: we first parse
the inspected document (D1) by using SPARSEGui and take a portion of the
text as tokens in a Google search. In case where a document (D2) is found on
the Web to have at least 90% of its content in common with D1 (but less than

A Study of Malcode-Bearing Documents 243

100%), we extract the n-grams from D1 that do not appear in D2. Then, they
are computed against the trained Bloom filters and classified to which class it is
close, i.e., benign or malicious. Without increasing false positives, this strategy
detected 5 malicious documents that were misclassified in the previous 35-file
test. Shown in the second column of Table 2, the result was superior to the
tested COTS AV scanner.

The 35 test files were purposefully chosen and crafted to avoid detection by
statistical means. Even so, we were able to detect almost all of the malicious
documents without false positives. However, we did misclassify two malicious
documents. Given our performance under such an adverse testing set, we believe
that our results demonstrate that our approach has merit and warrants further
investigation to improve upon detection performance.

Additionally, our experiments reveal another principle: to validate whether
some portion of a document has embedded malcode, mutual collaboration across
sites could help identify hidden malcode. Sites that cooperate to detect malcode-
laden documents and that share suspect documents could validate that indeed
malcode hidden in documents has been discovered. The privacy-preserving shar-
ing of suspect documents among sites is posited as a useful next step in reducing
the threat posed by malicious documents appearing openly on the Internet.

A general observation for all the static statistical approaches is that they ex-
hibit inherent limitiations in detecting malicious documents. First, any machine
learning or statistical method for that matter, is entirely dependent upon the
amount and quality of the training corpus. In general, it is not known a priori if
the sample of data available to train and test models is truly representative of a
particular empirical distribution from which test cases will be drawn. Without
sufficient and representative training data, it is both practically and theoreti-
cally infeasible to compute a meaningfull statistical model. In addition, mali-
cious content can be crafted with extremely small portions of malcode spreading
throughout a section of a document. Compared to the entire file, which is usually
substantially larger, the embedded malcode is very hard to detect. The shorter
the sequence of code, the higher the likelihood that a static-analysis detector will
miss it. On the other hand, far too many false alarms may be generated if the
sensitivity of the detector is raised too high. Lastly, statistical tests may indeed
find portions of a document that contain code, but the binary content of the de-
tected foreign code may not identify the “intent” of embedded code. Hence, we
investigated an alternative dynamic run-time technique that can improve upon
the statistical content-based analysis.

4 Dynamic Run-Time Tests Using Environment Diversity

In this section, we introduce a series of dynamic tests that exploit the diversity of
emulation environments to expose malicious documents. Our goal is to determine
whether opening a malicious document under an emulated environment can force
the malicious code to exhibit easily discernible behavior which deviates from
normal and hence identify malicious documents. We show that this behavioral

244 W.-J. Li et al.

deviation clearly indicates the existence of malicious code inside the file under
inspection.

In this case, we did not implement complex instrumentation nor did we ap-
ply API hooking to monitor the execution of Word; the implementation of the
experimental test bed we built is straightforward: we open documents using the
same Microsoft Word executable on different environments both emulated and
non-emulated. To avoid damaging our system and to be consistent in applying
the same test environment to each file, we ran experiments in a virtual machine
(i.e., sandbox) with an identical setup for each test. After each file is tested,
we reload the VM image and test the next document. For our prototype, we
used VMware WorkStation software installed on the same host machine. For the
VM hosted operating system, we installed Linux (Fedora). In that hosted Linux
we installed CrossOver Office Standard 5.0.1, a Windows binary translator and
emulator. In addition, we had another VM hosting Windows XP and the same
version of Microsoft Office (Word 2003) that was used for CrossOver. Based on
the observables, we introduce a series of three tests which are referred to as Test
1 (OS crash), Test 2 (Unexpected changes), and Test 3 (Application failure).

4.1 Test 1 – OS Crashes

Applications need to interact with the operating system via libraries and system
calls in order to perform even the simplest tasks such as reading or writing a
file. In Windows, this happens through the loading of Dynamic Linked Libraries
(DLLs), which are loaded both at the beginning of the application’s execution
and on demand. In large programs, such as Microsoft Word or other applications
in the MS Office suite, the number of required DLLs is very large (two to three
dozen, depending on the application and the features used by the file loaded).
Some of these DLLs are necessary for the program to startup. Most of the rest of
the DLLs that the application loads at runtime are required to execute and ren-
der the embedded objects and macros after the document is opened. We use the
emulated Windows environment on Linux as a concept of changing the loading
order of DLLs from the original Windows. Then, the code exceptions depend-
ing on this exact order can be revealed. We conjecture that such exceptions,
which lead to program and system crashes, are indicative of malcode: normal,
non-attacking objects and macros should not depend on the loading order of the
DLLs but only on whether the needed DLLs are actually loaded. Based on this
hypothesis, a document is opened under the emulated environment to determine
if it crashes the application or the underlying operating system. If it does, we
declare the document as malicious.

4.2 Test 2 – Unexpected Changes to the Underlying Environment

Test 1 limits our ability to identify malicious documents because most malicious
documents may succeed in executing the embedded malcode yet may not crash
the test environment.

In the second test, we expand the set of what we deem as abnormal behavior to
include all easily observable malicious changes to the hosted operating system.

A Study of Malcode-Bearing Documents 245

We run the second test after applying the first test and only to documents
that fail to be labeled malicious in the first test. Thus, if the document can
be opened without any fault or catastrophic error, we examine all the platform
files generated or modified by the Word process, i.e., we compare the system
right before and after opening a testing document. Our goal is to determine if
there are unexpected differences recorded when the malcode embedded in some
malicious documents are executed but do not terminate the Word process with
a failure or crash.

However, executing the application on multiple environments by opening be-
nign documents may also produce differences in runtime behavior. Hence, there
is a small probability that a benign Word document might exhibit different exe-
cution behavior (but not failure) under an emulated platform. To minimize such
false positive errors, we first train 1000 benign and 1000 malicious documents
and gather all of the changes observed to the underlying systems after opening
the files. We then generate a list of expected (benign) and unexpected (mali-
cious) changes based on the nature of the document examined. These changes
include temporary file creation, data file change such as index.dat, and registry
modification. All changes, or the lack of changes, can be used to identify malcode
execution. Currently, 27 registry keys are checked in our model, some of them
are shown in Table 3, and a Java program is used to automatically verify the
changes.

Table 3. The list of registry keys that may be modified after opening a Word document

[HARDWARE//DESCRIPTION//System//CentralProcessor//0]

[Software//Classes//Interface//A4C46780-499F-101B-BB78-00AA00383CBB
//TypeLib]

[Software//Classes//TypeLib//00020430-0000-0000-C000-000000000046//2.0//0
//win32]

[Software//Microsoft//Windows NT//CurrentVersion//Fonts]

[System//CurrentControlSet//Control//Print//Environments//Windows NT x86
//Drivers//PS Driver]

[Software//Microsoft//Office//11.0//Word]

[Software//Microsoft//Office//11.0//Common//LanguageResources]

[Software//Microsoft//Office//Common//Assistant]

[Software//Wine//Fonts]

[Software//Microsoft//Office//11.0//Word//Text Converters//Import//MSWord8]

[Software//Microsoft//VBA//6.0//Common]

When we applied Test 2 to classify the same documents in Test 1, we observed
a substantial increase in the true positive rate. This was something we expected
since we increased the set of what we deemed as abnormal behavior. However,
some malcode may be considerably more “quiet” and “stealthy” and not produce
any observable malicious changes to the underlying system. Hence, we apply a
third and final test to determine if any easily discernible application behavior
indicates the execution of malcode.

246 W.-J. Li et al.

4.3 Test 3 – Non-fatal Application Errors

When we first tested to the set of the malicious documents available, we discov-
ered some types of pop-up messages generated by Microsoft Word. These mes-
sages do not cause the OS or emulation environment to fail, but they are clear
indicators of malcode execution causing the application to gracefully terminate
only some part of the application execution. Users are presented with pop-up
windows requesting their input or intervention before they can proceed view-
ing the document. We use these pop-up messages as the last useful information
we can extract from the execution of Word and utilize it for dynamic detec-
tion of malicious documents. If both Test 1 and Test 2 fail to label a document
as malicious, we apply this final test to the document: we open the document
and observe the application output. If one of the known pop-up messages ap-
pears on the screen, we mark the document as malicious. However, some benign
documents, without embedded malcode, can spawn the same pop-up messages
because of improper macro design, rare embedded objects using different versions
of applications, or any incorrect use of embedded objects in a Word document.

4.4 Experiments and Analysis

We performed the first experiment by randomly choosing 400 benign and 400
malicious documents which were not in the set of the 1000 benign and 1000 ma-
licious training documents mentioned in Section 4.2. We used the “successive”
strategy as the following: Test 1 is first performed, Test 2 is performed only if the
testing document is labelled benign in Test 1, and Test 3 is performed only if the
testing document is labelled benign in Test 2. The terms “Test 1,” “Test 1+2,”
and “Test 1+2+3” represent the three steps of this successive strategy, respec-
tively. In addition to the successive strategy, we also evaluated indivisual Test 2
and Test 3 as shown in the last two columns of Table 4. Only a few malicious
documents were detected by Test 1, but Test 1+2 dramatically increased the
true positive rate. The best result we obtained - 97.12% accuracy - was when we
employed Test 1+2+3, in which 777 documents out of 800 were correctly classi-
fied. However, when performing Test 1+2+3 after Test 1+2, the number of false
positives increased by one. This false positive was actually a benign document
that requires a border-control feature which is not a default feature in Word.
Though Test 1+2+3 doesn’t improve the performance much after Test 1+2, it
provides further coarse-grained analysis given that it determines if a document
contains macros that run automatically when the document is opened.

Table 4. Detection results of 400 benign and 400 malicious documents

Test1 Test1+2 Test1+2+3 Only Test2 Only Test3

TP/FN 4/397 380/20 381/19 376/24 239/161
% 1%/99% 95%/5% 95.25%/4.75% 94%/6% 59.75%/40.25%

TN/FP 400/0 397/3 396/4 397/3 399/1
% 100%/0% 99.25%/0.75% 99%/1% 99.25%/0.75% 99.75%/0.25%

Total Accuracy 50.5% 97.12% 97.12% 96.62% 79.75%

A Study of Malcode-Bearing Documents 247

The overhead to test a document is approximately 170 seconds, including
cleaning up the image of previous test (1 sec.), duplicating the system image
for next comparison (30 sec.), delaying for the observation of Test 1 and 3 (40
seconds), and comparing the image for Test 2 (130 sec. because the size of the
compared image is 416MB). Although tests can be performed in parallel, the
current overhead is only acceptable to offline analysis.

The next experiment is the blind test using the 35 files. In this test, shown in
Table 5, we achieved 100% accuracy; all of the 35 files were correctly classified.
However, we do not believe that these tests constitute a complete set of dynamic
execution tests that are able to cover all possible malicious documents. First,
we have some false negatives when testing the dataset we collected. Second, a
stealthy successful attack may be crafted such that it produces no discernible
and easily viewable change to the execution environment, i.e., a logic bomb or
a multi-partite attack. In cases where malcode may attempt to install a rootkit
without any discernible external failures or message pop-ups, an additional test
would be necessary to compare the “dormant” virtual machine to its original
image and to compare each for possible rootkit installs. Alternatively, running a
fully instrumented “shadow” version of the binary of the Word application might
identify anomalous program execution at the very point the malcode attempts
to exploit a vulnerability or otherwise exhibits anomalous program behavior.

Table 5. Detection results of the 35 files. AV: COTS AV scanner.

AV Test1 Test1+2 Test1+2+3 Only Test2 Only Test3

TP/FN 8/17 8/17 25/0 25/0 17/8 12/22

TN/FP 0/10 0/10 0/10 0/10 0/10 0/10

Total Correct 27 18 35 35 27 22

Overall, neither static statistical content-based analysis nor dynamic runtime
testing provides a 100% detection accuracy. A combination of both approaches
will likely provide more accurate performance. For example, as a preliminary
stage, objects embedded in a document can be extracted by the static parser
and then subjected to the dynamic tests so the specific malicious objects can
be detected. Moreover, these detected malicious objects or malcode can be sent
back to patch the static content-based detection models to improve accuracy.

5 Conclusion

Our intention was to provide a better understanding of the issues involved in
detecting zero-day malcode embedded in modern document formats. Although
the analysis we present is applicable to several other popular file formats, we
focused on Word files. Word documents constitute a large percentage of the files
exchanged globally both in private and in public organizations. Furthermore,
their rich semantics and the large variety of embedded objects make them an

248 W.-J. Li et al.

ideal attack vehicles against a wealth of applications. Unfortunately, modern
proprietary document formats, exemplified by Microsoft Word, are highly com-
plex and fundamentally provide a convenient and easy to use “code injection
platform”.

In an effort to explore our detection capabilities, we designed sensors using
two complementary detection strategies: static content-based statistical-learning
analysis and coarse-grained dynamic tests designed to exploit run-time environ-
ment diversity. For the static analysis, we employed Anagram an algorithm that
generates byte-code n-gram normality models of the training set. Anagram can
effectively generate a similarity score between the tested document and the nor-
mality model. We compare each document to both benign and malicious nor-
mality models and classify the documents based on their similarity scores to
those models. We found it necessary to “parse” the binary file format into its
constituent embedded object structure in order to extract the individual data
objects. Otherwise, the statistical characterizations of different kinds of objects
would be blended together, producing poor characterizations of what may be
“normal” content. Having a separate weighted model for each of the section of a
document increased our total accuracy to 99.22% from 95.79%. Unfortunately,
statistical anomaly detection techniques have some inherent limitations: they are
dependent on the training set, they require the malicious content to be signifi-
cantly large and they cannot reveal the “intent” of the malicious documents.

To address these issues, we performed several experiments where we imposed
a dynamic run-time environment using multiple COTS implementations of the
Word application encased in virtual machines. In some cases, it was immediately
obvious and trivial to observe that the document was poisoned; In other cases,
validation that the document harbored malcode was dependent upon the actions
of the application changing local files or registries. With well specified policies
that define unwanted, malicious, dynamic events have a high chance of detecting
malicious “intent” (or, at least, behavior) of the code embedded in documents.
However, detecting malicious documents by observing runtime behavior also has
weaknesses. On the one hand, improperly designed benign macros may cause
false alarms in Test 3; on the other hand, logic bombs or stealthily multi-partite
attacks may exhibit no abnormal runtime behavior either and thus would be
a false negative under dynamic tests. Hence, a deep file inspection using static
analysis is still warranted for such stealthy attack cases.

The experimental results indicate that no single static model, nor a single ap-
proach, will likely reach the gold standard of 100% detection accuracy, and 0%
false positive rate by static analysis alone and do so with a minimum of computa-
tional expense (e.g., a small overhead while simply opening the document). How-
ever, a combination of techniques, combining statistical analysis and dynamic
testing will likely provide reasonable operational value. For example, to amortize
the costs of testing documents, perhaps a preliminary stage (static parsing) that
extracts suspect embeddings in a document that are then subjected to dynamic
tests, which can be performed in parallel among instrumented application in-
stances, may achieve high accuracy and reasonable computational performance

A Study of Malcode-Bearing Documents 249

objectives. Furthermore, malcode detected by runtime dynamic tests can and
should be integrated in a feedback loop. Malcode that is extracted should be
used as training data to update static detection models to improve accuracy.

Finally, we conjecture that malcode crafted for a particular version of Word
may be reused in a number of publicly available documents. Hence, a collabo-
rative detection process may provide greater benefit. It may be harder for an
adversary to craft an attack that is undetectable by all such detectors. Thus,
collaboration among a large number of sites that each attempts by a variety of
different means to detect malcode embedded in documents would benefit each
other by exchanging suspicious content to correlate for common instances of
attack data. An alternative strategy might be to create a server farm running
many different versions of document applications and that are coordinated to
identify documents that harbor malcode, similar in spirit and scope to the Strider
Honeymonkey [35] project for collaborative malicious web site detection.

References

1. Leyden, J.: Trojan exploits unpatched Word vulnerability. The Register (May 2006)

2. Evers, J.: Zero-day attacks continue to hit Microsoft. News.com (September 2006)

3. Kierznowski, D.: Backdooring PDF Files (September 2006)

4. Broersma, M.: Wikipedia hijacked by malware. Techworld (November 2006)
http://www.techworld.com/news/index.cfm?RSS&NewsID=7254

5. Bontchev, V.: Possible Virus Attacks Against Integrity Programs and How to Pre-
vent Them. In: Proc. 2nd Int. Virus Bull. Conf. pp. 131–141 (1992)

6. Bontchev, V.: Macro Virus Identification Problems. In: Proc. 7th Int. Virus Bull.
Conf. pp. 175–196 (1997)

7. Filiol, E., Helenius, M., Zanero, S.: Open Problems in Computer Virology. Journal
in Computer Virology, pp. 55–66 (2006)

8. Wang, K., Parekh, J., Stolfo, S.J.: Anagram: A Content Anomaly Detector Resis-
tant to Mimicry Attack. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS,
vol. 4219, Springer, Heidelberg (2006)

9. Li, W.-J., Wang, K., Stolfo, S.J., Herzog, B.: Fileprints: Identifying File Types by
n-gram Analysis. In: 2005 IEEE Information Assurance Workshop (2005)

10. Stolfo, S.J., Wang, K., Li, W.-J.: Towards Stealthy Malware Detection. In: Jha,
Christodorescu, Wang (eds.) Malware Detection Book, Springer, Heidelberg (2006)

11. Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data Mining Methods for Detec-
tion of New Malicious Executables. In: IEEE Symposium on Security and Privacy,
Oakland, CA (May 2001)

12. Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: Detection of New Malicious
Code Using N-grams Signatures. In: Proceedings of Second Annual Conference on
Privacy, Security and Trust, October 13-15, 2004 (2004)

13. Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: N-gram-based Detection
of New Malicious Code. In: Proceedings of the 28th IEEE Annual International
Computer Software and Applications Conference, COMPSAC 2004. Hong Kong.
September 28–30,2004 (2004)

14. Karim, M.E., Walenstein, A., Lakhotia, A.: Malware Phylogeny Generation using
Permutations of Code. Journal in Computer Virology (2005)

http://www.techworld.com/news/index.cfm?RSS&NewsID=7254

250 W.-J. Li et al.

15. McDaniel, M., Heydari, M.H.: Content Based File Type Detection Algorithms.
In: 6th Annual Hawaii International Conference on System Sciences (HICSS’03)
(2003)

16. Noga, A.J.: A Visual Data Hash Method. Air Force Research report (October 2004)
17. Goel, S.: Kolmogorov Complexity Estimates for Detection of Viruses. Complexity

Journal 9(2) (2003)
18. Steganalysis http://niels.xtdnet.nl/stego/
19. K2. ADMmutate (2001) Available from http://www.ktwo.ca/security.html
20. Detristan, T., Ulenspiegel, T., Malcom, Y., Underduk, M.: Polymorphic Shellcode

Engine Using Spectrum Analysis. Phrack (2003)
21. Kolesnikov, O., Lee, W.: Advanced Polymorphic Worms: Evading IDS by Blending

in with Normal Traffic. USENIX Security Symposium, Georgia Tech: Vancouver,
BC, Canada (2006)

22. Shaner: US Patent No. 5,991,714 (November 1999)
23. Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo, S.J.: On the Infea-

sibility of Modeling Polymorphic Shellcode for Signature Detection Tech. report
cucs-00707, Columbia University (February 2007)

24. Natvig, K.: SandboxII: Internet Norman SandBox Whitepaper (2002)
25. Willems, C., Freiling, F., Holz, T.: Toward Automated Dynamic Malware Analysis

Using CWSandbox. IEEE Security and Privacy Magazine 5(2), 32–39 (2007)
26. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator. In: proceedings of

the USENIX 2005 Annual Technical Conference, pp. 41–46 (2005)
27. Reis, C., Dunagan, J., Wang, H.J., Dubrovsky, O., Esmeir, S.: BrowserShield:

Vulnerability-Driven Filtering of Dynamic HTML. OSDI, Seattle, WA (2006)
28. POIFS: http://jakarta.apache.org/
29. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-

nications of the ACM 13(7), 422–426 (1970)
30. Wang, K., Cretu, G., Stolfo, S.J.: Anomalous Payload-based Worm Detection

and Signature Generation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS,
vol. 3858, Springer, Heidelberg (2006)

31. Broder, A., Mitzenmacher, M.: Network Applications of Bloom Filters: A Survey.
In: Allerton Conference (2002)

32. http://vx.netlux.org/
33. Totel, E., Majorczyk, F., Me, L.: COTS: Diversity Intrusion Detection and Appli-

cation to Web Servers. RAID 2005 (2005)
34. Reynolds, J.C., Just, J., Clough, L., Maglich, R.: On-line intrusion detection and

attack prevention using diversity, generate-and-test, and generalization. In: Pro-
ceedings of the 36th Hawaii International Conference on System Sciences (2003)

35. Wang, Y.-M., Beck, D., Jiang, X., Roussev, R.: Automated Web Patrol with Strider
HoneyMonkeys: Finding Web Sites That Exploit Browser Vulnerabilities. In: NDSS
2006

http://niels.xtdnet.nl/stego/
http://www.ktwo.ca/security.html
http://jakarta.apache.org/
http://vx.netlux.org/

Author Index

Androulaki, Elli 231

Bartoli, Alberto 60
Brownlee, Nevil 129
Bruschi, Danilo 213
Brzezinski, Krzysztof M. 79

Caballero, Juan 157
Cavallaro, Lorenzo 213

Goebel, Jan 109

Holz, Thorsten 109

Johns, Martin 40
Jung, Jaeyeon 175

Kang, Min Gyung 157
Karir, Manish 140
Keromytis, Angelos D. 231
Kirda, Engin 20
Kruegel, Christopher 20

Lanzi, Andrea 213
Li, Wei-Jen 231
Lim, Jin Soon 1
Ludl, Christian 20

Mao, Z. Morley 140
McAllister, Sean 20
Medvet, Eric 60
Milito, Rodolfo A. 175
Mitchell, John C. 89

Oberheide, Jon 140

Paxson, Vern 175
Piegdon, David R. 193
Pimenidis, Lexi 193

Song, Dawn 157
Stavrou, Angelos 231
Stinson, Elizabeth 89
Stolfo, Salvatore 231

Ter Louw, Mike 1

Venkatakrishnan, V.N. 1

Wessels, Duane 129
Willems, Carsten 109
Winter, Justus 40

Zdrnja, Bojan 129

	Title Page
	Preface
	Organization
	Table of Contents
	Extensible Web Browser Security
	Introduction
	Related Work
	A Malware Extension
	Our Approach to Enhance Security
	Extension Installation and Loading
	Install Protection Experimental Analysis

	Extension Execution
	Conclusion
	References

	On the Effectiveness of Techniques to Detect Phishing Sites
	Introduction
	Related Work
	Scope of Study
	Experimental Setup
	Anti-phishing Solutions
	Test Data

	Study of Blacklist Effectiveness
	Study of Page Analysis Effectiveness
	Page Properties
	Classification Model
	Analysis of Internet Explorer Heuristics

	Conclusion
	References

	Protecting the Intranet Against “JavaScript Malware” and Related Attacks
	Introduction
	Definitions
	Transparent Implicit Authentication
	Cross Site Request Forgery

	Attacking the Intranet with JavaScript
	Using a Webpage to Get Access to Restricted Web Resources
	A Closer Look at JavaScript
	Portscanning the Intranet
	Fingerprinting of Intranet Hosts
	Attacking Intranet Servers
	Leaking Intranet Content by Breaking DNS-Pinning
	Attacks That Do Not Rely on JavaScript
	Analysis

	Defense Strategies
	Turning Off Active Client-Side Technologies
	Extending the SOP to Single Elements
	Rerouting Cross-Site Requests
	Restricting the Local Network
	Comparison of the Proposed Protection Approaches

	Evaluation
	Implementation
	Practical Evaluation
	Limitations

	Related Work
	Conclusion and Future Work
	References

	On the Effects of Learning Set Corruption in Anomaly-Based Detection of Web Defacements
	Introduction
	Related Work
	The Test Scenario: Web Site Defacement Detection
	Motivation and Framework
	Prototype Details

	Experiments
	Dataset
	Methodology

	Results
	Uncorrupted Learning Sequence
	Corrupted Learning Sequence

	A Corruption Detection Procedure
	Description
	Evaluation and Results

	Concluding Remarks
	References

	Intrusion Detection as Passive Testing: Linguistic Support with TTCN-3
	Introduction
	Background - Reasoning About Behaviors
	The TTCN Language
	Motivation and Aims
	Case Study - Detecting $Smurf$ with TTCN-3
	Issues and Improvements
	Conclusions and Further Work
	References

	Characterizing Bots’ Remote Control Behavior
	Introduction
	BotsandBotnets
	Bot Families and Variants
	Bot Capabilities and Commands

	Experimental Method
	Implementation
	Library and System Call Interposition
	Tainting Module
	User Input Module
	Behavior-Check Procedure

	Experimental Evaluation
	Bot Experiment Setup
	Terminology
	Bot Results
	Benign Program Results
	Performance Results

	Potential for Host-Based, Behavioral Bot Detection
	Related Work
	Conclusions
	References

	Measurement and Analysis of Autonomous Spreading Malware in a University Environment
	Introduction
	Related Work
	Measurement Setup
	Analysis of Autonomous Spreading Malware
	Network-Based Analysis Results
	CWSandbox Analysis Results
	Antivirus Engines Detection Rates
	Botspy Analysis Results

	Conclusion and Future Work
	References

	Passive Monitoring of DNS Anomalies
	Introduction
	Related Work
	Data Capture Methodology
	Results
	Collected Data
	Resource Record Type Prevalence
	Impact of Anti-spam Tools on the DNS System
	Typo Squatter Domains
	Fast Flux Domains
	Anomalous Records
	Record Reputation

	Conclusion and Future Work
	References

	Characterizing Dark DNS Behavior
	Introduction
	Domain Name System
	Related Work
	Methodology
	DataAnalysis
	Basic Statistics
	Query Rate
	Query Targets
	Query Sources

	Discussion
	PTR Reconnaissance
	Validating Usefulness of PTR Reconnaissance
	Honeydns to Combat PTR Reconnaissance

	Conclusions and Future Work
	References

	Distributed Evasive Scan Techniques and Countermeasures
	Introduction
	Classification of Scan Detection Methods and Evaluation Metrics
	Classification of Scan DetectionMethods
	EvaluationMetrics for Scan DetectionMethods

	z-Scan: Evasion Attacks Against TRW
	Naive Scan Against TRW
	z-Scan Against TRW

	Hybrid Detection Method and Evaluation
	Delayed Scan Against BSD
	Hybrid DetectionMethod

	Information-Hiding Countermeasures Against Evasion Techniques
	Related Work
	Conclusion
	References

	On the Adaptive Real-Time Detection of Fast-Propagating Network Worms
	Introduction
	Related Work
	DataAnalysis
	Time Interval to Visit New Destinations

	RBS: Rate-Based Sequential Hypothesis Testing
	Evaluation
	Hybrid Approach: RBS+TRW
	Discussion
	Conclusion
	References

	Targeting Physically Addressable Memory
	Introduction
	Roadmap

	Physically Addressable Memory Sources: libphysical
	Swapping, Multiple Accessors, Caching, Address Translation
	IEEE1394
	Filedescriptor: /dev/mem, Memory Dumps
	Other Sources

	Translating Virtual to Physical Addresses
	Example Implementation: IA-32 Backend for liblinear
	Finding Address Translation Tables
	Matching Via Statistics: NCD (Normalized Compression Distance)

	Attacking
	Information Gathering
	Userspace Modifications

	Future Prospects
	Kernelspace Modifications
	Bootstrapping Custom Operating Systems

	Conclusion
	References

	Static Analysis on x86 Executables for PreventingAutomatic Mimicry Attacks
	Introduction
	Related Works
	Preliminaries
	Defeating Automatic Mimicry Attacks
	Defensive Strategy

	Effectiveness
	GOT Protection
	Code Pointers Protection

	Technical Details
	Static Analysis Tools
	Process Instrumentation
	int3 Exception Handling

	Experimental Results
	Conclusion and Future Works
	References

	A Study of Malcode-Bearing Documents
	Introduction
	Background and Related Work
	Binary Content File Analysis
	Steganalysis
	Polymorphic Code Generation Tools
	Dynamic Sandbox Tests

	Statistical Analysis
	The POI Parser and SPARSEGui
	Statistical Content-Based Detection
	Performance Evaluation
	File Content Differences Identify Embedded Malcode

	Dynamic Run-Time Tests Using Environment Diversity
	Test 1 – OS Crashes
	Test 2 – Unexpected Changes to the Underlying Environment
	Test 3 – Non-fatal Application Errors
	Experiments and Analysis

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

