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convex, di�erentiable functions f which includes all the distances above (seeLiese and Vajda (1987)) and obtain some necessary and some su�cient condi-tions for projections of the underlying measure on the set of martingale measuresin general semimartingale market models.Minimal distance martingale measures are related to minimax martingale mea-sures. These were introduced and studied in various forms by He and Pearson(1991 a, b), Karatzas et al. (1991), Bellini and Frittelli (1997, 1998) and Kallsen(1998). As a consequence the characterization of minimal distance martingalemeasures is closely related to the determination of optimal portfolios. The cru-cial property is an integral representation of a transform of the minimal distancemartingale measure, for which we give a short proof. In general the minimal dis-tance martingale measure may not exist. It is shown in Kramkov and Schacher-mayer (1999) that the optimal portfolio is characterized by the solution of adual variational problem which is related to the problem of �nding a minimaldistance martingale measure.In comparison to Kramkov and Schachermayer (1999) our approach to this kindof results is di�erent. Our main focus is on a general characterization of minimaldistance martingale measures for general f-divergence distances. This charac-terization yields new su�cient criteria for projections on the set of martingalemeasures and allows to determine in a uni�ed way explicitly projections. Inparticular we get a complete discussion in the important class of exponentialL�evy processes. We also determine the projection with respect to the reverseentropy for non-continuous semimartingales. For continuous semimartingalesSchweizer (1999) had proved that the projection is given by the minimal mar-tingale measure. Based on the characterization of minimal distance martingalemeasures we obtain directly a duality result for optimal portfolios. We do notinsist on the most generality concerning the duality theorem as in the paper ofKramkov and Schachermayer (1999) but we assume the existence of projections.(The approach in this paper could be extended to obtain a more general dual-ity result by allowing �nitely additive measures.) From our characterization ofminimal distance martingale measures we �nally obtain directly the equivalenceto minimax martingale measures. This implies an existence result for minimaxmeasures from a well-known existence result for f-projections.The paper is organized as follows. In Section 2 we recall a theorem ofR�uschendorf (1984) about f-projections on moment families, which is our maintool to characterize minimal distance martingale measures. Moreover we givean existence result for minimal distance measures and a general result on theequivalence of f-projections. In Section 3 we show how these results can beapplied to minimal distance martingale measures. Some necessary and somesu�cient conditions for minimal distance martingale measures are derived. InSection 4 we introduce our notion of a minimax measure with respect to con-cave utility functions and convex sets of probability measures, which is weakerthan the notions of minimax measures of He and Pearson (1991 a, b) and Belliniand Frittelli (1997, 1998). It is shown that our notion of minimax measures isequivalent to minimal distance measures with respect to f-divergence distancesinduced by the convex conjugate of the utility function. In Section 5 we show2



that under weak conditions the di�erent notions of a minimax measure coincide.It is pointed out how the results on minimal distance martingale measures arerelated to optimal portfolios maximizing the expected utility of terminal wealth.In Section 6 the su�cient conditions on minimal distance martingale measuresallow us to calculate some examples explicitly. For exponential L�evy processesthe minimal distance martingale measures are determined with respect to severalclassical distances. Finally in Section 7 we extend our duality result to utilitybased hedging of claims as introduced in F�ollmer and Leukert (2000).2 f-divergences and minimal distance measuresIn the following we de�ne f-divergence distances and recall some relevant resultsabout f-projections. For general reference we refer to Liese and Vajda (1987) orVajda (1989). Let (
; F , P ) be a probability space.De�nition 2.1 Let Q� P and let f : (0;1)! R be a convex function. Thenthe f-divergence between Q and P is de�ned asf(QjjP ) := � R f(dQdP )dP , if the integral exists1 , elsewhere f(0) = limx#0 f(x).Examples of f-divergence distances are the Kullback-Leibler or entropy distancefor f(x) = x logx, the total variation distance for f(x) = jx� 1j, the Hellingerdistance for f(x) = �px, the reverse relative entropy for f(x) = � log(x) andmany others (see Liese and Vajda (1987)).In the following we assume that f is a continuous, strictly convex and di�er-entiable function. K denotes a convex set of probability measures on (
;F)dominated by P . A measure Q� 2 K is called f-projection of P on K iff(Q�jjP ) = infQ2K f(QjjP ) =: f(KjjP ).Remarks. (1) If f is strictly convex and f(KjjP ) < 1, then there existsat most one f-projection of P on K (Liese and Vajda (1987), Proposition 8.2).(2) If K is closed in the variational distance topology and limx!1 f(x)x = 1, thenthere exists a f-projection of P on K (see Liese and Vajda (1987), Proposition8.5).For bQ � P and a vector subspace F � L1( bQ) with 1 2 F de�ne the gener-alized moment family induced by F and bQ,KF := fQ� P : F � L1(Q) and EQf = E bQf for all f 2 Fg:In classical moment families some moments of the distributions are �xed. In ourapplication to mathematical �nance the moment family KF typically representssome class of martingalemeasures. The following result was given in R�uschendorf(1984). 3



Theorem 2.2 (i) Let Q� 2 K satisfy f(Q�jjP ) < 1. Then Q� is the f-projection of P on K if and only ifZ f 0(dQ�dP )(dQ� � dQ) � 0 for all Q 2 K with f(QjjP ) <1:(ii) Let Q� 2 KF satisfy f(Q�jjP ) < 1 and f 0(dQ�dP ) 2 L1(Q�). If Q� is thef-projection on KF , thenf 0(dQ�dP ) 2 L1(F;Q�), the closure of F in L1(Q�):(iii) Let Q� 2 KF satisfy f(Q�jjP ) < 1. If f 0(dQ�dP ) 2 F , then Q� is thef-projection on KF .Remarks. (1) In Theorem 5 in R�uschendorf (1984) the assumption f 0(dQ�dP ) 2L1(Q�) was also stated for part (i) but was not used for the proof of this part.(2) For every Q 2 K with f(QjjP ) <1 R f 0(dQ�dP )(dQ� dQ�) coincides with thedirectional derivative of the function f(�jjP ) (see Vajda (1989), Lemma 9.31.i)).Hence the condition in Theorem 2.2 (i) can be understood as a condition on thedirectional derivative in Q�.(3) Under some additional growth conditions on f (see Liese and Vajda (1987))one gets the following equivalence for a measure Q� with f(Q�jjP ) <1:Q� is the f-projection of P on K if and only if f 0(dQ�dP ) 2 L1(Q) andEQ�f 0(dQ�dP ) � EQf 0(dQ�dP ) for all Q 2 Kf , where Kf := fQ 2 K : f(QjjP ) <1g.(4) Theorem 2.2 (ii) is a generalization of a theorem of Csisz�ar (1975) on theentropy distance. This result was applied in recent papers on mathematical �-nance for the characterization of minimal relative entropy martingale measuresby Frittelli (2000), Grandits and Rheinl�ander (1999) and Rheinl�ander (1999).Frittelli (2000) studied the minimal entropy martingale measure, which corre-sponds to f(x) = x log(x). He showed that in this case the f-projection of P onK is necessarily equivalent to P if there is a measure Q 2 K with Q � P andf(QjjP ) <1. Based on Theorem 2.2 (i) this result can be extended to generalf-projections.Corollary 2.3 Let f 0(0) = �1. Assume the existence of a measure Q 2 K suchthat Q � P and f(QjjP ) <1. If Q� is the f-projection of P , then Q� � P .Proof. Suppose Q� is not equivalent to P , i.e., P (dQ�dP = 0) > 0. Because Q � Pthis implies Q(dQ�dP = 0) > 0. Since f 0(0) = �1 this leads to a contradiction tothe necessary condition on a f-projection of Theorem 2.2 (i). �4



3 Characterization of the minimal distance mar-tingale measureIn the following we apply Theorem 2.2 to characterize f-projections on the setof martingale measures. Our mathematical framework is as follows. (
; F ,(Ft)0�t�T , P ) is a �ltered probability space in the sense of Jacod and Shiryaev(1987), De�nition I.1.2, where F = FT . Securities 0; : : : ; d are modeled by theirprice process S := (S0; : : : ; Sd). We assume that S is a Rd+1-valued semimartin-gale with deterministic S0. Security 0 serves as a numeraire and hence we mayassume without loss of generality S0 � 1. Vector stochastic integrals are writtenas R t0 'sdSs = ' �St. (For the de�nition of a vector stochastic integral, see Jacod(1980).)LetM (Mloc) be the set of P -absolutely continuous (local) martingale measuresandMe (Meloc) the subset ofM (Mloc) consisting of probabilitymeasures whichare equivalent to P . If in some context of the paper we consider M as well asMloc, then we use the notationM(loc).We de�neG : = f' � ST : 'i = Hi1]si;ti]; si < ti;Hi bounded Fsi-measurableg[f1B : P (B) = 0gand Gloc : = f' � ST : 'i = Hi1]si;ti]1[0;bT i]; si < ti;Hi bounded Fsi-measurable; bT i 2 ig [ f1B : P (B) = 0gwith i : = f bT i stopping time; (Si)bT i is boundedg:For a Rd-valued local martingale N Jacod (1980) de�ned the class L1loc(N ) ofpredictable integrands. For Q 2 Mloc we denote by L1loc(S;Q) the class L1loc(S)with respect to Q.Theorem 3.1 Let Q� 2 M satisfy f(Q�jjP ) < 1 and f 0(dQ�dP ) 2 L1(Q�). IfQ� is the f-projection of P on M, thenf 0(dQ�dP ) = c+ Z T0 'sdSs Q�-a.s. (3.1)for some process ' 2 L1loc(S;Q�) such that R �0 'sdSs is a martingale under Q�.Proof. We have the following characterization ofM as a moment familyM = fQ prob. measure on (
;F) : G � L1(Q) and EQg = 0 8g 2 Gg:Let F be the vector space generated by 1 and G. Theorem 2.2 (ii) yields:f 0(dQ�dP ) = � Q�-a.s.5



for some � in L1(F;Q�), the L1(Q�)-closure of F .By a theorem of Yor (1978, Corollary 2.5.2) (for a multidimensional version seeDelbaen and Schachermayer (1999, Theorem 1.6)) on the closedness of stochasticintegrals L1(G;Q�) is contained in f' �ST : ' 2 L1loc(S;Q�); such that ' �S is aQ�-martingaleg. According to Jacod (1979), Proposition 1.1, this result is validwithout the assumption of a complete �ltration. Since F is generated by 1 andG we get the characterization (3.1) (see for example Schaefer (1971, Proposition3.3)). �The following theorem is a variant of Theorem 3.1. It shows that the neces-sary condition in Theorem 3.1 is also valid for the set of local martingalemeasuresunder the additional assumption that the price process is locally bounded. Forthe case of the relative entropy it was independently shown by Grandits andRheinl�ander (1999).Theorem 3.2 Let S be locally bounded. Let Q� 2 Mloc satisfy f(Q�jjP ) < 1and f 0(dQ�dP ) 2 L1(Q�). If Q� is the f-projection of P on Mloc, thenf 0(dQ�dP ) = c+ Z T0 'sdSs Q�-a.s. (3.2)for some process ' 2 L1loc(S;Q�) such that R �0 'sdSs is a martingale under Q�.Proof. We have the following characterization ofMloc as a moment familyMloc = fQ prob. measure on (
;F) : Gloc � L1(Q) and EQg = 0 8g 2 Glocg:Therefore, we can follow the proof of Theorem 3.1. �Remarks. (1) If Q� � P and additionally �f 0(dQ�dP ) is bounded from belowthen the attainability of f 0(dQ�dP ) as a stochastic integral may also be derivedfrom Theorem 2.2 (i) and a martingale representation result of Jacka (1992),Theorem 3.4, and Ansel and Stricker (1994), Theorem 3.2.(2) If S is (locally) bounded thenM(loc) is closed with respect to the variationaldistance. This can be veri�ed by the characterization of M(loc) with the helpof G(loc). If moreover limx!1 f(x)x = 1 then there exists a f-projection of P onM(loc) (see Liese and Vajda (1987), Proposition 8.5). This condition on f is inparticular ful�lled in the case of the relative entropy.In the following we give su�cient conditions for a f-projection of P on M(loc).The �rst one is also considered in the case of the relative entropy in Frittelli(2000) and Rheinl�ander (1999).Proposition 3.3 Let Q� 2 M(loc) such that f(Q�jjP ) <1 andf 0(dQ�dP ) = c + Z T0 'sdSs P -a.s. (3.3)for R T0 'sdSs 2 G(loc). Then Q� is the f-projection of P on M(loc).6



Proof. See Theorem 2.2 (iii). �The condition in Proposition 3.3 is not satisfactory. Usually the transform ofthe density f 0(dQ�dP ) cannot be represented as elementary stochastic integral (seealso the discussion in Rheinl�ander (1999)).From Theorem 2.2 (i) one can derive a more general su�cient condition forf-projections of P . This extension allows us to determine minimal distancemartingale measures with respect to several classical distances explicitly in Sec-tion 6. We denote by L(S) the set of predictable, S-integrable processes withrespect to P (see Jacod (1980)).Theorem 3.4 Let Q� 2 M(loc) with f(Q�jjP ) < 1 such that for a predictableprocess ' 2 L(S) f 0(dQ�dP ) = c+ Z T0 'sdSs P -a.s.;� Z �0 'sdSs is bounded from below P -a.s.;EQ�(Z T0 'sdSs) = 0:Then Q� is the f-projection of P on M(loc).Proof. From Jacod (1979), Proposition 7.26.b, one gets that ' is also S-integrablewith respect to any Q 2Mloc in dimension d = 1. Using Proposition 3 in Jacod(1980) the proof of this result can be extended to dimension d � 1. Hence byAnsel and Stricker (1994), Corollaire 3.5, �' � S is a Q-local martingale andhence a Q-supermartingale for any Q 2Mloc. Therefore,EQf 0(dQ�dP ) = c+EQ(' � ST ))� EQ�f 0(dQ�dP ):Now the result follows from Theorem 2.2 (i). �If the set of martingale measures is restricted a priori to the class MHq :=fQ 2 M : Si 2 Hq(Q) for i 2 f1; : : : ; dgg for some q 2 [1;1), where Hq(Q) con-sists of all martingalesM such that [M;M ] 121 2 Lq(Q) (for further informationsabout the Hq-spaces see for example Jacod (1979)), then the following su�cientcondition for a f-projection of P onMHq allows a larger class of integrands fora su�cient criterion in comparison to Proposition 3.3.Theorem 3.5 Let Q� 2MHq with f(Q�jjP ) <1 such that for a bounded andpredictable process 'f 0(dQ�dP ) = c+ Z T0 'sdSs P -a.s.:Then Q� is the f-projection of P on MHq .7



Proof. Let Q 2 MHq . Since Si 2 Hq(Q) we have that 'i 2 Lq(Si) and hence(see Jacod (1979) , Theorem 4.60) ' � S 2 Hq(Q). Now the result follows fromTheorem 2.2 (i). �4 Minimal distance and minimax measuresAgain (
; F , P ) is a probability space and K denotes a convex set of probabilitymeasures on (
;F) dominated by P . K may be thought of as a subclass of theclass of all absolutely continuous local martingale measures.A utility function u:R! R[f�1g is assumed to be strictly increasing, strictlyconcave, continuously di�erentiable in dom(u) := fx 2 R j u(x) > �1g and tosatisfy u0(1) = limx!1u0(x) = 0; (4.1)u0(�x) = limx#�x u0(x) =1 (4.2)for �x := inffx 2 R j u(x) > �1g. This implies either dom(u) = (�x;1) ordom(u) = [�x;1).We denote by I := (u0)�1. Because of assumption (4.1) we have I(0) = 1.The convex conjugate function of u, u� : R+ ! R, is de�ned by u�(y) :=supx2Rfu(x)� xyg = u(I(y)) � yI(y).In the following we introduce minimax measures. In the case where K is theset of equivalent martingale measures they were �rst introduced in a strongerform in He and Pearson (1991 a, b). Recently they were studied in anothermodi�ed form by Bellini and Frittelli (1997, 1998) and in a �nite market settingby Kallsen (1998). The minimax martingale measure has an economic interpre-tation. It produces prices which are least favourable for an investor with a givenutility pro�le, i.e., the maximal expected utility with respect to prices basedon a martingale measure is minimal. For a brief discussion of the economicalsigni�cance of the minimax martingale measure see He and Pearson (1991b).For Q 2 K and x > �x de�neUQ(x) := supfEu(Y ) : Y 2 L1(Q); EQY � x;Eu(Y )� <1g: (4.3)The following lemma gives a well-known representation of UQ(x).Lemma 4.1 Let Q 2 K and EQ(I(�dQdP )) <1 8� > 0. Then(i) UQ(x) = inf�>0fE(u�(�dQdP )) + �xg.(ii) There is a unique solution for � in the equation EQ(I(�dQdP )) = x, denotedas �Q(x) 2 (0;1), and UQ(x) = E[u(I(�Q(x)dQdP ))].8



Proof. Let Y 2 L1(Q) with EQY � x and Eu(Y )� < 1. Then we have for� > 0: Eu(Y ) � Eu(Y ) + �(x� EQY )� Eu�(�dQdP ) + �x= Eu(I(�dQdP )) + �(x� EQI(�dQdP )):The inequalities hold as equalities if and only if Y is given as I(�Q(x)dQdP ).Since we have EQ(I(�dQdP )) < 1 for all � > 0, one can conclude thatEQ(I(�dQdP )) is a continuous, monotonically decreasing function of � with valuesin (�x;1). This guarantees the existence of �Q(x). Finally one has to check thatE[u(I(�Q(x)dQdP ))]� <1. From the inequality u(x)� xy � u(I(y)) � yI(y) onegets that E[u(I(�dQdP ))� �dQdP I(�dQdP )]� <1. The inequality�u(I(�dQdP ))�� � �u(I(�dQdP ))� �dQdP I(�dQdP )�� + ��dQdP I(�dQdP )��implies that the condition E[u(I(�Q(x)dQdP ))]� <1 is ful�lled. �Remarks. (1) I(�Q(x)dQdP ) can be interpreted as optimal claimwhich is �nance-able under the pricing measure Q.(2) Notice that if for Q 2 K there exists � > 0 with Eu�(�dQdP ) < 1, thenUQ(x) < 1 for all x > �x. Moreover if for Q 2 K with UQ(x) <1 the assump-tion of Lemma 4.1 is ful�lled, then Eu�(�Q(x)dQdP ) <1.(3) For logx, xpp , 1 � e�x the corresponding convex conjugate functions are� logx � 1, �p�1p x pp�1 , 1 � x + x logx. Hence for u(x) = 1 � e�x the u�-divergence distance is the relative entropy, for u(x) = logx the reverse relativeentropy and for u(x) = �x�1 the Hellinger distance.De�nition 4.2 A measure Q� = Q�(x) 2 K is called minimax measure for xand K if it minimizes Q 7! UQ(x) over all Q 2 K, i.e.,UQ� (x) = U (x) := infQ2KUQ(x):Remark. In general the minimaxmeasure Q� will depend on x. Fortunately forthe standard utility functions like u(x) = xpp (p 2 (�1; 1) n f0g), u(x) = logxand u(x) = 1� e�px (p 2 (0;1)) the minimax measure is independent of x.Our weak notion of minimax measures allows to formulate a complete equiv-alence to minimal distance measures with respect to related f-divergence dis-tances. This is the reason why we did not use the stronger forms of this notionin He and Pearson (1991b) or Bellini and Frittelli (1998). Later on we will seethat under weak conditions the weak notion of a minimax measure coincides9



with the stronger notion in He and Pearson (1991b) and also with that of Belliniand Frittelli (1998).We assume throughout this section that9x > �x with U (x) <1; (4.4)EQI(�dQdP ) <1 8� > 0 8Q 2 K: (4.5)Remarks. (1) Assumption (4.5) is ful�lled for u(x) = logx. If for every Q 2K u�(QjjP ) < 1, then assumption (4.5) is also ful�lled for u(x) = xpp (p 2(�1; 1) n f0g) and u(x) = 1 � e�px (p 2 (0;1)). In these cases one couldsubstitute the set K by the convex subset fQ 2 K : u�(QjjP ) <1g.(2) Assumption (4.5) implies according Remark 2 after Lemma 4.1 thatfQ 2 K : UQ(x) <1g = fQ 2 K : 8� > 0 : u��(QjjP ) <1g:As usual we denote by @U (x) the subdi�erential of the function U at x. Iff(x) = u�(�0x), we denote the corresponding f-divergence by u��0(�jj�).Proposition 4.3 Let x > �x, �0 2 @U (x), �0 > 0. Then(i) U (x) = u��0(KjjP )+ �0x.(ii) If Q� 2 K is an u��0-projection of P on K, then Q� is a minimax measureand �0 = �Q� (x).(iii) If Q� 2 K is a minimax measure, then Q� is an u��Q� (x)-projection of Pon K, �Q� (x) 2 @U (x) and the following equation holdsUQ� (x) = infQ2KUQ(x) = supfEu(Y ) : supQ2K(x)EQY � xg;where K(x) := fQ 2 K : UQ(x) <1g.Proof. (i) From Lemma 4.1 we obtainU (x) = infQ2K inf�>0fEu�(�dQdP ) + �xg= inf�>0fu��(KjjP ) + �xg:De�ne H : (0;1) ! R[ f1g as H(�) := u��(KjjP ). According to Remark 2after Lemma 4.1 the assumptions (4.4), (4.5) guarantee, that there is a � > 0with H(�) <1. This implies that U (x) < 1 for every x 2 dom(u) = dom(U ).Hence we get H(�) <1 for every � > 0. In the following it is shown that H is a10



convex function. Let " > 0 and Q1; Q2 2 K, such that H(�1)+ " � Eu�(�1 dQ1dP )and H(�2) + " � Eu�(�2 dQ2dP ). Then we haveH(�1) + (1� )H(�2) + 2" � Eu�(�1 dQ1dP ) + (1 � )Eu�(�2 dQ2dP )� Eu�(�1 dQ1dP + (1� )�2 dQ2dP )� infQ2KEu�((�1 + (1� )�2)dQdP )= H(�1 + (1� )�2):The second inequality holds because u� is convex and the last inequality holdsbecause �1�1+(1�)�2 dQ1dP + (1�)�2�1+(1�)�2 dQ2dP 2 K. By Rockafellar (1970), Theorem23.5, inf�>0fH(�)+�xg achieves its in�mum in � = �0 if and only if �x 2 @H(�0).By Rockafellar (1970), Theorem 7.4 and Corollary 23.5.1, this is equivalent to�0 2 @U (x).(ii) This follows from Lemma 4.1.(iii) The �rst statement follows from Lemma 4.1. According to Remark 2 afterassumption (4.5) we havefQ 2 K : UQ(x) <1g = fQ 2 K : u��Q�(x) (QjjP ) <1gand hence the equation follows from Theorem 2.2 (i) and Lemma 4.1. �Corollary 4.4 Assume that the hypotheses of Proposition 4.3 hold and more-over U is di�erentiable in x. Then we have the following equivalence: Q� is aminimax measure if and only if Q� is the u��0-projection, where �0 = rU (x).Since U (x) typically is not known explicitly it is of interest to be able to deter-mine �0. In Proposition 4.7 we will address the question �0 2 @U (x). Noticethat this problem vanishes for the standard utility functions like u(x) = xpp(p 2 (�1; 1) n f0g), u(x) = logx and u(x) = 1 � e�px (p 2 (0;1)). In thesecases the minimax measure does not depend on x respectively the u��-projectiondoes not depend on �.Proposition 4.5 Assume that �x = 0 and u is bounded from above. Then U isdi�erentiable in every x > 0.Proof. According to Rockafellar (1970), Theorem 26.3, it is su�cient to provethat the function H(�) = u��(KjjP ) is strictly convex.De�ne �K as the closure of K with respect to �(ba; L1). For any � > 0 thereis due to Lemma 3.3 of Kramkov and Schachermayer (1999) and the convexityof K a minimizing sequence fQng in K such that dQndP converges almost surely.Since according to Alaoglu's Theorem �K is weak-star compact the sequencefQng has a cluster point �Q 2 �K and hence dQndP ! d �QrdP , where �Qr denotesthe regular part for �Q 2 �K. By Lemma 3.4 of Kramkov and Schachermayer(1999) it follows that limn!1Eu�(�dQndP )� = Eu�(�d �QrdP )�. Since �x = 0 and u is11



bounded from above, it follows that u� is bounded from above. The theorem ofdominated convergence implies that limn!1Eu�(�dQndP ) = Eu�(�d �QrdP ) and henceinfQ2KEu�(�dQdP ) = Eu�(�d �QrdP ).Let �1, �2 2 R+,  2 (0; 1). Due to the consideration above there are �Q1,�Q2 2 �K with H(�1) = Eu�(�1 d �Qr1dP ) and H(�2) = Eu�(�2 d �Qr2dP ). Therefore,H(�1) + (1� )H(�2) = Eu�(�1 d �Qr1dP ) + (1� )Eu�(�2 d �Qr2dP )> Eu�(�1 d �Qr1dP + (1� )�2 d �Qr2dP )� infQ2KEu�((�1 + (1� )�2)dQdP )= H(�1 + (1� )�2):The strict inequality holds, since u� is strictly convex and the inequality becauseof the convexity of the set K. Hence H is strictly convex and we are done. �The di�erentiability condition in Corollary 4.4 is ful�lled if for every � > 0there is a u��-projection. From Proposition 8.5 in Liese and Vajda (1987) onegets the following result which was already obtained - using di�erent methods -by Bellini and Frittelli (1998) (see also Schachermayer (1999)).Proposition 4.6 Assume that K is closed in the variational distance topologyand dom(u) = (�1;1). Then for every � > 0 there is a u��-projection of P onK.Proof. According to Liese and Vajda (1987), Proposition 8.5, it is su�cient tocheck whether limx!1 u�(�x)x =1. Since u�(�x) � u(�n� )+nx with u(�n� ) > �1it follows that limx!1 u�(�x)x � n for every n 2 N. �Using the su�cient conditions for projections in section 3 we now provide away to determine the parameter �0 2 @U (x) and, therefore, the f-divergencedistance related to a minimax measure.Proposition 4.7 Let Q� 2M (Mloc, MHq), � > 0 with u��(Q�jjP ) <1 suchthat for a S-integrable process 'I(�dQ�dP ) = x+ Z T0 'sdSs P -a.s.:Assume moreover that any of the su�cient conditions on a u��-projection ofProposition 3.3 or the Theorems 3.4 or 3.5 hold. Then Q� is the minimaxmeasure for x and � 2 @U (x).Remark. Notice that the conditions in Proposition 3.3 and in the Theorems3.4, 3.5 are formulated for (u��)0(x) = ��I(�x).12



Proof. In the following K stands for either M, Mloc or MHq . SinceEQ�I(�dQ�dP ) = x one gets from Lemma 4.1 that � = �Q�(x). As Q� is theu��-projection of P on K the condition of Theorem 2.2 is ful�lled. Hence for allmeasures Q 2 K satisfying u�(QjjP ) <1 one gets EQI(�dQ�dP ) � x and one canconclude that UQ� (x) = Eu((I(�dQ�dP )) � UQ(x). From assumption (4.5) onehas fQ 2 K : u��(QjjP ) < 1g = fQ 2 K : UQ(x) < 1g and it follows that Q�is a minimax measure for x and K. By Proposition 4.3 one can conclude that� = �Q� (x) 2 @U (x). �5 Relationship to portfolio optimizationIn this section we point out how the results of Section 3 and 4 are related toportfolio optimization. We assume that assumptions (4.4) and (4.5) hold forK =M (Mloc) and that �x > �1.We call a predictable S-integrable Rd+1-valued process ' an admissible strategyifPdi=0 'itSit = x+ R t0 'dS for any t 2 [0; T ] and R �0 'dS is bounded from below.The set of admissible strategies is denoted by A. We say that b' 2 A is anoptimal portfolio if it maximizes ' 7! Eu(x + R T0 'dS) over all ' 2 A. Noticethat for �x = �1 the optimal portfolio typically is not bounded from below andhence not admissible. Therefore, in this case one needs to consider a larger classof strategies (see Schachermayer (1999) and Kallsen (2000)).With the results of the previous section one gets the following theorem.Theorem 5.1 Let Q� 2 Me(loc) such that u��0(Q�jjP ) < 1 and I(�0 dQ�dP ) 2L1(Q�), (S locally bounded), and let �0 2 @U (x). Then(i) The following statements are equivalent:(a) Q� is a minimal distance (local) martingale measure.(b) EQI(�0 dQ�dP ) � EQ�I(�0 dQ�dP ) 8Q 2 M(loc) with u��0(QjjP ) <1.(c) I(�0 dQ�dP ) = x + R T0 b'dS and R �0 b'dS is a Q�-martingale for someS-integrable, predictable process b'.(ii) If (c) holds then sup'2AEu(x+R T0 'dS) = Eu(x+R T0 b'dS) = UQ� (x) = U (x)and b' (with b'0t := x + R t0 b'dS � Pdi=1 b'itSt) is an admissible optimalportfolio-strategy.(iii) If (a) holds then Q� is a minimax (local) martingale measure.Proof. Notice that (u��)0(x) = ��I(�x).(i) Due to Theorems 3.1, 3.2, 2.2 it remains to show that (c)) (a).Since I : R! (�x;1) we obtain that x+ b' �ST � �x. As b' �S is a Q�-martingaleand Q� � P , b' �S is bounded from below P -a.s.. Therefore, by Theorem 3.4 Q�13



is the u��0-projection of P on M(loc).(ii) As pointed out in 1. for a process b' ful�lling condition (c) one can con-clude that b' � S is bounded from below P -a.s.. Due to the de�nition of b'0t andthe assumption that S0 equals 1 it holds that Pdi=0 b'itSit = x+ R t0 b'dS for anyt 2 [0; T ] and hence b' 2 A. By Ansel and Stricker (1994), Corollaire 3.5, ' � Sis a Q�-local martingale and hence a Q�-supermartingale for any ' 2 A. There-fore EQ�(x + ' � ST ) � x. Analogously to Lemma 4.1 (ii) one concludes thatsup'2AEu(x + R T0 'dS) = Eu(x + R T0 b'dS) and hence b' is an optimal portfoliostrategy.(iii) This follows from Proposition 4.3. �Theorem 5.1 together with Proposition 4.3 imply that for �x > �1 our weakform of the de�nition of a minimaxmartingale measure coincides with the strongnotion of a minimax martingale measure in the sense of He and Pearson (1991a, b) and also with that of Bellini and Frittelli (1998).Corollary 5.2 Let Q� be a minimax measure for x and M(loc).(i) If u�( bQjjP ) <1 for some measure bQ 2 Me(loc), then Q� � P .(ii) If Q� � P (and S is locally bounded), thenI(�Q� (x)dQ�dP ) = x+ Z T0 b'dS;where b' is a optimal portfolio strategy and moreoverU (x) = UQ� (x) = supfEu(Y ) : EQY � x for all Q 2Mlocg:Proof. (i) Proposition 4.3 shows that Q� is the u��Q� (x)-projection. Assumption(4.5) implies according to Remark 2 after Lemma 4.1 that u��Q� (x)( bQjjP ) <1.Since I(0) =1 it follows from Corollary 2.3 that Q� � P .(ii) By Proposition 4.3 and Theorem 5.1 one concludes that I(�Q� (x)dQ�dP ) =x + b' � ST where b' 2 A is a optimal portfolio strategy. This implies due toCorollaire 3.5 in Ansel and Stricker (1994) that b' �S is a Q-local martingale andhence a Q-supermartingale for any Q 2 Mloc. Therefore EQ(x + b' � ST ) � xand Lemma 4.1 implies thatU (x) = UQ� (x) = supfEu(Y ) : EQY � x for all Q 2Mlocg: �Remarks. (1) Theorem 5.1 is an extension of Theorem 9.4 in Karatzas et al.(1991) and Theorem 2 in He and Pearson (1991b) from continuous-time di�usionmodels to general incomplete semimartingale models.(2) Recently Kramkov and Schachermayer (1999) obtained a characterization of14



the optimal portfolio in general semimartingale models by a solution of a dualproblem which is related to the problem of �nding a minimal distance martin-gale measure. They considered a variational problem with respect to a properlyde�ned set of supermartingale measures, which contains the set of absolutelycontinuous martingale respectively local martingale measures. Kramkov andSchachermayer (1999) give an example (Example 5.1 bis in that paper) wherethe optimal portfolio cannot be characterized by a probability density dQ�dP as inTheorem 5.1 (i), but only by a measure with mass strictly less than 1.(3) Combining Theorem 2.2 (ii), (iv) in Kramkov and Schachermayer (1999)and Theorem 2.2 (iv) in Schachermayer (1999) one could also derive a versionof Theorem 3.2 for u��-projections.(4) Theorem 5.1 shows that if derivative prices are computed by a minimaxrespectively minimal distance martingale measure Q� then the optimal claim,i.e., the solution of problem (4.3) for Q = Q� can be duplicated by a portfoliostrategy b'. Hence no derivative trade increases the maximal expected utility incomparison to an optimal portfolio if derivative prices are computed by Q�. Wehave EPu(x+ b' � ST ) � EPu(Y )for all claims Y such that EQ�Y � x.Davis (1997) proposes as reasonable derivative price, the price such that anin�nitesimal long- or short-position of the derivative does not increase the ex-pected utility of terminal wealth in comparison to an optimal portfolio. Undercertain assumptions he gets that the fair price of a contingent claimH accordingto an initial endowment x is given byp(H) = E (u0 (x+ b' � ST )H)const ; (5.1)where b' is an optimal portfolio strategy. Thus according to the characteri-zation of Theorem 5.1 (i) the minimal distance martingale measure yields thefair derivative price suggested by Davis (1997) by taking the expectation of thederivativeH under this measure. Hence not only in�nitesimally but even generaltrading of the derivative does not increase the maximal expected utility.Corollary 5.3 Assume that the hypotheses of Theorem 5.1 hold. If Q� is theminimal distance martingale measure, then Davis' fair derivative price is givenby p(H) = EQ�H: (5.2)6 Examples6.1 Minimizing relative entropyThe distance corresponding to the utility-function u(x) = 1�e�px is the relativeentropy with f(x) = x logx. Necessary and su�cient conditions for the minimal15



entropy martingale measure have been given in Frittelli (2000) and Grandits andRheinl�ander (1999). In the setting of an exponential L�evy process the minimalentropy martingale measure has been determined by Miyahara (1999) and Chan(1999).Theorems 3.1-3.5 gives as necessary respectively su�cient condition for minimaldistance martingale measures a representation of the density of the formdQ�dP = 1�0 exp(�p(x+ ' � ST )): (6.1)The condition '�ST 2 L1(G(loc); Q�) is necessary, (see the Theorems 3.1, 3.2 andalso Grandits and Rheinl�ander (1999)), the su�cient condition ' � ST 2 G(loc)has been given in Frittelli (2000). Grandits and Rheinl�ander (1999) prove thatdPdQ� 2 L"(P ) for an " > 0 and '�S 2 BMO(Q�) is a su�cient criterion. Theorem3.4 gives a further quite general su�cient condition which can be checked in oursubsequent examples. If the stochastic integral in (6.1) is bounded from belowP -a.s. and is a Q�-martingale then Q� is the minimal entropy (local) martingalemeasure and ' is an optimal portfolio strategy. In general the question, whetherthe process ' � S is bounded from below is a delicate point. For �nite statemarkets this problem vanishes.Suppose that the positive price process S = (S1; : : : ; Sd) is of the formSi = Si0E (Xi); (6.2)where X = (X1; : : : ; Xd) is a Rd-valued L�evy process and E is the stochasticexponential. By LemmaA.8 in Goll and Kallsen (2000), these processes coincidewith those of the form Si = Si0 exp( ~Xi) for Rd-valued L�evy processes ~X . Inthe last couple of years exponential L�evy processes have become popular forsecurities models, since they are mathematically tractable and provide a good�t to real data (cf. Eberlein and Keller (1995), Eberlein et al. (1998), Madanand Senata (1990), Barndor�-Nielsen (1998)). In this setting one can derive acandidate for the local martingale measure minimizing the relative entropy fromresults in Kallsen (2000), who studies the corresponding portfolio optimizationproblem.Assume (b; c; F ) to be the characteristic triplet of X relative to some truncationfunction h : Rd 7! Rd in the sense of Jacod and Shiryaev (1987). Assume thatthere exists some  2 Rd with the following properties:1. R jxe�>x � h(x))jF (dx) <1,2. b� c + Z �xe�>x � h(x)�F (dx) = 0: (6.3)Let 'it := iSit� for i = 1; : : : ; d; '0t := x+ Z t0 'sdSs � dXi=1 'itSit16



for t 2 (0; T ].De�ne Zt =E �� >Xcs + (e�>x � 1) � (�X � �)s�t .Corollary 6.1 The measure Q� de�ned by dQ�dP = ZT is an equivalent localmartingale measure. If  � X is bounded from below, then Q� minimizes therelative entropy between P and Mloc.Proof. Theorem 3.3 in Kallsen (2000) shows that Z as de�ned above is a mar-tingale such that SiZ is a local martingale with respect to P for i 2 f1; : : : ; dg.Moreover the density ZT = dQ�dP of Q� with respect to P has a representation asin (6.1) with 'iT := iSit� . Furthermore, we have EQ�(' � ST ) = 0, which impliesthat the relative entropy between Q� and P is �nite, i.e., EQ� log(dQ�dP ) < 1.If the process ' � S =  �X is bounded from below, then one can conclude byTheorem 3.4 that Q� minimizes the relative entropy between P and Mloc. �Remarks. (1) Under the measure Q� as de�ned above X is again a L�evyprocess (see Kallsen (2000)).(2) Equation (6.3) is also part of the condition given in Chan (1999) and Miya-hara (1999).(3) The condition that  � X = ' � S is bounded from below is not ful�lled ingeneral. In connection with portfolio optimization this question is discussed inSchachermayer (1999) and Kallsen (2000).(4) Corollary 6.1 extends to exponential L�evy processes of the form Si =Si0 exp(Xi) using Lemma A.8 in Goll and Kallsen (2000), which shows thatthese processes coincide with those of the form (6.2).6.2 Minimizing the reverse relative entropyIn this section we consider the reverse relative entropy, i.e., the f-divergence dis-tance for f(x) = � logx, which corresponds to the logarithmic utility functionu(x) = logx.Assume that the characteristics (B;C; �) of the Rd-valued semimartingale(S1; : : : ; Sd) relative to some �xed truncation function h : Rd ! Rd (in thesense of Jacod (1979), Jacod and Shiryaev (1987)) are given in the formB = Z �0 btdAt; C = Z �0 ctdAt; � = A 
 F; (6.4)where A 2A +loc is a predictable process, b is a predictable Rd-valued process, cis a predictable Rd�d-valued process whose values are non-negative, symmetricmatrices, and F is a transition kernel from (
�R+;P) into (Rd;Bd).Assume that there exists a Rd-valued, S-integrable process H with the followingproperties:1. 1 +H>t x > 0 for (A
 F )-almost all (t; x) 2 [0; T ]�Rd,17



2. R j x1+H>t x � h(x))jFt(dx) <1 (P 
A)-almost everywhere on 
� [0; T ],3. bt � ctHt + Z � x1 +H>t x � h(x)�Ft(dx) = 0 (6.5)(P 
A)-almost everywhere on 
� [0; T ].Let'it := xHitE �Z �0 HsdSs�t� for i = 1; : : : ; d; '0t := x+ Z t0 'sdSs � dXi=1 'itSitfor t 2 (0; T ].Goll and Kallsen (2000) show that ' as de�ned above is an optimal portfoliostrategy for the logarithmic utility maximization problem. Based on this paperwe get from Theorem 3.4 a characterization of the local martingale measureminimizing the reverse relative entropy.Corollary 6.2 If Zt :=E ��H �Scs+( 11+H>x�1)�(�S��)s�t is a martingale,then the corresponding measure Q� is an equivalent local martingale measure andit minimizes the reverse relative entropy.Proof. Theorem 3.1 in Goll and Kallsen (2000) shows that Zt is a positive localmartingale, such that SiZ is a local martingale for i 2 f1; : : : ; dg and xZT =x+' �ST , where ' is an admissible portfolio-strategy. If Z is even a martingale,then ZT is the density of an equivalent local martingale measure Q�. For Q� wehave E(� log(dQ�dP )) = E log( 1ZT ) = E(log(x + ' � ST ))� log(x):From Lemma 4.1 it follows thatE log(x+ ' � ST ) � E(� log(dQdP )) + xfor all measures Q 2 Mloc. The last inequality shows that if Q� has in�nitereverse relative entropy, then also all other measures Q 2Mloc. Hence it followsdue to EQ�(x + 'ST ) = x from Theorem 3.4 that Q� minimizes the reverserelative entropy. �Remark. In the case of a continuous price process S equation (6.5) simpli�esconsiderably and the minimal distance martingale measure Q� is given by theminimal martingale measure. In this case the result is due to Schweizer (1999).18



6.3 Derivative pricing by Esscher-transformsAssume that the price process S = (St)t�T is generated by some L�evy processX = (Xt)t�T with X0 = 0, in the sense that St = eXt . Let M be the momentgenerating function of X with M (u; t) = M (u)t = EeuXt . M is assumed toexist for juj < C for some constant C > 0. By means of Esscher transforms onede�nes a set of measures fQ� : j�j < Cg by dQ�dP = e�XTM(�)T . If b� is a solution of0 = logM (� + 1)M (�) ; (6.6)then Qb� is an equivalent martingale measure (see Eberlein and Keller (1995) andShiryaev (1999)).Let u be the utility-function given by u(x) = xpp ; p 2 (�1; 1) n f0g. Thencondition (c) of Theorem 5.1 (i) becomesdQ�dP = (x+ b' � ST )p�1�0 and b' � S is a Q�-martingale:Hence Qb� ful�lls condition (c) of Theorem 5.1 (i) respectively the assumption ofTheorem 3.3 for bp = b� + 1 and b' = const. Thus we obtain the following result.Corollary 6.3 In the model of an exponential L�evy process the Esscher trans-form Qb� is a minimal distance martingale measure for f(x) = � bp�1bp x bpbp�1 , if b�solves (6.6) and bp = b� + 1 < 1. Moreover Qb� is a minimax martingale measurefor the power utility function xbpbp .Derivative pricing by the Esscher transform for exponential L�evy processes wasproposed and studied in Eberlein and Keller (1995). Corollary 6.3 shows thatthe martingale measure obtained by the Esscher transform corresponds to a spe-ci�c power utility function u(x) = xbpbp , where the parameter bp is determined insuch a way that const � eXT is the value of the optimal portfolio at time T . Thusthe optimal portfolio strategy constantly invests the whole wealth into the riskyasset (see Section 6.4 for the solution for general power utility functions).Remarks. (1) Gerber and Shiu (1994) noted that the derivative price computedby the Esscher transform corresponds to the derivative price suggested by Davis(1997) (see (5.1)) for the power utility function as speci�ed in Corollary 6.3.(2) Chan (1999) studies a generalized Esscher transform for geometric L�evy pro-cesses dSt = �tSt�dXt + btSt�dt. He shows that for this model the martingalemeasure constructed via the generalized Esscher transform minimizes the rel-ative entropy. This connection can be seen by the following consideration. Ifwe have constant coe�cients �; b, then 1�St� dSt � b�dt = dXt and the Esschertransform dQ�dP = e�XTM(�)T can be written as dQ�dP = e�'�SE(e�'�S) , where 't = � ��St� .Hence the density of the Esscher transform has a representation as in equation(6.1) which corresponds to the measure minimizing the relative entropy.19



6.4 Distance minimization for power utility functionsIn the following we determine the local martingale measure minimizing the f-divergence distance for f(x) = �p�1p x pp�1 (p 2 (�1; 1) n f0g), if the discountedprice process S = (S1; : : : ; Sd) is of the formSi = Si0E (Xi) (6.7)for a Rd-valued L�evy-process X = (X1; : : : ; Xd). This problem correspondsaccording to Theorem 5.1 to the problem of portfolio optimization with respectto u(x) = xpp (u� = f).Assume (b; c; F ) to be the characteristic triplet of X relative to some truncationfunction h : Rd 7! Rd. Assume that there exists some  2 Rd with the followingproperties:1. F (fx 2 Rd : 1 + >x � 0g) = 0,2. R j x(1+>x)1�p � h(x)jF (dx) <1,3. b+ (p� 1)c + Z � x(1 + >x)1�p � h(x)�F (dx) = 0: (6.8)Let 'it := iSit� Vt� for i = 1; : : : ; d; '0t := x+ Z t0 'sdSs � dXi=1 'itSitfor t 2 (0; T ], where V is the wealth process with respect to '.Kallsen (2000) shows that ' as de�ned above is an optimal portfolio strategyfor the utility maximization problem with respect to u(x) = xpp . Based onthis paper we get from Theorem 3.4 a characterization of the local martingalemeasure minimizing the f-divergence distance for f(x) = �p�1p x pp�1 .De�ne Zt =E �(p� 1)>Xcs + ((1 + >x)p�1 � 1) � (�X � �)s�t.Corollary 6.4 The measure Q� de�ned by dQ�dP = ZT is an equivalent lo-cal martingale measure and it minimizes the f-divergence distance for f(x) =�p�1p x pp�1 .Proof. Theorem 3.2 in Kallsen (2000) shows that Z is a positive martingale,such that SiZ is a local martingale with respect to P for i 2 f1; : : : ; dg. More-over the density ZT = dQ�dP of Q� with respect to P has the representationZT = (x+'�ST )p�1E(x+'�ST )p�1 with 'iT := iSit� Vt� . Furthermore we have EQ�(' � ST ) = 0,which implies that f(Q�jjP ) < 1. Since it turns out that the process ' � S isbounded from below the result follows from Theorem 3.4. �Remarks. (1) Under the measure Q� as de�ned above X is again a L�evyprocess (see Kallsen (2000)). 20



(2) For p = �1 the measure Q� minimizes the Hellinger distance. This resulthas also been obtained independently in Grandits (1999).(3) Some related results for the f-divergence distances for f(x) = �p�1p x pp�1with p < 0 have been obtained independently in Xia and Yan (2000).(4) Corollary 6.4 extends to exponential L�evy processes of the form Si =Si0 exp(Xi) using Lemma A.8 in Goll and Kallsen (2000), which shows thatthese processes coincide with those of the form (6.7).7 Utility-based hedgingIn an incomplete market an investor may apply superhedging to eliminate the�nancial risk of a contingent claim. But this is often quite expensive. To super-hedge a European call option an investor may be forced to buy the underlyingasset in t=0 (see Eberlein and Jacod (1997)).Therefore, it is reasonable to ask for hedging strategies which require less cap-ital than superhedging strategies. Recently F�ollmer and Leukert (1999) pro-posed hedging strategies maximizing the probability that the hedge is successful.F�ollmer and Leukert (2000) also studied further hedging criteria like minimizingthe shortfall risk, which is de�ned as the expected shortfall weighted by someloss function or maximizing expected utility with respect to a state-dependentutility function. In the following we show how our approach to portfolio opti-mization can be extended to utility based hedging, i.e., we study the followingproblem sup'2AEu(x+ Z T0 'dS �H); (7.1)where H is a non-negative FT -measurable random variable modeling the contin-gent claim in question. In problem (7.1) risk-aversion of the investor is describedby the utility function u.If �x := inffx 2 R j u(x) > �1g � 0 then criterion (7.1) only allows superhedg-ing strategies. Since we want to allow more general strategies we assume�1 < �x < 0 and x� �x > supQ2Mloc EQH: (7.2)It is known that supQ2Meloc EQH corresponds to the minimal cost for a superhedgingstrategy (F�ollmer and Kabanov (1998)).We de�ne UH(x) := infQ2Mloc supEQY�xEu(Y �H):In the followingwe assume that UH(x) <1 and that assumption (4.5) is ful�lledfor Mloc. Moreover we assume that S is locally bounded.21



Instead of problem (7.1) we consider the following dual problem for �0 2 @UH (x):infQ2Mloc E(u�(�0 dQdP )� �0 dQdP H): (D)Then one gets the following duality result for utility based hedging.Theorem 7.1 Let �0 2 @UH(x) and let Q� 2Meloc, such that u��0(Q�jjP ) <1and I(�0 dQ�dP ) +H 2 L1(Q�). Then(i) The following statements are equivalent:(a) Q� solves problem (D).(b) EQ(I(�0 dQ�dP ) + H) � EQ� (I(�0 dQ�dP ) + H) 8Q 2 Mloc withE(u�(�0 dQdP )� �0 dQdPH) <1.(c) I(�0 dQ�dP )+H = x+ R T0 b'dS and R �0 b'dS is a Q�-martingale for someS-integrable, predictable process b'.(ii) If (c) holds then b' (with b'0t := x + R t0 b'dS �Pdi=1 b'itSt) is an optimalhedging strategy.For the proof of Theorem 7.1 one needs the analogous result to Theorem 2.2 (i).Proposition 7.2 Let Q� 2 Mloc satisfy u��0(Q�jjP ) < 1 and I(�0 dQ�dP ) 2L1(Q�). Then Q� solves (D) if and only ifEQ(I(�0 dQ�dP ) +H) � EQ� (I(�0 dQ�dP ) +H) 8Q 2 Mlocwith E(u�(�0 dQdP )� �0 dQdPH) <1.Proof. For Q 2 Mloc with E(u�(�0 dQdP ) � �0 dQdPH) <1 and � 2 [0; 1] de�neh� := 1�� 1(u�(�0(�dQ�dP + (1� �)dQdP )) � �0H(�dQ�dP + (1� �)dQdP )�u�(�0 dQ�dP ) + �0dQ�dP H))= ��0H(dQ�dP � dQdP ) + 1�� 1(u�(�0(�dQ�dP + (1� �)dQdP ))�u�(�0 dQ�dP )):For � " 1, h� increases to �0H(dQdP � dQ�dP )+�0I(�0 dQ�dP )(dQdP � dQ�dP ) and, therefore,by the monotone convergence theorem, usingh� � (u�(�0 dQ�dP )� �0 dQ�dP H)� (u�(�0 dQdP ) � �0 dQdP H);R h�dP increases to R (�0H + �0I(�0 dQ�dP ))(dQ� dQ�).If Q� solves (D), then the left hand side is � 0 for each �, which implies, that22



also the limit on the right hand side is � 0. If conversely the right hand side is� 0, then by the nondecreasing property of h� we have thatZ h0dP = Z (u�(�0 dQ�dP ) � �0 dQ�dP H � u�(�0 dQdP ) � �0 dQdP H)dP� Z (lim�"1 h�)dP� 0: �Proof of Theorem 7.1. (i) Due to Proposition 7.2 it is su�cient to show (b), (c).(b)) (c): By R�uschendorf (1984), Proposition 1, we know that I(�0 dQ�dP )+H 2L1(F;Q�), the closure of F in L1(Q�). The representation of this closure inTheorem 3.2 yields that I(�0 dQ�dP )+H = c+ b' �ST for a S-integrable predictableprocess b'. Analogously to Proposition 4.3 one can show that if Q� 2 Mloc solves(D) thenUH(x) = supfEu(Y �H) : EQ�Y � x;Eu(Y �H)� <1g= Eu(I(�0 dQ�dP ))and EQ�(I(�0 dQ�dP )+H) = x. Since b' �S is a Q�-martingale it follows that c = xand I(�0 dQ�dP ) +H = x+ b' � ST .(c) ) (b): Since I : R! (�x;1) we obtain that x + b' � ST � �x. As b' � S isa Q�-martingale and Q� � P , b' � S is bounded from below P-a.s.. By Anseland Stricker (1994), Corollaire 3.5, b' � S is a Q-local martingale and hence aQ-supermartingale for any Q 2 Mloc. ThereforeEQ(I(dQ�dP ) +H) = x+ EQ(b' � ST )� x = EQ�(I(dQ�dP ) +H):(ii) As pointed out in (i) for a process b' ful�lling condition (c) one can concludethat b' � S is bounded from below P-a.s. and b' 2 A. Let ' 2 A be a admissiblestrategy, thenE(u(x+ ' � ST �H)) � E(u(x+ b' � ST �H)+u0(x + b' � ST �H)(' � ST � b' � ST ))= E(u(x+ b' � ST �H) + �0dQ�dP (' � ST � b' � ST ))� E(u(x+ b' � ST �H):The �rst inequality holds since u is concave, the equality holds becauseu0(x + R T0 b'dS � H) = �0 dQ�dP and the second inequality holds since ' � S isbounded from below and therefore EQ�(' � ST � b' � ST ) � 0 by Ansel and23
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