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Abstract

Virtualization has been one of the most potent forces reshaping the landscape of sys-

tems software in the last 10 years and has become ubiquitous in the realm of enterprise

compute infrastructure and in the emerging field of cloud computing. This presents

a variety of new opportunities when designing host based security architectures. We

present several paradigms for enhancing host security leveraging the new capabili-

ties afforded by virtualization. First, we present a virtualization based approach to

trusted computing. This allows multiple virtual hosts with different assurance levels

to run concurrently on the same platform using a novel “open box” and “closed box”

model that allows the virtualized platform to present the best properties of tradi-

tional open and closed platforms on a single physical platform. Next, we present

virtual machine introspection, an approach to enhancing the attack resistance intru-

sion detection and prevention systems by moving them “out of the box” i.e. out

of the virtual host they are monitoring and into a seperate protection domain where

they can inspect the host they are monitoring from a more protected vantage point.

Finally, we present overshadow data protection, an approach for providing a last line

of defense for application data even if the guest OS running an application has been

compromised. We accomplish this by presenting two views of virtual memory, an

encrypted view to the operating system and a plain text view to the application the

owning that memory. This approach more generally illustrates the mechanisms nec-

essary to introduce new orthogonal protection mechanisms into a Guest Operating

system from the virtualization layer while maintaining backwards compatibility with

existing operating systems and applications.
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Chapter 1

Introduction

In this thesis we explore three new paradigms for using virtualization to improve host

security. Our exploration is particularly timely given the resurgence of interest in

virtualization in the last decade that has propelled it from relative obscurity to its

present ubiquity in enterprise computing, software development, and more recently,

in the emerging field of cloud computing.

We begin by briefly reviewing the causes for this historical resurgence, and then

examining the key properties afforded by virtualization technology that make it such

a powerful enabling technology. We conclude our introduction by briefly summarizing

each of the three new host security paradigms that make up the central contribution

of this thesis.

At the end of the 1960s, the virtual machine monitor (VMM) came into be-

ing as a software- abstraction layer that partitions a hardware platform into one or

more virtual machines. Each of these virtual machines was sufficiently similar to

the underlying physical machine to run existing software unmodified. At the time,

general-purpose computing was the domain of large, expensive mainframe hardware,

and users found that VMMs provided a compelling way to multiplex scarce resources

among multiple applications. Thus, for a brief period, this technology flourished both

in industry and in academic research.

The 1980s and 1990s, brought modern multitasking operating systems and a si-

multaneous drop in hardware cost, which eroded the value of VMMs. As mainframes

1
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gave way to minicomputers and then PCs, VMMs disappeared to the extent that com-

puter architectures no longer provided the necessary hardware to implement them

efficiently. By the late 1980s, neither academics nor industry practitioners viewed

VMMs as much more than a historical curiosity.

The past decade seen a dramatic turn around in this trend as virtualization has

again been recognized as a timely solution to a wide range of pressing problems

brought on by the complexity of modern multi-tasking operating systems both indi-

vidually and when deployed at scale.

Ironically, the capabilities of modern operating systems and the drop in hardware

cost – the very combination that had obviated the use of VMMs during the 1980s

to caused the problems that fueled their revival. Less expensive hardware had led to

a proliferation of machines that were often underused and incurred significant space

and management overhead. And the increased functionality that had made operating

systems more capable had also made them fragile and vulnerable. To reduce the

effects of system crashes and breakins, system administrators again resorted to a

computing model with one application running per machine. This in turn increased

hardware requirements, imposing significant cost and management overhead. Moving

applications that once ran on many physical machines into virtual machines and

consolidating those virtual machines onto just a few physical platforms increased use

efficiency and reduced space and management costs. Thus, the VMMs ability to serve

as a means of multiplexing hardware this time in the name of server consolidation led

it to prominence.

Moving forward, a VMM will be less a vehicle for multitasking, as it was originally,

and more a vehicle for enhancing security, reliability and ease of management. In

many ways VMMs give operating system developers another opportunity to develop

functionality no longer practical in today’s complex and ossified operating systems,

where innovation moves at a geologic pace. Functions like migration and security

that have proved difficult to achieve in modern operating systems can often be better

supported, or significantly augmented at the VMM layer. In this context, VMMs pro-

vide a backward-capability path for deploying innovative operating system solutions,

while providing the ability to safely pull along the existing software base.
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1.0.1 Virtualization as an Enabling Technology

The VMM decouples the software from the hardware by forming a level of indirection

between the software running in the virtual machine (layer above the VMM) and

the hardware. This level of indirection lets the VMM exert tremendous control over

how guest operating systems (GuestOSs) operating systems running inside a virtual

machine uses hardware resources, and affords a variety of key properties that make

it a powerful tool for enabling innovation at the OS and architecture layer.

A VMM provides a compatible, uniform view of underlying hardware, making ma-

chines from different vendors with different I/O subsystems look the same, which

means that virtual machines can run on any available computer. Thus, instead of

worrying about individual machines with tightly coupled hardware and software de-

pendencies, administrators can view hardware simply as a pool of resources that can

run arbitrary services on demand. A related benefit of virtualization is OS indepen-

dence. The virtualization layer provides a unified layer for many complex management

tasks from individual machine backup, to security and monitoring. Tasks done at this

layer are often substantially less dependent (and sometimes totally independent), of

the semantics of the guest OS - reducing or eliminating concerns about supporting

different OSes, OS versions, etc.

Because the VMM also offers complete encapsulation of a virtual machines soft-

ware state, the VMM layer can map and remap virtual machines to available hardware

resources at will and even migrate virtual machines across machines. Load balancing

among a collection of machines thus becomes trivial, and there is a robust model for

dealing with hardware failures or for scaling systems. When a computer fails and must

go offline or when a new machine comes online, the VMM layer can simply remap

virtual machines accordingly. Virtual machines are also easy to replicate, which lets

administrators bring new services online as needed. Encapsulation also means that

administrators can suspend virtual machines and resume them at arbitrary times or

checkpoint them and roll them back to a previous execution state. With this general-

purpose undo capability, systems can easily recover from crashes or configuration er-

rors. Encapsulation also supports a very general mobility model, since users can copy

a suspended virtual machine over a network or store and transport it on removable
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media.

The VMM can also provide total mediation of all interactions between the virtual

machine and underlying hardware, thus allowing strong isolation between virtual ma-

chines and supporting the multiplexing of many virtual machines on a single hardware

platform. The VMM can then consolidate a collection of virtual machines with low

resources onto a single computer, thereby lowering hardware costs and space require-

ments. Strong isolation is also valuable for reliability and security. Applications that

previously ran together on one machine can now separate into different virtual ma-

chines. If one application crashes the operating system because of a bug, the other

applications are isolated from this fault and can continue running undisturbed. Total

mediation also allows the virtualization layer act as a reference monitor for hard-

ware access, supporting addition of new protection models and intrusion detection

capabilities.

1.0.2 Contributions

In this thesis we explore three major paradigms for employing the capabilities of

virtualization to improve host security. Each is embodied in a reference architecture

and prototype system that illustrates the unique capabilities and limitations of each

approach.

First, we present a flexible architecture for trusted computing, called Terra, that

allows applications with a wide range of security requirements to run simultaneously

on commodity hardware. Applications on Terra enjoy the semantics of running on a

separate, dedicated, tamper-resistant hardware platform, while retaining the ability to

run side-by-side with normal applications on a general-purpose computing platform.

Terra achieves this synthesis by use of a trusted virtual machine monitor (TVMM)

that partitions a tamper-resistant hardware platform into multiple, isolated virtual

machines (VM), providing the appearance of multiple boxes on a single, general-

purpose platform. To each VM, the TVMM provides the semantics of either an “open

box,” i.e. a general-purpose hardware platform like today’s PCs and workstations, or

a “closed box,” an opaque special-purpose platform that protects the privacy and
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integrity of its contents like today’s game consoles and cellular phones. The software

stack in each VM can be tailored from the hardware interface up to meet the security

requirements of its application(s). The hardware and TVMM can act as a trusted

party to allow closed-box VMs to cryptographically identify the software they run,

i.e. what is in the box, to remote parties. We explore the strengths and limitations of

this architecture by describing our prototype implementation and several applications

that we developed for it.

Next, we present an approach to intrusion detection called virtual machine intro-

spection that pulls traditional host based intrusion detection and prevention mech-

anisms out of the GuestOS and allows them to inspect the guest from the outside.

This approach finds inspiration in the difficult choice that traditional host and net-

work based intrusion detection and prevention systems for designers to make. If the

IDS resides on the host, it has an excellent view of what is happening in that host’s

software, but is highly susceptible to attack. On the other hand, if the IDS resides in

the network, it is more resistant to attack, but has a poor view of what is happening

inside the host, making it more susceptible to evasion. We present an architecture

that retains the visibility of a host-based IDS, but pulls the IDS outside of the host

for greater attack resistance. We achieve this through the use of a virtual machine

monitor. Using this approach allows us to isolate the IDS from the monitored host

but still retain excellent visibility into the host’s state. The VMM also offers us

the unique ability to completely mediate interactions between the host software and

the underlying hardware. We present a detailed study of our architecture, including

Livewire, a prototype implementation. We demonstrate Livewire by implementing a

suite of simple intrusion detection policies and using them to detect real attacks.

Finally, Application security is ultimately limited by to the assurance of operating

system running it, and other applications it is colocated with. We introduce a virtual-

machine-based system called Overshadow that protects the privacy and integrity of

application data, even in the event of a total OS compromise. Overshadow presents

an application with a normal view of its resources, but the OS with an encrypted

view. This allows the operating system to carry out the complex task of manag-

ing an application’s resources, without allowing it to read or modify them. Thus,
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Overshadow offers a last line of defense for application data. Overshadow builds

on multi-shadowing, a novel mechanism that presents different views of ”physical”

memory, depending on the context performing the access. This primitive offers an

additional dimension of protection beyond the hierarchical protection domains imple-

mented by traditional operating systems and processors. We present the design and

implementation of Overshadow and show how its new protection semantics can be

integrated with existing systems. Our design has been fully implemented and used

to protect a wide range of unmodified legacy applications running on an unmodi-

fied Linux operating system. We evaluate the performance of our implementation,

demonstrating that this approach is practical.



Chapter 2

Virtual Machine Based Trusted

Computing

2.1 Introduction

We present a flexible architecture for trusted computing, called Terra, that allows

applications with a wide range of security requirements to run simultaneously on

commodity hardware. Applications on Terra enjoy the semantics of running on a

separate, dedicated, tamper-resistant hardware platform, while retaining the ability to

run side-by-side with normal applications on a general-purpose computing platform.

Terra achieves this synthesis by use of a trusted virtual machine monitor (TVMM)

that partitions a tamper-resistant hardware platform into multiple, isolated virtual

machines (VM), providing the appearance of multiple boxes on a single, general-

purpose platform. To each VM, the TVMM provides the semantics of either an “open

box,” i.e. a general-purpose hardware platform like today’s PCs and workstations, or

a “closed box,” an opaque special-purpose platform that protects the privacy and

integrity of its contents like today’s game consoles and cellular phones. The software

stack in each VM can be tailored from the hardware interface up to meet the security

requirements of its application(s). The hardware and TVMM can act as a trusted

party to allow closed-box VMs to cryptographically identify the software they run,

i.e. what is in the box, to remote parties. We explore the strengths and limitations of

7
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this architecture by describing our prototype implementation and several applications

that we developed for it.

2.2 Trusted Computing: What and Why

Commodity computing systems have reached an impasse. There is an increasing need

to deploy systems with diverse security requirements in enterprise, government, and

consumer applications. However, current hardware and operating systems impose

fundamental limitations on the security these platforms can provide.

First, commodity operating systems are complex programs that often contain

millions of lines of code, thus they inherently offer low assurance. Building simple,

high-assurance applications on top of these operating systems is impossible because

applications ultimately depend on the operating system as part of their trusted com-

puting base.

Next, commodity operating systems poorly isolate applications from one another.

As a result, the compromise of almost any application on a platform often com-

promises the entire platform. Thus, applications with diverse security requirements

cannot be run concurrently, because the platform’s security level is reduced to that

of its most vulnerable application.

Further, current platforms provide only weak mechanisms for applications to au-

thenticate themselves to their peers. There is no complete and ubiquitous mechanism

for distributed applications to verify the identities of programs they interact with.

This makes building robust and secure distributed applications extremely difficult,

as remote peers must be assumed to be malicious. It also significantly limits the

threat models that can be addressed. For example, an online game server cannot tell

whether it is interacting with a game client that will play fairly or one which has been

subjected to tampering that will allow users to cheat.

Finally, current platforms provide no way to establish a trusted path between users

and applications. For example, an application for trading on financial markets has no

way of establishing if its inputs are coming from a human user or a malicious program.

Conversely, human users have no way of establishing whether they are interacting
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with a trusted financial application or with a malicious program impersonating that

application.

To address these problems, some systems resort to specialized closed platforms,

e.g. cellular phones, game consoles, and ATMs. Closed platforms give developers

complete control over the structure and complexity of the software stack, thus they

can tailor it to their security requirements. These platforms can provide hardware

tamper resistance to ensure that the platform’s software stack is not easily modified

to make it misbehave. Embedded cryptographic keys permit these systems to identify

their own software to remote systems, allowing them to make assumptions about the

software’s behavior. These capabilities allow closed platforms to offer higher assurance

and address a wider range of threat models than current general-purpose platforms.

The security benefits of starting from scratch on a “closed box” special-purpose

platform can be significant. However, for most applications these benefits do not out-

weigh the advantages of general-purpose open platforms that run many applications

including a huge body of existing code and that take advantage of commodity hard-

ware (CPU, storage, peripherals, etc.) that offers rich functionality and significant

economies of scale. In this work, we describe a software architecture that attempts

to resolve the conflict between these two approaches by supporting the capabilities of

closed platforms on general-purpose computing hardware through a combination of

hardware and operating system mechanisms.

Our architecture, called Terra, provides a simple and flexible programming model

that allows application designers to build secure applications in the same way they

would on a dedicated closed platform. At the same time, Terra supports today’s

operating systems and applications. Terra realizes this union with a trusted virtual

machine monitor (TVMM), that is, a high-assurance virtual machine monitor that

partitions a single tamper-resistant, general-purpose platform into multiple isolated

virtual machines. Using a TVMM, existing applications and operating systems can

each run in a standard virtual machine (“open-box VM”) that provides the semantics

of today’s open platforms. Applications can also run in their own closed-box virtual

machines (“closed-box VMs”) that provide the functionality of running on a dedi-

cated closed platform. The TVMM protects the privacy and integrity of a closed-box
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VM’s contents. Applications running inside a closed-box VM can tailor their soft-

ware stacks to their security requirements. Finally, the TVMM allows applications

to cryptographically authenticate the running software stack to remote parties in a

process called attestation.

Both open- and closed-box VMs provide a raw hardware interface that is practi-

cally identical to the underlying physical machine. Thus, VMs can run all existing

commodity software that would normally run on the hardware. Because a hardware-

level interface is provided, application designers can completely specify what software

runs inside a VM, allowing them to tailor an application’s software stack to its se-

curity, compatibility, and performance needs. Closed-box VMs are isolated from the

rest of the platform. Through hardware memory protection and cryptographic pro-

tection of storage, their contents are protected from observation and tampering by

the platform owner and malicious parties.

The next section presents the Terra architecture and describes the basic properties

of trusted virtual machine monitors, the mechanism that allows applications with

open-box and closed-box semantics to run side-by-side. It describes the process of

attestation that Terra uses to identify the contents of VMs to remote parties and

presents several models for user interaction with the TVMM. Section 2.4 describes

Terra’s local security model, Terra’s impact on application assurance, and how remote

parties can take advantage of Terra’s security model. In Section 2.5 we describe the

design of the Terra TVMM. Section 2.6 describes a prototype implementation of this

design and the implementation of closed-box applications that utilize our prototype.

These applications include a “cheat-resistant” closed-box version of the popular multi-

player game Quake and trusted access points (TAPs), a system of closed-box VMs

that can be used to regulate access to a private network at its endpoints. We discuss

related work in section 2.7.
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Figure 2.1: Terra Architecture. A trusted virtual machine monitor (TVMM)
isolates and protects independent virtual machines (VMs). Closed box VMs, shown
in gray, are protected from eavesdropping or modification by anyone but the remote
party who has supplied the box. Here, the SETI@Home client is in a closed box so
that its server can verify that it has not been modified to claim it has run checks that it
actually has not, and an online game is in another to deter cheating (see section 2.6.2
for more information). The TVMM can identify the contents of the closed box to
remote parties, allowing them to trust it. Also shown here are the management VM
and an open-box VM running a commodity operating system.
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2.3 Terra Architecture

At the heart of Terra is a virtual machine monitor (VMM). Like any VMM, Terra

virtualizes machine resources to allow many virtual machines (VMs) to run indepen-

dently and concurrently. Terra also provides additional security capabilities including

acting as a trusted party to authenticate the software running in a VM to remote

parties. Because of this property we refer to it as a “trusted VMM” (TVMM).

At a high level, the TVMM exports two VM abstractions. Open-box VMs pro-

vide the semantics of today’s open platforms. These can run commodity operating

systems and provide the appearance of today’s general-purpose platforms. Closed-

box VMs implement the semantics of a closed-box platform. Their content cannot

be inspected or manipulated by the platform owner. Thus, their content is secure,

neither inspectable nor modifiable by any but those who constructed it, who can

explicitly provide themselves access. Figure 2.1 depicts an instance of the Terra ar-

chitecture with an open-box VM, two closed-box VMs, and the management VM (to

be described later).

Terra provides a raw virtual machine as the development target for applications,

lending great flexibility to application designers. Applications can be designed from

the (virtual) hardware up, using the operating systems that best suit their security,

portability, and efficiency needs. Operating systems that run in VMs may be as simple

as a bootstrap loader plus application code or as complex as a commodity operating

system that runs only one application. Applications can completely tailor the OS

to their security needs. Instead of running single closed-box applications, a closed-

box VM might run a special trusted OS with a selection of applications designed

specifically for it, thus providing something similar to the NGSCB [20] model.

VMs on a single physical machine communicate with one another over virtualized

standard I/O interfaces such as NICs, serial ports, etc. The VMM can also multiplex

the display and input devices. Thus, from the user’s perspective, a closed-box VM

may take on the appearance of a normal application, a virtual network appliance, or

a virtual device (e.g. a USB device).

The responsibility for configuring how these VMs are granted storage and memory,
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connected, started, stopped, etc. is delegated to a special management VM. The

TVMM offers the management VM a basic interface to carry out these tasks. Where

the TVMM provides resource management mechanisms, the management VM decides

policy, providing a higher-level interface to users and other VMs.

2.3.1 The Trusted Virtual Machine Monitor

Terra’s architecture is based on a virtual machine monitor [51], a thin software layer

that allows multiple virtual machines to be multiplexed on a single physical machine.

The virtual machine abstraction that the VMM presents is similar enough to the

underlying architecture that programs and operating systems written for the physical

hardware can run unmodified on the virtual hardware. Terra takes advantage of the

following properties of traditional VMMs:

Isolation A VMM allows multiple applications to run in different virtual machines.

Each virtual machine runs in its own hardware protection domain, providing

strong isolation between virtual machines. Secure isolation is essential for pro-

viding the confidentiality and integrity required by closed-box VMs. Also, the

abstraction of separate physical machines provides an intuitive model for un-

derstanding the isolation properties of the platform.

Extensibility Any “one size fits all” approach to providing an operating system

for a trusted platform greatly limits a platform’s flexibility because it ties all

applications to one interface. If this interface is too complex, it compromises

the simplicity of the system, forcing many applications to deal with an unac-

ceptably low level of assurance. Conversely, if it is too simple, it compromises

the performance and functionality of the system, severely limiting the variety

of applications that can usefully take advantage of it.

Terra addresses this conflict by allowing application implementers to view a VM

as a dedicated hardware platform, allowing an application’s software stack to

be built from the (virtual) hardware up. This allows application designers to

select the OS that best addresses their requirements for security, compatibility,

and performance.



CHAPTER 2. VIRTUAL MACHINE BASED TRUSTED COMPUTING 14

For example, simple applications that require very high assurance (e.g. elec-

tronic voting) can use a very minimal OS layer that consists of little more than

bootstrapping code. Other applications (e.g. the trusted access points covered

in section 2.6.3) may require high assurance and a rich set of OS primitives for

access control such as the NSA’s SELinux [79] or EROS [104]. A third class

of applications may need only a modest level of assurance, but require a rel-

atively feature-rich OS offering high performance and compatibility, such as a

stripped-down version of Windows or Linux. Many online games likely fall in

this category.

Beyond choosing an operating system to meet their needs, designers can tailor

the OS to include only the components required for their applications. Modular

OSes such as QNX and Windows CE, commonly used in embedded systems,

illustrate how an OS can facilitate this type of application-specific customiza-

tion.

Efficiency Experience with virtual machine monitors over the past 30 years has

shown the overhead of virtualization on virtualizable hardware platforms can

be made essentially negligible. Even without virtualizable hardware, the over-

heads can be made very small [56]. Thus, a VMM can provide essentially the

same properties as separate devices with more modest resources whose total

resources sum to those of the physical machine. An application running under

Terra can potentially be more efficient than its standard OS counterpart be-

cause it can tailor the OS abstractions it uses to its needs as in exokernels [36].

This is essential to providing a platform flexible enough to run a wide range of

applications with differing performance demands.

Compatibility VMMs can run today’s operating systems, such as Linux and Win-

dows, and applications without modifications, unlike alternative approaches to

secure isolation, such as microkernels [77] and isolation kernels [126]. This al-

lows existing systems to run under Terra, and means that specialized standalone

applications targeted to Terra can run side-by-side with legacy applications.

The greater isolation of a VM, compared to a process in an ordinary OS, can
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improve assurance on its own; untrusted applications can be transformed into

low-assurance trusted applications in closed boxes with minimal changes (see

section 2.6.2 for an example). It also allows new stand-alone applications to

leverage existing toolchains, operating systems, etc. for their construction.

Security A VMM can be a relatively simple program (Disco has only 13,000 lines of

code [19]), with a narrow, stable, well-defined interface to the software running

above it. Unlike traditional operating systems, that must support filesystems,

network stacks, etc., a VMM only needs to present relatively simple abstrac-

tions, such as a virtual CPU and memory. As a result of these properties, VMMs

have been heavily studied as an architecture for building secure operating sys-

tems [64, 49]. VMMs have long been a mainstay of mainframe computing [61],

where their security has been leveraged for implementing systems for banking

and finance, health care, telecommunication [1], defense [86], etc. The isolation

properties of real-world VMMs such as that of the IBM zSeries have received

intense scrutiny and been certified as conforming to the highest standards for

assurance according to Common Criteria requirements [3].

Terra’s TVMM provides three additional capabilities not found in traditional

VMMs. These capabilities are essential to providing a “closed box” abstraction:

Root Secure Even the platform administrator cannot break the basic privacy and

isolation guarantees the TVMM provides to closed-box VMs.

Attestation This feature allows an application running in a closed box to crypto-

graphically identify itself to a remote party, that is, to tell the remote party

what is running inside the closed box. This allows that party to put trust in

the application, i.e. to have faith that the application will behave as desired.

The following section discusses the basics of attestation.

Trusted Path Providing a trusted path from the user to the application is essential

for building secure applications [80]. In a TVMM, a trusted path allows a user

to establish which VM they are interacting with as well as allowing a VM to
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ensure that it is communicating with a human user. It also ensures the privacy

and integrity of communications between users and VMs, thereby preventing

snooping or tampering by malicious programs.

2.3.2 Attestation and VM Identity

Attestation enables an application in a VM to authenticate itself to remote par-

ties [69, 127]. Attestation authenticates who built the platform hardware and what

software was started at each layer of the software stack, from the firmware up to

the VM. Receiving an attestation tells the remote party what program was started

on a platform, but it does not confirm that the program has not subsequently been

compromised. The party receiving an attestation must judge for itself how strongly

it believes in the correctness and security of each of the platform’s layers.

Attestation requires building a certificate chain, from the tamper-resistant hard-

ware all the way to an application VM, to identify each component of the software

stack. This chain begins with the hardware, whose private key is permanently em-

bedded in a tamper-resistant chip and signed by the vendor providing the machine.

The tamper-resistant hardware certifies the system firmware (e.g. PC BIOS). The

firmware certifies the system boot loader, which certifies the TVMM, which in turn

certifies the VMs that it loads.

At a high level, each certificate in this certificate chain is generated as follows:

A component on the software stack that wants to be certified first generates a pub-

lic/private key pair. Next, the component makes an Endorse API call (see section

2.5.3) to the lower level component, passing its public key and possibly other appli-

cation data it wants certified. The lower-level component then generates and signs a

certificate containing (1) a SHA-1 hash of the attestable parts of the higher-level com-

ponent, and (2) the higher-level component’s public key and application data. This

certificate binds the public key to a component whose hash is given in the certificate.

Certification of a VM being loaded by the TVMM involves the TVMM signing

a hash of all persistent state that identifies the VM. This includes the BIOS, exe-

cutable code, and constant data of the VM. This does not include temporary data on



CHAPTER 2. VIRTUAL MACHINE BASED TRUSTED COMPUTING 17

persistent storage or NVRAM contents that constantly change over time. The sepa-

ration between data which does and does not need to be included in the attestation

is application-specific, made by the VM’s developer. Terra supports these two type

of data by providing VMs with both “attested storage” that the TVMM incorporates

in the VM’s hash and “unattested storage” that it does not (see section 2.5.2).

Example attestation

As an example of how a VM can use an attestation certificate, consider a home bank-

ing application VM, such as Quicken, that is attesting its validity to a remote banking

server. For simplicity, we assume that the VM and remote server are establishing an

authenticated channel using the standard SSL session key exchange protocol. SSL is

well suited for this purpose because it allows both parties the opportunity to present

a certificate chain.

For the SSL handshake protocol the VM and remote party use their attestation

certificate chains and private keys for authentication. At the end of the protocol both

parties share a secret session key. During the handshake protocol, the remote server

validates the VM’s certificate chain as follows:

1. It verifies that the lowest certificate in the chain, certifying the hardware, is from

a trusted certificate authority and that the certificate has not been revoked.

2. It verifies that all hashes in the certificate chain are on the remote server’s list of

authorized software. That is, the remote server trusts the BIOS, the bootloader,

and the TVMM.

3. It verifies that the hash of the VM’s attested storage, provided in the topmost

certificate, is on a list of authorized applications (e.g. the VM is a valid version

of Quicken).

If all these checks are satisfied, then the remote server knows that it is com-

municating with an authorized application VM. It then completes the session-key

exchange protocol to establish an authenticated channel. Omitting the key exchange

would open up the attestation process to a man-in-the-middle attack. For example,
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a malicious user could wait for attestation to complete, then reboot the machine into

an untrusted state without the remote server’s knowledge.

Establishing trust

Validation of the VM’s attestation certificate chain at the remote server requires fur-

ther explanation. In the discussion above we required the remote server to verify that

the hash of the VM’s attested storage is on the server’s list of authorized applications.

However, since there are many versions of a given application it is unreasonable to

require the remote server (e.g. a bank) to keep track of hashes of all these versions.

Instead, the remote server should require the application VM to also send a certificate

from its software vendor (e.g. Intuit, in the case of Quicken) certifying that a given

VM hash is indeed a valid version of the application. Thus, we see that the attestation

certificate chain proves to the remote server the components that were loaded onto

the local machine. The remaining certificates prove what these components are.

We can see from the above that two chains of trust are involved in attestation.

Both of these start at a CA (either the same CA or different ones) and end at the

application VM. The first chain certifies that a particular software binary image is

running; the CA certifies the hardware manufacturer, which signs the tamper-resistant

hardware, which signs the TVMM, which signs the application VM’s hash. The

second chain certifies that the binary image is in fact a version of some interesting

program, e.g. version 4.3 of Quicken; the CA certifies the software manufacturer,

which signs the VM’s hash. Taken together, the two certificate chains show that

a VM with a particular hash is running and that that hash represents a particular

version of a particular software program. Additional chains, provided by the software

vendors that shipped these components, can be used to certify the BIOS, boot loader,

and TVMM. During attestation, all the certificates of interest are sent to the remote

server, which uses them to decide whether it trusts the various software vendors and

whether it trusts the applications that these software vendors are certifying.
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Software upgrades and patches

The mechanism described above makes the software upgrade and patch process straight-

forward. Every upgrade to a VM simply includes a new certificate proving that the

resulting VM hash is still a valid version of the application. Cumulative patches that

supersede all previously released patches can work the same way.

The situation is a bit more complex for vendors that allow any subset of a collection

of patches to be applied to a base VM. We speculate that in this case, the vendor

could issue a certificate that states that a specified base VM, plus any or all of a list

of specified patches, is a valid version of some software program. The TVMM would

sign a certificate that identified the variant in use and include both certificates in

attestations.

Revocation

A user who could extract the private key from the tamper-resistant hardware could

completely undermine the attestation process. Such a user could convince a remote

peer that the local machine is running well behaved software, when in fact it is running

malicious code. Worse yet, by widely publishing the private key and certificate the

user could enable anyone to undermine the attestation process.

This scenario shows the importance of revoking compromised hardware. Revo-

cation information must be propagated to every host that might depend on revoked

certificates for attestation using CRLs, OCSP, or CRTs (see survey of certificate

revocation methods in [62]). It is much harder to recover from a compromise of a

manufacturer’s signing key (e.g. Dell’s signing key) without recertifying all deployed

devices, so it is critical that manufacturers’ private keys be protected as carefully as

root CA private keys.

Privacy

The attestation process completely identifies the machine doing the attestation, which

raises a privacy concern. Given the resistance met by Intel when it introduced pro-

cessor serial numbers, this concern must be taken seriously.
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One option for maintaining user privacy, proposed by the Trusted Computing

Group, is to use a special CA, called a Privacy CA (PCA). Periodically, the user’s ma-

chine sends an attested certificate request to a PCA. The PCA verifies the machine’s

hardware certificate and then issues a certificate containing a random pseudonym in

place of the real identity. From then on, the machine uses this anonymized certificate

for attestation. Although the mapping between real identities and pseudonyms is

kept secret, the PCA does keep track of the mappings for revocation purposes. Note

that the anonymized hardware certificate must be periodically renewed with a fresh

pseudonym; otherwise the anonymized certificate functions as a unique processor ID.

Past experience shows that users are generally unwilling to pay for anonymity

services such as PCAs. As a result, the PCA incurs significant liability with no

income—not a good business model. Consequently, it is unlikely that this PCA

mechanism will be used in practice.

Fortunately, practical cryptographic techniques enable private attestation without

the need for a third party. The simplest mechanism, due to Chaum [21], is known as

group signatures. A practical implementation is given in [14]. In our context, group

signatures enable private attestation without any extra work from the user. When

using group signatures, the hardware manufacturer embeds a different secret signing

key in each machine. As in standard attestation, this key is used to sign the firmware

(e.g. BIOS) at boot time. However, the signature does not reveal which machine did

the signing. In other words, the attestation signature convinces the remote party that

the hardware is certified, but does not reveal the hardware identity. Furthermore, in

case a machine’s private key is exposed, that machine’s signing key can be revoked

so that attestation messages from that machine will no longer be trusted.

Interoperability and Consumer Protection

Attestation is a valuable primitive for building secure distributed systems. It fre-

quently simplifies system design and reduces protocol complexity [43]. However, at-

testation also has a variety of potentially ominous implications that bear careful

consideration.

In today’s open distributed systems, programs from any source can interoperate
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freely. This has led to a proliferation of clients and servers for a wide variety of

protocols, including commercial, free, and open source variants. This has benefited

consumers by fueling innovation, encouraging competition, and preventing product

lock-in. Attestation would allow software vendors to create software that would only

interoperate with other software they had provided. This creates the tremendous

risk of stifling innovation and enabling monopoly control [7]. Given this risk it is

critical that the deployment of attestation be given careful consideration, and that

appropriate technical and legal protections are put in place to minimize abuse.

Another far-reaching implication of attestation is its ability to facilitate digital

rights management (DRM). If trusted computing is deployed ubiquitously, media

providers could decide to only release their content to platforms that would prevent

copying, expire the media after a certain date or number of viewings, etc. A full

discussion of technical, commercial, and legal implications are beyond the scope of

this work.

2.3.3 Secure User Interface

A secure user interface provides a trusted path to applications. It prevents malicious

applications from confusing the user about which VM is in use. This can be achieved

by providing unforgeable and unobstructable visual cues that allow the user to identify

the current VM. A wide range of options exist for addressing this from a UI design

perspective.

One model presented by the NetTop architecture [86] is a virtual KVM (keyboard,

video, mouse) switch model. In this model the user is presented with separate virtual

consoles which the user can select using a virtual KVM switch. A small amount of

space at the top of the screen displays which VM the physical console is currently

showing. This space is reserved for exclusive use by the VMM.

Another option for accomplishing the same end has been used in compartmented

mode workstation systems [28]. In these systems a secure window manager controls

the entire desktop and applications (in our case, VMs) can only write to portions

of the display to which they have been granted access. Tags on the frame of each
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window indicate which VM owns it, and a dedicated space is again reserved to inform

the user which VM is in use.

We have not implemented a secure user interface in our Terra prototype. We be-

lieve that implementing a secure UI that allows the capabilities of commodity graphics

hardware to be utilized will require additional hardware and software support. This

is due to problems imposed by the massive complexity and resulting low assurance

of today’s video drivers. We discuss how to address these problems in 2.5.5 and 2.5.6

respectively.

2.4 Platform Security

2.4.1 Local Security Model

Terra’s basic access control model is specified completely by the TVMM and the

management VM. It is assumed that the management VM will make a distinction

between the platform owner and platform user, similar to the distinction between

system administrator and normal users in a standard OS access control model. We

assume the platform owner can choose the TVMM (or OS) that boots, although only

certain TVMMs will actually be trusted by third parties.

The trusted virtual machine monitor runs at the highest privilege level. It is “root

secure,” [109] meaning that it is secure from tampering even by the platform owner

who has root level access, from the management VM, etc. The TVMM only dictates

policy that is required for attestation; it isolates VMs from each other, it will not

falsely attest to a VM’s contents, and it will not disclose or allow tampering with the

contents of a closed-box VM. The TVMM cannot guarantee availability. All other

policy decisions are left to the discretion of the management VM, i.e. the platform

owner.

The management VM formulates all platform access control and resource man-

agement policies. It grants access to peripherals, divides storage among VMs, and

issues CPU and memory limits. It might formulate policies that limit how many VMs

can run, which VMs can run (i.e. what software can run in a given VM), which VMs
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can access network interfaces or removable media, and so on. The management VM

also starts, stops, and suspends VMs.

The management VM that runs is determined by the platform owner, so the

security guarantees that the TVMM provides must not depend in any way on the

management VM. The TVMM enforces these security guarantees, independent of the

management VM. The management VM does have the power to deny service to a

VM, by failing to provide a required resource. This power is not a security failing

because the platform owner and/or user can do the same thing, e.g. by unplugging

the device.

2.4.2 Application Assurance

The most important property Terra provides for improving application security is

allowing applications to determine their own level of assurance.

In traditional operating systems isolation between applications is extremely poor.

The OS kernel itself has poor assurance and is easily compromised, and the great deal

of state that is shared between applications makes it difficult to reason about isolation.

As a result, compromising a single application often impacts a significant portion of

the platform. Thus, the security of the entire platform is often reduced to that of its

most vulnerable component. In Terra, applications in different VMs are strongly iso-

lated from one another. This prevents the compromise of any single-application VM

from impacting any other applications on the system. Thus, applications with greatly

differing assurance requirements may run concurrently, because an application’s level

of assurance is independent of other applications on the system.

Terra’s ability to run an application-specific operating system aids assurance in

a variety of ways. Operating systems tailored to an application can be smaller and

simpler than general-purpose OSes. Further, an OS tailored to an application can

provide the best abstractions for satisfying the security requirements of that applica-

tion. For example, the fine-grained access controls of SELinux [79] could be used to

compartmentalize a more sophisticated application with many components, while a

simpler application could reduce its TCB to simple bootstrapping code.
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Attestation also has potential benefits for application assurance. Because appli-

cations can ensure that they only interact with trusted peers, they add an additional

level of depth to their defenses. An attacker wishing to exploit the application must

first either exploit its peer or find some means of impersonating its peer, in order to

provide a vector for attack.

The assurance of applications running in Terra is still ultimately limited by the

assurance of the operating system, in this case the TVMM. However, we believe that

with adequate hardware support a VMM can provide isolation at the highest levels

of assurance [3].

2.4.3 Trusting Software

Attestation allows a user to authenticate what hardware and software are in use on

a remote platform. This is referred to as establishing that the remote platform is

“trusted.” This can be a valuable capability for gaining confidence in the integrity of

a system’s components, but correctly using this capability can also be quite subtle.

In particular, it is easy to construe an attestation as promising more than it actually

can. It is critical that developers not overestimate what this capability provides.

Naively assuming a client is completely trustworthy based on attestation can po-

tentially make applications needlessly fragile and ultimately degrade their security

instead of improving it. This can occur when a remote party places too much faith in

the client’s good behavior, ignoring relevant issues in the threat model, and making

overly strong assumptions about software assurance or hardware tamper resistance.

This can also occur if the trust provided by attestation is used as a replacement for

stronger alternatives such as cryptography.

Attestation cannot make a promise about the future. A trusted node can fail at

any time, through many means—hardware failure, power failure, a user unplugging

the device—so an attestation cannot reliably guarantee that the node will do any-

thing at a later time. At best, a trusted platform can only ensure the integrity and

confidentiality of the software it is running. In this respect it is no worse than a real

closed-box platform.
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Hardware in the hands of malicious remote users can only be trusted up to the

level of hardware tamper resistance. Current inexpensive commodity hardware that

offers only modest tamper resistance, such as the minimal amount required to support

TCPA [119], should generally be assumed to deter only the least resourceful attacker.

It is our hope that as tamper-resistant hardware becomes more widely deployed, in

the form of TCPA, high-quality tamper-resistant hardware will become affordable

due to economy of scale. Effective means to take hardware tamper resistance and the

threat from the local user and physical security into account in the design of trusted

systems has been studied extensively. A good starting point on this topic is work by

Anderson [8] and Yee [120].

2.5 Trusted Virtual Machine Monitors

Trusted virtual machine monitors provide application developers with the semantics

of real closed-box platforms. VMs provide a raw hardware interface equipped with

virtual network cards, video cards, secure disks, etc. VMs can attest to their contents

by obtaining signed certificates using a direct interface to the TVMM. The TVMM

provides the management VM with interfaces to create and manage VMs, and to

connect them through virtual devices. In this section we describe these interfaces,

and how they are implemented by the TVMM. We also describe hardware required

for building TVMMs.

2.5.1 Storage Interface

The TVMM provides an interface for maintaining application security in the face

of the threat model presented by mainstream tamper-resistant hardware such as a

TCPA-equipped PC. It assumes that the hardware platform will provide tamper

resistance for the memory, CPU, etc., but will not protect the disk. Thus, the disk

may be removed from the machine, accessed by a different OS, etc. In light of this

threat, Terra provides several classes of virtual disks that VMs can use to secure the

privacy and integrity of their data. VMs can select what type of disk they are using
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for any given virtual disk, based on their security, performance, and functionality

requirements:

Encrypted disks hold confidential data. The TVMM transparently encrypts/decrypts

and HMACs [16] storage owned by a given VM on that VM’s behalf, ensuring

the storage’s privacy and integrity.

Integrity-checked disks store mutable data whose integrity is important but does

not require privacy. The TVMM uses a simple HMAC to prevent tampering.

Optionally, a secure counter can prevent rollback (see section 2.5.6).

Raw disks provide unchecked storage. These are useful for sharing data with appli-

cations outside the VM.

In addition to these basic disk types, disks are also specified as being attested or

unattested. Attested disks contain the program binary and other immutable state

that make up the identity of the VM for the purpose of attestation. Which disks

are attested is specified as part of a VM’s metadata i.e. its basic configuration data.

Persistent state that will change, e.g. variable configuration state or application data,

is not kept on attestable disks, because a hash of its contents would not generally be

meaningful to a remote party. Attestable disks may be encrypted or left in the clear

at the discretion of the VM’s developer.

Any VM that desires attestation must have been booted from an attestable disk.

This disk’s hash makes up the primary identity of the VM, along with the VM

firmware and other immutable VM state. Additional disks may also be made at-

testable. The hash of each of these disks, if any, constitutes a secondary identity for

the VM. The reason for this separation is to facilitate the specialization and redis-

tribution of closed-box VMs. For example, suppose Acme firewall company produces

a closed-box VM that provides trusted access point functionality (see section 2.6.3).

The primary identity of this VM will be given by the VM supplied by Acme. Each

company that purchases this box will add a separate disk which stores site-specific

configuration data (e.g. firewall rules, VPN keys). The hash of this disk forms a sec-

ondary identity for the VM. A VM may have only one primary identity, but it may

have any number of secondary identities.
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Cryptographic keys used for protecting storage are sealed under the TVMM’s pub-

lic key (see section 2.5.6 for information on sealed storage). The hardware will release

the TVMM’s private key only to the TVMM itself, maintaining the confidentiality of

these keys.

2.5.2 Implementing Attestation

In principle, computing the identity of an application for attestation is done by ap-

plying a secure hash to the entire executable image of an application before that

application is started. In practice many issues must be taken into account. What

portions of the VM are hashed? How is the VM decomposed for hashing? When are

the hashes actually computed? The answers to all of these questions have important

practical implications for security and performance.

A complete VM image consists of a variety of mutable and immutable data. The

VM is defined not only by the initial contents of its virtual disks, but also by its

NVRAM, system BIOS, PROMs for any BIOS extensions, and so on. Each VM also

includes a “descriptor” that lists hashes for attestable parts of the VM, including

attestable disks. The TVMM takes responsibility to ensure that loaded data actually

matches these hashes.

Verifying an entire entity (e.g. a virtual disk) with a single hash is efficient only

if the entity is always processed in its entirety. If subsections of a hashed entity are

to be verified independently (e.g. demand paging a disk) then using a single hash is

undesirable. So, instead of a single hash, Terra divides attestable entities into fixed-

size blocks, each of which is hashed separately. The VM descriptor contains a hash

over these hashes.

If the VM is accompanied by a list of the individual block hashes, subsections of

the hashed entity can then be verified at a block-sized granularity, e.g. blocks can be

verified as they are paged off disk. Whether the list of hashes is available or not, the

entity as a whole can still be verified against the hash of hashes.

The problem of efficiency in hashing an entire entity is recursive. Hashing a 4 GB

entity into 20-byte SHA-1 hashes with a 4 kB block size yields 20 MB of hashes.
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Storing these hashes on disk should not be a problem, since normal filesystems have

a small per-block overhead anyway. A possible real problem is memory and time;

before any of these hashes is used to verify a block, the entire 20 MB of hashes must

themselves be verified against the hash in the VM descriptor. If it is too expensive to

verify these 20 MB of hashes at startup or to keep them in memory, use of a Merkle

hash tree [85] would trade startup delay for runtime performance. In the current

Terra prototype we have not not yet implemented generalized hash trees to verify

hashes, because we have not yet encountered space or performance constraints that

necessitate their use.

Ahead-of-Time Attestation

Each stage in the boot process is responsible for signing a hash of the next stage before

invoking it. All of these stages deal with small amounts of data that are loaded into

memory in a single step. Thus, they are hashed in their entirety before they are given

control. We call this “ahead-of-time attestation” because the attestation occurs before

the code runs.

After boot, ahead-of-time attestation is appropriate for use with small, high-

assurance VMs. The TVMM reads in the entire VM, verifies all of its attestable

components against the VM’s descriptor. It also pins the VM into physical memory

to avoid the possibility of corruption due to malicious tampering.

Optimistic Attestation

Ahead-of-time attestation is impractical for larger VMs. The data to be verified must

be both read and hashed. Both of these steps can take a significant amount of time.

For example, ignoring disk transfer time, hashing 1 GB of data with OpenSSL’s SHA-1

implementation takes over 8 seconds on a 2.4 GHz Pentium 4. (Section 2.6.2 measures

performance of attestation in a real VM.) Moreover, any part of an attestable disk

that is paged out and later read back must be verified again to detect malicious

tampering.

To address these issues, we introduce the technique of “optimistic attestation.”
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With optimistic attestation, the TVMM attests to whatever hashes the VM descrip-

tor claims for its attestable disks, but it does not verify them at startup. Instead,

individual blocks of the VM are lazily checked by the TVMM as they are read from

disk at runtime. If a block fails to verify at the time it is read from disk, the TVMM

halts the VM immediately.

Ahead-of-Time vs. Optimistic Behavior

Ahead-of-time attestation and optimistic attestation exhibit potentially different se-

mantics. If attestation is done in advance, a single corrupted bit in an attestable disk

prevents a VM from loading, but if attestation is performed optimistically, the VM

will start and run until the first access to the corrupted block. VM designers may

take this into account, but they should be aware that many kinds of events, including

hardware failures and power outages, can cause a VM to stop suddenly at any time.

2.5.3 Attestation Interface

The TVMM provides a narrow interface to closed-box VMs for supporting attestation.

This interface provides the following operations:

cert← Endorse(cert-req)

Places the VM’s hash in the common name field of a certificate and places the

contents of cert-req in the certificate. Signs the certificate with the TVMM’s private

key, and returns it to the VM. The cert-req argument contains the VM’s public key

and any other application data used for authenticating the VM. This function forms

the basis of attestation.

hash← Get-Id()

Retrieves the hash of the calling VM. (The VM image cannot contain its own hash.)

Useful for a VM that wishes to check whether the hash in an attestation from a

remote party matches its own hash. This is frequently useful as closed boxes often

have peers of the same type, e.g. the online game example shown in section 2.6.2.
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2.5.4 Management Interface

Terra delegates VM administration duties to a special VM called the management

VM. The management VM is responsible for managing the platform’s resources on

behalf of the platform owner, providing a user interface for starting, stopping, and

controlling the execution of VMs, and connecting VMs through virtual device inter-

faces. The TVMM provides only basic VM abstractions. This simplifies its design as

well as providing flexibility as policy can be completely determined by the manage-

ment VM.

The TVMM provides basic services, such as support for running multiple, isolated

VMs concurrently, but the management VM is responsible for higher-level resource

allocation and management. In particular, the management VM allocates memory

and disk space to VMs, and controls VM access to physical and virtual devices. It

uses a function call interface into the TVMM to accomplish its tasks. The most

important of these functions are outlined below:

device-id← Create-Device(type, params)

Creates a new virtual device of a given type with specified parameters, and yields

a handle for the new device. The type may specify a virtual network interface, a

virtual disk, etc. In the case of a virtual disk, params is a list of physical disk

extents corresponding to the virtual disk’s content. Other types of devices require

other kinds of additional parameters.

Connect(device-id-1, device-id-2)

Disconnect(device-id-1, device-id-2)

Connects (or disconnects) the specified pair of devices. Each device-id is a virtual

device id returned from Create-Device or the well-known id of a physical device.

When a pair of devices is connected, data output from one of them becomes input on

the other and vice versa. For example, a virtual network device can be used to read

and write network frames on a real network if it is connected to a physical network

device.

vm-id← Create-VM(config)
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Prepares a VM to be run, and produces a handle for it. The parameter is a set of

configuration attributes for the new VM. The configuration includes a pointer to the

VM’s descriptor. The VM by default has no attached devices.

Attach(vm-id, device-id)

Detach(vm-id, device-id)

Attaches a given physical or virtual device to a VM, or removes one, respectively.

On(vm-id)

Off(vm-id)

Powers a VM up or down, respectively.

Suspend(vm-id)

Resume(vm-id)

Temporarily prevents a VM from running or allows it to resume, respectively. The

VM must already be on. (Individual VMs may disable this function.)

2.5.5 Device Driver Security

Device drivers pose an important challenge to TVMM security. Most of today’s

commodity platforms support a huge range of devices. Today’s drivers can be very

large (e.g. those for high-end video cards, software modems, and wireless cards) which

makes gaining a high degree of confidence in their correctness virtually impossible.

Further, there are a huge number of device drivers, and drivers frequently change

to support new hardware features. Often these are written by relatively unskilled

programmers, which makes their quality highly suspect. Empirically, driver code

tends to be the worst quality code found in most kernels [23] as well as the greatest

source of security bugs [12]. Given these facts, we cannot expect to include device

drivers as part of the TVMM’s trusted computing base.

The problem of untrusted device drivers has currently not been addressed by our

TVMM prototype. However, a variety of solutions exist. Protecting the TVMM from

untrusted device drivers requires several problems to be addressed. First, the TVMM

must be protected from direct tampering by the driver code. This is achieved by
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confining drivers via hardware memory protection and restricting their access to sen-

sitive interfaces. A wide variety of systems have addressed this problem, from exotic

microkernel [77, 81] and safe language based systems [17] to practical adaptations to

existing operating systems, such as Nooks, which provides device driver isolation for

fault tolerance in Linux [113].

A further threat that must be addressed is posed by malicious devices using hard-

ware I/O capabilities (e.g. hardware DMA) to modify the kernel. Addressing this

requires additional assistance from the I/O MMU or similar chip set. One approach

has been demonstrated in a modified version of the Mungi system [71], that runs

device drivers at user level, as independent processes, and prevents them from per-

forming DMA outside their own address spaces.

Another approach to this problem is specified by the forthcoming NGSCB archi-

tecture. In NGSCB the issue of supporting device drivers is avoided altogether by

leveraging the device drivers of an untrusted operating system (e.g. Windows XP)

that runs concurrently on the platform. In NGSCB, a trusted operating system such

as a TVMM can run in “curtained memory,” memory that is protected from tamper-

ing by both the untrusted operating system, and from “attacks from below” via DMA.

The trusted operating system leverages the device drivers of the untrusted operating

system by interfacing with them via an explicit interface in the untrusted OS’s ker-

nel. As a side benefit of this approach, the TVMM does not need to provide its own

drivers and instead can leverage those of an existing operating system (e.g. Windows).

Leveraging the drivers of another operating system to support a TVMM would be

very similar to the hosted VMM approach of VMware Workstation [112].

Untrusted device drivers pose another problem. If the TVMM cannot trust device

drivers, it cannot rely on them to provide a trusted path. Overcoming this challenge

requires additional hardware support, discussed below.

2.5.6 Hardware Support for Trusted VMMs

Terra relies on the presence of a variety of hardware assistance:

Hardware Attestation Minimally, the hardware must be able to attest to the



CHAPTER 2. VIRTUAL MACHINE BASED TRUSTED COMPUTING 33

booted operating system.

Sealed Storage Encrypts data under the private key of the tamper-resistant co-

processor that is responsible for attestation etc. (e.g. a TPM in the TCPA

architecture). A hash of the booted trusted OS is also included with the en-

crypted data. The coprocessor will only allow a trusted OS with the same

hash that sealed data to unseal it. This functionality is used by the TVMM to

store its private key on persistent storage. Using this functionality ensures that

hardware will only release a TVMM’s private key to it to the same TVMM that

stored it.

Both of these features are currently supported by TCPA. Several other forms of

hardware support are desirable:

Hardware Support for Virtualization Specialized hardware support for acceler-

ating virtualization has long been available in IBM mainframes [51]. We believe

this type of hardware support significantly eases the burden of implementing

a virtual machine monitor capable of efficiently handling the operating system

diversity of commodity computing platforms. Hardware assistance is especially

important for efficient interfacing to complex hardware such as graphics and

3-D accelerators. Additional hardware support can also greatly simplify virtu-

alization, allowing very simple VMMs to be built, which in turn aids security.

Hardware Support for Secure I/O As discussed above, we cannot assume trust

in device drivers on commodity platforms. Given this, it is essential to provide

some means of establishing a secure connection between the TVMM and devices

required to provide a trusted path (e.g. mouse, keyboard, video card, etc.).

One way to accomplish this is by use of cryptography to secure communication

between hardware devices and the TVMM. This could be supported either

through additional support for encryption on new devices, or by way of hardware

dongles to support legacy devices. Clearly encrypting all communication with

the device would simply necessitate moving the driver into the TVMM. Thus,

another step to supporting secure I/O would be splitting device interfaces. For
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example, on video cards the interface could be split into a simple 2D interface

that could run in the TVMM and be used to implement the secure UI. A

sophisticated 3D interface could be exposed directly to VMs, enabling high-

performance graphics operations.

Secure Counter A secure counter, that is, a counter that can only be incremented,

greatly enhances the functionality of a VM [35]. A secure counter is necessary to

guarantee freshness, e.g. to prevent filesystem rollback attacks. A secure real-

time clock is also useful, e.g. for expiring old session keys, defending against

replay attacks, and rate limiting (discussed in section 2.6). Secure clocks are

currently difficult to manufacture inexpensively, so for now it may be necessary

to make do with secure counters.

Device Isolation The TVMM would like to protect itself and the VMs it runs from

attacks from below, i.e. attacks coming from devices that have access to the

DMA controller, PCI bus, etc. Hardware support for controlling access to

these resources, in particular to shield VMs and the TVMM from attack would

greatly increase the platform’s security, because we would not have to trust

device drivers. We anticipate that support for limiting device access to DMA,

etc., will soon be present in commodity PCs to support Microsoft’s NGSCB

architecture [20, 4].

Real-Time Support Closed-box applications often have real-time requirements (e.g. game

consoles, cellular phones) that cannot be satisfied by today’s operating systems

or VMMs. We believe additional hardware support could aid in addressing

this problem as well. How best to accommodate these through a combination

of low-level virtualization techniques and resource management is a topic for

future work.

2.6 Experience and Applications

In this section we describe the Terra prototype and provide an in-depth discussion

of several applications that we built using the prototype. We also look at how these
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applications demonstrate the capabilities and the limitations of the closed-box ab-

straction that Terra provides. We also discuss other potential applications.

2.6.1 Prototype Implementation

We built a prototype of the trusted virtual machine monitor using VMware GSX

Server 2.0.1 with Debian GNU/Linux as the host operating system. Neither Debian

nor VMware GSX Server is suitably high assurance for a real TVMM, but they form

a convenient platform for experimentation. In practice the same techniques that we

describe here can be applied to a dedicated VMM offering high performance [56]

and assurance, such as a hypothetical lightweight client-side version of VMware ESX

Server [123].

Communication between VMs and the TVMM’s attestation device is implemented

with a VMware virtual serial device. A Python program monitors the host end of

this device and handles requests specified by the attestation interface (section 2.5.3).

We currently do not attempt to emulate the underlying TCPA hardware that

the TVMM would communicate with. We believe that since these interactions are

relatively minimal and well understood, adding it to our prototype system would be

superfluous.

Secure Storage

To implement optimistic attestation and other changes to the way VMware GSX

Server uses storage, we had to modify the way it accesses virtual disks. We achieved

this by interposing on the VMM’s read and write operations using a dynamic preload

library. This allowed us to modify the underlying implementation of virtual disks

to support our new disk types without the need to change the VMM’s source code,

which was not available to us.

Ahead-of-time attestation was implemented by verifying whole file hashes before

a VM is started. For optimistic attestation, our shared library verifies hashes as

data is read from the files that VMware GSX Server uses to represent a virtual

disk. Only aligned, full-size blocks can be verified with hashes, so the preload library
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extends the start and end positions of each read to the edge of an aligned block

boundary. Misaligned or partial block writes also require one or two block reads. The

same strategies are applied to accesses to integrity-checked and encrypted storage.

We use bounce buffers to prevent the VM from seeing unverified data, although for

performance a real implementation might try to avoid them on aligned full-block

reads, perhaps by temporarily marking pages inaccessible.

System Management

A Python program implements the management VM utilizing the interface described

in section 2.5.4. It currently only provides a simple means of managing VMs for testing

purposes. The management interface is a Python wrapper layered over a variety of

management and configuration interfaces provided by VMware GSX Server.

For certificate management we relied on the OpenSSL library. Our certificates

are in X.509v3 format, with X.509 certificate requests used to request attestation.

Currently the “common name” field is used for the attestation hash; an extension

field would be more suitable. The prototype uses a single trusted CA, which signs a

hardware certificate, which signs the TVMM’s certificate. The TVMM in turn signs

each application’s attestation certificate.

2.6.2 Trusted Quake

Commercial multiplayer online games have soared in popularity since the mid-1990s.

As the popularity of these games has increased, so has the incidence of cheating.

Cheating in these games most often occurs when a malicious party alters the client,

the server, or their data files to unfairly change the rules of the game. Cheaters may

also take advantage of insecure communication between clients and servers, either to

spy on their opponents or maliciously alter traffic.

To better understand how to combat these problems in a real-world online game,

we built “Trusted Quake,” a closed-box version of “Quake II” [57], a popular “first-

person shooter” with a long and storied history of problems due to cheating.

Trusted Quake runs Quake in a closed-box VM and uses attestation to ensure that
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all of the hosts it contacts, whether clients or servers, also run the same version of

Trusted Quake. The attestation protocol is used to exchange 160-bit SHA-1 HMAC

keys [16] and 56-bit DES keys. All normal Quake traffic is then exchanged using the

HMAC and DES keys for integrity and confidentiality, respectively. The TVMM will

not falsely attest that a different VM is Trusted Quake, and the isolation properties

of the TVMM keep the keys from leaking.

Our prototype of trusted Quake uses a VM running a minimal Linux 2.4.20 kernel

on top of a minimal installation of Debian GNU/Linux 3.0. The VM boots directly

into Quake. No shell or configuration interface is available to users. A dynamic

preload library interposes on Quake’s network communication to perform attestation

and key exchange. It uses a custom user-space implementation of the IPsec Encap-

sulating Security Payload (ESP) protocol [2] to provide both integrity and confiden-

tiality. DNS traffic is special-cased, with the preload library checking incoming DNS

responses for proper formatting to allow interaction with conventional DNS servers.

We measured the time for the Trusted Quake VM to boot with different forms

of attestation. Booting without any form of attestation takes 26.6 seconds. Ahead-

of-time attestation adds 30.5 seconds, totaling 57.1 seconds. Substituting optimistic

attestation, boot totals only 27.3 seconds. Adding encryption to optimistic attestation

raises the total boot time to 29.1 seconds. (Times are averaged over five runs.) We

conclude that optimistic attestation has significant benefits for VM startup. As for

interactive performance after boot, we found it to be subjectively indistinguishable

from untrusted Quake running within a VM.

Security in Quake, as in many such games, originally took the form of “security

by obscurity.” However, given its huge popularity it was not long before its binary,

graphics and audio media files, and network protocol were reverse-engineered by those

intent on modifying the game. These modifications led to development of a wide

variety of well-documented ways to cheat, by observing and modifying the game

client, server, and network traffic.

The security properties provided by Trusted Quake prevent many common types

of cheating and other security problems in untrusted Quake:

Secure Communication The secrecy provided by the closed-box VM allows Quake
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to maintain a shared secret that it can use to securely communicate with its

peers. This defeats several forms of cheating. First, since Trusted Quake au-

thenticates all of its traffic, traffic cannot be forged from it, nor can its traffic be

modified. This defeats active attacks in the form of aiming proxies [29], agents

that interpose on game traffic on behalf of a player to improve aiming. It also

defeats passive attacks. When users can observe opponents’ Quake network

traffic, they can find out important information about game state, such as the

location of other players.

Client Integrity Edited client 3D models can facilitate cheating, e.g. modified mod-

els of opposing players can make them visible from farther away or around cor-

ners. Similarly, clients can modify sounds that indicate nearby players, making

them louder or more distinctive [38]. Some Quake variants verify weak check-

sums of models to attempt to prevent this type of cheating, but these can be

bypassed using modified clients or modified models that still match the expected

checksum [38]. Trusted Quake frustrates these attacks because users cannot edit

files in the Trusted Quake VM.

Server Integrity The Quake server coordinates and controls the game. It is often

run by one of the players in a game, so incentive to cheat is strong. A trusted

server prevents two kinds of problems. First, it prevents cheating by the server

itself, in which the server offers advantages to selected players. Second, it allows

only trusted clients to connect, preventing cheating by individual players.

Isolation A corollary of isolating Quake is that the rest of the system is protected

if Quake is misbehaving due to remote compromise.

Trusted Quake cannot prevent some kinds of cheating:

Bugs and Undesirable Features Quake has some commands that inadvertently

allow cheating. For instance, one command displays the number of rendered

polygon models on-screen. When this number increases, it can indicate that

another player is about to come into view. Another command can be used to

simulate network lag, allowing the player to hang in mid-air for a limited time.
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Network Denial-of-Service Attacks Trusted Quake does not affect attacks that

prevent communication between a client and a server. This can be used to intro-

duce lag into other players’ connections, putting them at a disadvantage. This

is especially easy for the server’s owner, who has direct control over outgoing

packets.

Out-of-Band Collusion Multiple players who are physically near each other can

gain extra information by watching each others’ monitors or talking to one

another, which may allow them an unfair advantage over opponents. Similar

cheating is possible via telephone or online chat services.

Trusted Quake provides a specific example of a solution to the very general prob-

lem of protecting the privacy and integrity of a complex service in the face of a variety

of threats. The techniques we applied here could be used to improve the security of a

wide variety of online games, as well as other types of multi-user applications. Trusted

Quake also illustrates the limitations of this technique. Even given the features that

Terra provides, it is no panacea. Applications must still be carefully designed and

some forms of attack simply cannot be prevented with the features Terra provides.

2.6.3 Trusted Access Points (TAPs)

Trusted Quake illustrates how a specific application can be hardened to ensure that

it acts as a well-behaved peer. However, for many applications it is not necessary to

harden the entire application. Rather, we simply want to ensure that its communi-

cation is well regulated, e.g. rate limited, monitored, access controlled. This can be

achieved with a trusted access point (TAP), that is, a filter for network traffic that

runs on each client that wishes to access the network. The TAP examines both in-

coming and outgoing packets and forwards only those that conform to policy. A TAP

system can be used to secure the endpoints of overlay networks such as corporate

VPNs, to secure point-to-point connections to access points such as wireless APs,

dial-in access, and even standard wired gateways [43], or simply to regulate access to

network service.
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We implemented a TAP system designed to allow a company (or other entity) to

securely grant outside visitors limited access to its internal network. To receive this

limited use of the internal network via the TAP system, a machine’s owner physically

connects the machine to the “restricted network,” that is, a network isolated from

the internal network, then installs the TAP closed-box VM on it. This VM contains

a VPN client and firewall software for filtering packets. At startup, the VPN client

connects to a TAP gateway that bridges the internal network to the restricted net-

work. The client attests itself to the TAP gateway, and the client and gateway server

exchange secret parameters used for encrypting and integrity-checking data packets

between the two machines.

The TAP VM can implement a traditional network policy preventing IP spoofing,

unapproved port usage, rate-limiting, etc. Only packets that adhere to policy are

permitted to pass between the internal and restricted networks. The TAP VM can

also implement more complex network policy, running remote vulnerability scanners

like Nessus and network intrusion detection systems like Snort. When applied to

large numbers of clients by a single server, these can consume considerable network

and computational resources. Pushing these costs to the client significantly eases the

burden.

As with our Quake VM, the TAP prototype runs a minimal Linux 2.4.20 kernel

sitting on top of a minimal Debian 3.0 installation within a closed-box VM. The VM

is single-purpose and has no user interface. We use the popular OpenVPN secure

IP tunnel daemon, version 1.3.0, to transmit packets between the TAP VM and the

TAP gateway. Key exchange and certificate presentation is carried out over SSL, a

built-in feature of OpenVPN. On the TAP gateway we check the client’s certificate

via OpenVPN’s ability to do so using an external program.

Benefits

Use of a TAP system has several benefits:

Prevents Source Forging The TAP VM can reject packets whose source address

does not match the address assigned to the machine.
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Prevents DoS Attacks The TAP VM can detect denial-of-service attacks on ma-

chines in the internal network and throttle service at the source. (Attempts at

source forging might be a sign of a DoS attempt.) Self-detection of DoS attacks

could be augmented by notification from an authority on the internal network.

Scalability A centralized router can be overloaded relatively easily if each packet

must traverse an entire TCP/IP stack, go through a network intrusion detection

system, and so on. When the client that wishes to send or receive packets is

also responsible for verifying them, scalability is improved.

Network Scalability Vulnerability scans, such as port scans, can consume consid-

erable network bandwidth. Performing scans between VMs within a computer,

instead of over a wire, reduces bandwidth costs and may allow the frequency of

scans to be increased.

TAP systems do have limitations. In particular, there can be no assumption that

all packets on a wire are authenticated using a TAP system. Nothing prevents an

untrusted host from physically connecting to the network, and nothing prevents a

trusted host from rebooting into an untrusted OS or bypassing the TAP VM. Thus,

attacks, such as flooding attacks, on the restricted network cannot be prevented.

However, if individual ports on a switch can be limited to pass only properly HMAC’d

or encrypted packets, with some provision for initial negotiation of keys, then this

issue can be eliminated.

2.6.4 Additional Applications

We have explored just a few of the potential applications of this platform. It can

support a wide range of other applications, including:

• High-Assurance Terminals

Many applications require a trusted platform as a secure platform for sending

or receiving relatively basic information from the user. In these situations we

leverage three properties: the platform’s ability to provide a trusted path to
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and from the user, its ability to support high-assurance applications that are

highly robust in the face of a remote attacker, and the remote host’s ability to

ensure that the user is following best practice by running a closed-box version

of the application.

One example is “feeds” that report current stock prices, news, and other data

that financial analysts use to make decisions. Such interfaces must be extremely

reliable. Malicious manipulation of these applications could have devastating

consequences for individual traders, whole firms, even entire financial markets.

This capability could also be used to provide voting stations that attest their

integrity to the remote tabulation service.

• Isolated Monitors

The strong isolation provided by Terra’s use of a VMM is by itself extremely

useful. This can be used to harden a variety of host security mechanisms against

attack, such as key stores, intrusion detection systems [42], secure logging sys-

tems [31], and virus scanners [4].

• Virtual Secure Coprocessors

Many applications studied in the context of secure coprocessors such as the

IBM 4758 [33, 108] also lend themselves to implementation in this architecture.

Some of these applications include privacy-preserving databases [109, 58], secure

auctions [93], and online commerce applications [129]. A key constraint in

adapting applications from such architectures to a trusted platform like Terra

will be ensuring that the platform provides an adequate level of hardware tamper

resistance for the application.

Clearly, the range of specific applications that can benefit from the general mech-

anisms provided by Terra is far too long to list. More specific mechanisms that

could leverage Terra such as desktop separation [86], application sandboxing, and OS

authentication [127] have already been explored elsewhere.
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2.7 Related Work

The central mechanism in our work is the virtual machine monitor. Extensive dis-

cussion of VMMs and their properties is found in seminal work by Goldberg [50, 51]

and more contemporary work on Disco [19] and VMware [112, 123]. More recently,

Chen [22] argues for routine and extensive use of VMMs for security purposes.

Our primary reason for choosing a VMM based architecture is the flexibility it

provides. Our claim is that a trusted operating system best serves developers by pro-

viding a hardware abstraction as a typical closed platform would, thereby providing

maximum flexibility. A more general argument about the inherently limiting nature

of committing to a single OS abstraction has been made by the extensible OS com-

munity, perhaps most concisely in arguing for exokernels [36]. Exokernels and VMMs

are in many ways quite similar. They are primarily differentiated by the fact that an

exokernel’s resource abstractions are optimized for performance, whereas those of a

VMM are optimized for compatibility.

Computer systems able to cryptographically demonstrate their security properties

to other systems are mentioned first in the work on trusted computing systems [115]

and security kernels [49, 99] from the late 1970s and early 1980s. These systems

took the principle of least privilege to the extreme in a general-purpose operating

system, relying on a small kernel to do isolation, while all other operating func-

tions, such as memory management and process scheduling, were pushed upward into

less-trusted code. It was found that this led to systems that by and large were ex-

tremely inefficient, for diminishing returns in simplicity. Reported experience with

these systems, especially those to kernelize the already svelte VM370 [27] in the form

of KVM370 [46, 100], led us to believe that the VMM represents a least common

denominator for virtualization, simplification beyond which yields little additional

benefit [49].

The concept of authenticating a platform’s software stack was fully developed in

the Distributed System Security Architecture of Gasser et al. [44]. This work had

all the essential components found in today’s architectures for trusted computing,

such as TCPA [119]. Each computer system contained dedicated hardware with a



CHAPTER 2. VIRTUAL MACHINE BASED TRUSTED COMPUTING 44

public/private key pair that it could use to authenticate to others the identity of

the system it had booted by signing a hash of the boot image. The operating sys-

tem (VMS) could in turn use its own key pair to sign for applications loaded by the

system, etc., allowing a system’s software to fully authenticate itself to a remote sys-

tem. Including the machine as part of the authentication process, explicitly taking

its composition into account, was also included in the authentication systems devel-

oped in later work on Taos [127]. This approach is treated thoroughly by Lampson

et al. in their related treatise on authentication in distributed systems [69]. The

more recent IBM 4758 secure coprocessor [33, 108] also allows for authenticating the

source of outbound connections. Authentication in Terra differs most prominently

from this previous work on platform authentication in that an application’s software

stack is treated as a single authenticated unit, in contrast with previous solutions

which authenticated to individual parts of an applications software stack in a piece-

meal fashion. Terra’s support for rapid authentication of large applications further

distinguishes it from previous systems. On the opposite end of the spectrum, Execute

Only Memory (XOM) [75] uses cryptographic hardware in the processor to preserve

the privacy and integrity of code running in a process on an untrusted operating sys-

tem. It provides much less functionality than Terra for building secure applications,

such as a trusted path to I/O devices.

Efforts by Yee and Tygar on Dyad [120] explored hardware mechanisms to boot-

strap trust in the host with secure coprocessors on standard PC hardware. More

importantly, this work brought to light the practical applications of this technology

for consumers, such as electronic currency, stamps, and copy protection, and articu-

lated a vision of including such hardware on mainstream PCs. The AEGIS system by

Arbaugh [11] provides a practical foundation for implementing secure boot on a PC.

AEGIS uses a signed hash to identify each layer in the boot process, as does Terra.

Unlike Terra, the primary purpose of AEGIS is to ensure that only a single authorized

software stack can be loaded on a machine. Terra’s signatures are designed to prove

to third parties the software running on the machine, whereas those in AEGIS enforce

booting only a single software stack.
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Recently, hardware support for sealed storage and attested boot has become avail-

able in the form of commodity platforms implementing TCPA. TCPA 1.1b [119]

provides all the basic features to support Terra, although the addition of some of

the optional features described in section 2.5.6, such as improved support for device

isolation, secure counters, etc., are certainly desirable, and may be forthcoming in

the as-yet-unreleased TCPA 1.2 specification. TCPA is only a hardware mechanism

for trusted computing, lacking a vision for support of trusted computing in operating

systems.

In recognition of this need for OS support for trusted computing, Microsoft be-

gan development of its NGSCB (formerly Palladium) architecture [20, 4, 35, 91, 37].

This work is the most similar to ours in that it provides a “whole system” solution

to the problem of trusted computing. NGSCB works by partitioning the platform

into two parts (“trusted” and “untrusted”) each of which runs a different operating

system. It achieves this through what can be seen as a very special purpose VMM

that only supports two VMs. The untrusted part runs one of today’s commodity

operating systems (e.g. Windows) while the trusted part runs a dedicated trusted

operating system (the “nexus” in NGSCB parlance). This dedicated operating sys-

tem is designed to run small, high-assurance programs called “agents.” Agents work

in conjunction with code on the untrusted side of the system, providing all of the

security-critical functionality that programs on the untrusted side need (e.g. sensitive

key storage).

NGSCB differs from Terra most prominently in its programming model and how

it supports high-assurance applications. Terra allows application designers to specify

any OS they desire for closed-box applications. In contrast, NGSCB requires applica-

tion designers to target their closed-box applications to a single, specific Microsoft OS.

Terra also differs in its attestation model. In Terra an application’s entire software

stack is attested, while in NGSCB only agents are attested. Superficially it appears

that Terra provides a more flexible model for building applications, but making any

concrete comparison at this point would be difficult, because the NGSCB software

architecture is as yet largely unpublished.
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Ultimately, NGSCB’s architecture may complement Terra’s. It appears that hard-

ware support for NGSCB may be fairly OS neutral, thus allowing other architectures

(such as Terra) to take advantage of the trusted path support in devices, hardware

support for isolation, etc. that it provides. Likewise, an architecture like Terra that

can provide an arbitrary number of compatible VMs should be able to host a software

architecture like NGSCB which requires just two VMs.

We presented the initial idea of providing a closed-box abstraction for trusted

computing through the use of a virtual machine monitor in a short position paper [43].



Chapter 3

Virtual Machine Introspection

3.1 Introduction

Widespread study and deployment of intrusion detection systems has led to the de-

velopment of increasingly sophisticated approaches to defeating them. Intrusion de-

tection systems are defeated either through attack or evasion. Evading an IDS is

achieved by disguising malicious activity so that the IDS fails to recognize it, while

attacking an IDS involves tampering with the IDS or components it trusts to prevent

it from detecting or reporting malicious activity.

Countering these two approaches to defeating intrusion detection has produced

conflicting requirements. On one hand, directly inspecting the state of monitored

systems provides better visibility. Visibility makes evasion more difficult by increas-

ing the range of analyzable events , decreasing the risk of having an incorrect view

of system state, and reducing the number of unmonitored avenues of attack. On

the other hand, increasing the visibility of the target system to the IDS frequently

comes at the cost of weaker isolation between the IDS and attacker. This increases

the risk of a direct attack on the IDS. Nowhere is this trade-off more evident than

when comparing the dominant IDS architectures: network-based intrusion detection

systems (NIDS) that offer high attack resistance at the cost of visibility, and host-

based intrusion detection systems (HIDS) that offer high visibility but sacrifice attack

resistance.

47
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In this chapter we present a new architecture for building intrusion detection

systems that provides good visibility into the state of the monitored host, while still

providing strong isolation for the IDS, thus lending significant resistance to both

evasion and attack.

Our approach leverages virtual machine monitor (VMM) technology. This mecha-

nism allows us to pull our IDS “outside” of the host it is monitoring, into a completely

different hardware protection domain, providing a high-confidence barrier between the

IDS and an attacker’s malicious code. The VMM also provides the ability to directly

inspect the hardware state of the virtual machine that a monitored host is running

on. Consequently, we can retain the visibility benefits provided by a host-based in-

trusion detection system. Finally, the VMM provides the ability to interpose at the

architecture interface of the monitored host, yielding even better visibility than nor-

mal OS-level mechanisms by enabling monitoring of both hardware and software level

events. This ability to interpose at the hardware interface also allows us to mediate

interactions between the hardware and the host software, allowing to us to perform

both intrusion detection and hardware access control. As we will discuss later, this

additional control over the hardware lends our system further attack resistance.

An IDS running outside of a virtual machine only has access to hardware-level

state (e.g. physical memory pages and registers) and events (e.g. interrupts and mem-

ory accesses), generally not the level of abstraction where we want to reason about

IDS policies. We address this problem by using our knowledge of the operating system

structures inside the virtual machine to interpret these events in OS-level semantics.

This allows us to write our IDS policies as high-level statements about entities in the

OS, and thus retain the simplicity of a normal HIDS policy model.

We call this approach of inspecting a virtual machine from the outside for the pur-

pose of analyzing the software running inside it virtual machine introspection (VMI).

We will provide a detailed examination of a VMI-based architecture for intrusion

detection. A key part of our discussion is the presentation of Livewire, a prototype

VMI-based intrusion detection system that we have built and evaluated against a

variety of real world attacks. Using Livewire, we demonstrate that this architecture

is a practical and effective means of implementing intrusion detection policies.
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In Section 3.2 we motivate our work with a comparison of its strengths and weak-

nesses to other intrusion detection architectures. Section 3.3 discusses virtual machine

monitors, how they work, their security, and the criteria they must fulfill to support

our VMI IDS architecture. Section 3.4 describes our architecture for a VMI-based

intrusion detection systems and the design of Livewire, a prototype VMI-based IDS

that implements this architecture. Section 3.5 describes the implementation of our

prototype, while Section 3.6 describes sample intrusion detection policies we imple-

mented with our prototype. Section 3.7 describes our results applying Livewire and

our sample policies to detecting a selection of real world attacks. In section 3.8 we

explore some potential attacks on our architecture, and in Section 3.9 we discuss some

related work not touched on earlier in the paper. We present directions for future

work in 3.10.

3.2 Motivation

Intrusion detection systems attempt to detect and report whether a host has been

compromised by monitoring the host’s observable properties, such as internal state,

state transitions (events), and I/O activity. An architecture that allows more prop-

erties to be observed offers better visibility to the IDS. This allows an IDS’s policy

to consider more aspects of normative host behavior, making it more difficult for a

malicious party to mimic normal host behavior and evade the IDS.

A host-based intrusion detection system offers a high degree of visibility as it is

integrated into the host it is monitoring, either as an application, or as part of the

OS. The excellent visibility afforded by host-based architectures has led to the devel-

opment of a variety of effective techniques for detecting the influence of an attacker,

from complex system call trace analysis [55, 73, 122, 125], to integrity checking [65]

and log file analysis, to the esoteric methods employed by commercial anti-virus tools.

A VMI IDS directly observes hardware state and events and uses this information

to extrapolate the software state of the host. This offers visibility comparable to that

offered by an HIDS. Directly observing hardware state offers a more robust view of

the system than that obtained by an HIDS, which traditionally relies on the integrity
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of the operating system. This view from below provided by a VMI-based IDS allows

it to maintain some visibility even in the face of OS compromise.

Network-based intrusion detection systems offer significantly poorer visibility.

They cannot monitor internal host state or events, all the information they have

must be gleaned from network traffic to and from the host. Limited visibility gives

the attacker more room to maneuver outside the view of the IDS. An attacker can

also purposefully craft their network traffic to make it difficult or impossible to infer

its impact on a host [95]. The NIDS has in its favor that, like a VMI-based IDS, it

retains visibility even if the host has been compromised.

VMI and network-based intrusion detection systems are strongly isolated from

the host they are monitoring. This gives them a high degree of attack resistance and

allows them to continue observing and reporting with integrity even if the host has

been corrupted. This property has tremendous value for forensics and secure logging

[31]. In contrast, a host-based IDS will often be compromised along with the host OS

because of the lack of isolation between the two. Once the HIDS is compromised, it is

easily blinded and may even start to report misleading data, or provide the adversary

with access to additional resources to leverage for their attack.

Host-based intrusion detection tools frequently operate at user level. These sys-

tems are quite susceptible to attack through a variety of techniques [53, 10] once an

attacker has gained privileged access to a system. Some systems have sought to make

user-level IDSes more attack resistant through “stealth,” i.e. by hiding the IDS using

techniques similar to those used by attackers to hide their exploits, such as hiding

IDS processes by modifying kernel structures and masking the presence of IDS files

through the use of steganography and encryption [96]. Current systems that rely on

these techniques can be easily defeated.

Some intrusion detection tools have addressed this problem by moving the IDS

into the kernel [128, 117, 67]. This approach offers some resilience in the face of a

compromise, but is not a panacea. Many OSes offer interfaces for direct kernel mem-

ory access from user level. If these interfaces are not disabled, kernel code is no safer

from tampering by a privileged user than normal user-level code. On Linux systems,

for example, user code can modify the kernel through loadable kernel modules [94],
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/dev/kmem, [106, 102] and direct writes from I/O devices. Disabling these interfaces

results in a loss of functionality, such as the inability to run programs, such as X11,

that rely on them. We must also contend with the issue of exploitable bugs in the

OS, a serious problem in our world of complex operating systems written in unsafe

languages, where new buffer overflows are discovered with disturbing frequency.

In a host-based IDS, an IDS crash will generally cause the system to fail open.

In a user-level IDS it is impossible for all system activity to be suspended if the IDS

does crash, since the it relies on the operating system to resume its operation. If

the IDS is only monitoring a particular application, it may be possible to suspend

that application while the IDS is restarted. A critical fault in a kernel-based IDS will

often similarly fail open. Since the IDS runs in the same fault domain as the rest of

the kernel, this will often cause the entire system to crash or allow the attacker to

compromise the kernel [116].

Unfortunately, when NIDSes do fall prey to an attack they often fail open as well.

Consider a malfunction in an NIDS that causes the IDS to crash or become overloaded

due to a large volume of traffic. This will virtually always cause the system to fail

open until such time as the NIDS restarts [95]. Failing closed in an NIDS is often not

an option as the network connection being monitored is often shared among many

hosts, and thus suspending connectivity while the IDS restarted would amount to a

considerable denial-of-service risk.

In a VMI-based IDS the host can be trivially suspended while the IDS restarts

in case of a fault, providing an easy model for fail-safe fault recovery. In addition,

because a VMI IDS offers complete mediation of access to hardware, it can maintain

the constraints imposed by the operating system on hardware access even if the

OS has been compromised, e.g. by disallowing the network card to be placed into

promiscuous mode.

3.3 VMMs and VMI

The mechanism that facilitates the construction of a VMI IDS is the virtual machine

monitor, the software responsible for virtualizing the hardware of a single physical
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machine and partitioning it into logically separate virtual machines. In this section,

we discuss virtual machine monitors, what they do, how they are implemented and

their level of assurance. We will also discuss the essential capabilities that a VMM

must provide in order to support our VMI IDS architecture: isolation, inspection,

and interposition.

3.3.1 Virtual Machine Monitors

A virtual machine monitor (VMM) is a thin layer of software that runs directly on the

hardware of a machine. The VMM exports a virtual machine abstraction (VM) that

resembles the underlying hardware. This abstraction models the hardware closely

enough that software which would run on the underlying hardware can also be run in

a virtual machine. VMMs virtualize all hardware resources, allowing multiple virtual

machines to transparently multiplex the resources of the physical machine[51]. The

operating system running inside of a VM is traditionally referred to as the guest

OS, and applications running on the guest OS are similarly referred to as guest

applications.

Traditionally, the VMM is the only privileged code running on the system. It is

essentially a small operating system. This style of VMM has been a standard part of

mainframe computers for 30 years, and recently has found its way onto commodity

x86 PCs. Hosted VMMs like VMware [121, 112] have emerged that run a VMM

concurrently with a commodity “host OS” such as Windows or Linux. In this setting,

the virtual machine appears as simply another program running on the host operating

system. Despite a radical difference from the users perspective, traditional and hosted

VMMs differ little in implementation. In a hosted architecture the VMM merely

leverages a third-party host OS to provide drivers, bootstrapping code, and other

functionality common to VMMs and traditional operating systems, instead of being

forced to implement all of its functionality from scratch.

VMMs have traditionally been used for logical server partitioning, and are sup-

ported for a wide range of architectures; for example, the IBM xSeries (x86 servers),

pSeries (Unix), zSeries (mainframes), and iSeries (AS/400) all have VMMs available.
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Recently, as hosted VMMs have appeared on the desktop, they have begun to find

other applications such as cross-platform development and testing.

3.3.2 VMM Implementation

Although the specifics of a VMM’s implementation are architecture-dependent, VMMs

tend to rely on similar implementation techniques. Among these techniques is config-

uring the real machine so that virtual machines can safely and directly execute using

the machine’s CPU and memory. By doing this, VMMs can efficiently run software

in the virtual machines at speeds close to that achieved by running them on the bare

hardware [112]. VMMs can also fully isolate the software running in a virtual machine

from other virtual machines, and from the virtual machine monitor.

A common way to virtualize the CPU is to run the VMM in the most privileged

mode of the processor, while running virtual machines in less privileged modes. All

traps and interrupts that occur while a virtual machine is running transfer control to

the VMM. Attempts by the virtual machines to access privileged operations trap into

the VMM; the VMM emulates privileged operations for the VM. In this architecture,

the VMM can always control the virtual machine regardless of what the software in

the virtual machine does.

Memory is commonly virtualized by keeping a virtual MMU for each virtual ma-

chine that reflects the VM’s view of its address space. The VMM retains control of

the real MMU, and maps each VM’s physical memory in such a way that VMs do not

share physical memory with each other, or with the VMM. Through this technique

the VMM is able to create the illusion that each VM has its own address space that

it fully controls. This also allows the VMM to isolate the VMs from one another and

prevents them from accessing the memory of the VMM.

In addition to virtualizing the CPU and memory, the VMM intercepts all in-

put/output requests from VMs to virtual devices and maps them to the correct phys-

ical I/O device. For memory-mapped I/O, the VMM only allows a virtual machine

to see and access the particular I/O devices it is permitted to use.
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3.3.3 VMM Assurance

Our argument for the security of a VMI IDS rests on the assumption that a VMM is

difficult for an attacker to compromise. We base this assumption on the claim that

a VMM is a simple-enough mechanism that we can reasonably hope to implement

it correctly. We have several reasons for this claim. First, the interface to a VMM

is significantly simpler, more constrained and well specified than that of a typically

modern operating system. While the VMM is responsible for virtualizing all of the

architecture, many portions, such as virtualization of the CPU, require little partic-

ipation on the part of the VMM, since most instructions are unprivileged. Second,

the protection model of a VMM is significantly simpler than that of a modern op-

erating system. Everything inside the VMM is completely unprivileged with respect

to the VMM, and the VMM has only to provide isolation, with no concerns about

providing controlled sharing. Finally, although a VMM is an operating system, it is

significantly simpler than standard modern operating systems. VMM’s such as Disco

[19] and Denali [126], which have both virtualized very complex architectures, have

been built in on the order of 30K lines of code. This simplicity is attributable to

the lack of a filesystem, network stack, and often, even a full fledged virtual memory

system.1 Some will point out that the small size and simplicity of a VMM do to its

lack of a filesystem and network stack is misleading, since these facilities must ulti-

mately be available to perform administrative functions such as logging and remote

administration. However, this overlooks the fact that these activities are not part

of the core VMM, but run in a completely different protection domain, typically in

an administrative VM that is strongly isolated both from other VM’s and from the

secure kernel of the VMM. While there is a risk that this administrative VM(s) could

be compromised, the compartmentalization provided by a VMM does a great deal to

limit the extent of a compromise.

The small size and critical functionality of VMMs has led to a significant invest-

ment in their testing, validation, etc. Notable projects that have made strong claims

for the security of VMMs include the Vax security monitor [64] and the NSA with

1This also applies to hosted VMMs as components such as the network stacks will not be utilized,
and need not even be included in the host OS.
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their Nettop [86] system. Nettop also relies on VMware Workstation for its VMM.

Ultimately, since VMware is a closed-source product, it is impossible to verify this

claim through open review.

3.3.4 Leveraging the VMM

Our VMI IDS leverages three properties of VMMs:

Isolation Software running in a virtual machine cannot access or modify the software

running in the VMM or in a separate VM. Isolation ensures that even if an

intruder has completely subverted the monitored host, he still cannot tamper

with the IDS.

Inspection The VMM has access to all the state of a virtual machine: CPU state

(e.g. registers), all memory, and all I/O device state such as the contents of

storage devices and register state of I/O controllers. Being able to directly

inspect the virtual machine makes it particularly difficult to evade a VMI IDS

since there is no state in the monitored system that the IDS cannot see.

Interposition Fundamentally, VMMs need to interpose on certain virtual machine

operations (e.g. executing privileged instructions). A VMI IDS can leverage this

functionality for its own purposes. For example, with only minimal modification

to the VMM, a VMI IDS can be notified if the code running in the VM attempts

to modify a given register.

VMMs offer other properties that are quite useful in a VMI IDS. For example,

VMMs completely encapsulate the state of a virtual machine in software. This allows

us to easily take a checkpoint of the virtual machine. Using this capability we can

compare the state of a VM under observation to a suspended VM in a known good

state, easily perform analysis off-line, or capture the entire state of a compromised

machine for forensic purposes.
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3.4 Design

In this section we present an architecture for a VMI IDS system (shown in Fig. 1).

First, we present the threat model. Next, we discuss the major components of our

architecture and the design issues associated with these components. In the next

section we will delve into the particulars of Livewire, a prototype VMI IDS system

that implements this architecture.

3.4.1 Threat Model

Ideally, the guest OS will not be compromised, as we make some assumptions about

the structure of the guest OS kernel to infer its state. If the guest OS is compromised

this may result in some loss of visibility assuming the attacker modifies the guest OS

in a way that misleads the VMI IDS about the true state of the host. However, even

in this case some visibility will be maintained, and the VMI IDS will still be able to

perform checks that make fewer assumptions about memory structure (such as naive

signature scans) as well as maintaining access controls on devices, sensitive memory

areas, etc.

We assume that the code running inside a monitored host may be totally malicious.

We believe this model is quite timely as attackers are increasingly masking their

activities and subverting intrusion detection systems through tampering with the OS

kernel [53], shared libraries, and applications that are used to report and audit system

state [66] (e.g. tripwire, netstat). We can only assume that if VMI-based IDSes sees

wide spread deployment attackers will attempt to develop similar countermeasures.

All information that the IDS obtains from the monitored host must be considered

“tainted,” that is, containing potentially misleading or even damaging data (e.g. in-

correctly formatted data that could induce a buffer overflow).

The VMI IDS may make assumptions about the structure of the guest OS to

implement some IDS policies. This reliance should only imply that if OS structures

are maliciously modified, it may be possible to evade policies that rely upon those

structures, but should not affect the security of the IDS in any other way.
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Figure 3.1: A High-Level View of our VMI-Based IDS Architecture: On the right is
the virtual machine (VM) that runs the host being monitored. On the left is the VMI-based
IDS with its major components: the OS interface library that provides an OS-level view of the
VM by interpreting the hardware state exported by the VMM, the policy engine consisting of a
common framework for building policies, and policy modules that implement specific intrusion
detection policies. The virtual machine monitor provides a substrate that isolates the IDS from
the monitored VM and allows the IDS to inspect the state of the VM. The VMM also allows
the IDS to interpose on interactions between the guest OS/guest applications and the virtual
hardware.
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3.4.2 The Virtual Machine Monitor

As explained in section 3.3, the VMM virtualizes the hardware it runs on and provides

the essential properties of isolation, inspection, and interposition. VMMs provide

isolation by default; however, providing inspection and interposition for a VMI IDS

requires some modification of the VMM. When adding these capabilities there are

some important design trade-offs to consider:

• Adding VMI functionality vs. Maintaining VMM simplicity. We would like to

minimize the changes required to the VMM to support a VMI IDS. Implemen-

tation bugs in the VMM can compromise its ability to provide secure isolation,

and modifying the VMM presents the risk of introducing bugs. However, adding

functionality to the VMM can provide significant benefits for the VMI IDS sys-

tem as well. The ability to efficiently interpose on the MMU and CPU can allow

the VMI IDS to monitor events that would otherwise be inaccessible. In con-

fronting this issue in our prototype system, we provided additional functionality

by leveraging existing VMM mechanisms. This strategy allowed us to expose

a great deal of functionality to the VMI IDS, while minimizing changes to the

VMM.

• Expressiveness vs. Efficiency. A VMM can allow a VMI IDS to monitor many

types of machine events. Some types of events can be monitored with little or no

overhead, while others can exact a significant performance penalty. Accessing

hardware state typically does not incur any performance penalty in the VMM,

so efficiently providing this functionality is purely a matter of making state

available to the IDS with minimal copying. Trapping hardware events, such as

interrupts and memory accesses can be quite costly because of their frequency.

In our prototype system we sought to manage this overhead by only trapping

events that would imply definite misuse (e.g. modification of sensitive memory

that should never change at runtime). The overhead incurred for monitoring a

particular type of event heavily depends on the particular VMM one is using.

A final issue to consider is VMM exposure. The VMI IDS has greater access to

the VMM than the code running in a monitored VM. However, since we grant the
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IDS access to the internal state of the VM we are potentially exposing the IDS, and

by transitivity the VMM to attack. For this reason, it is important to minimize the

VMM’s exposure to the IDS. For example, communicating with the VMM through

an IPC mechanism should be preferred to exporting internal hooks in the VMM and

loading the IDS as a shared library. By isolating the IDS from the VMM, we reduce

the risk of an IDS compromise leading to a compromise of the VMM. Compromising

the IDS should at worst constitute a denial-of-service attack on the monitored VM.

A compromise of the VMM is a catastrophic failure in a VMI IDS architecture.

The VMM Interface

The VMM must provide an interface for communication with the VMI IDS. The VMI

IDS can send commands to the VMM over this interface, and the VMM will reply in

turn. In our architecture, commands are of three types:

Inspection commands are used to directly examine VM state such as memory

and register contents, and I/O devices’ flags.

Monitor commands are used to sense when certain machine events occur and

request notification through an event delivery mechanism. For example, it is possible

for a VMI to get notified when a certain range of memory changes, a privileged register

changes, or a device state change occurs (e.g. Ethernet interface address is changed).

Administrative commands allow the VMI IDS to control the execution of a

VM. This interface allows the VMI IDS to suspend a VM’s execution, resume a sus-

pended VM, checkpoint the VM, and reboot the VM. These commands are primarily

useful for bootstrapping the system and for automating response to a compromise.

A VMI IDS is only given administrative control over the VM that it is monitoring.

The VMM can reply to commands synchronously (e.g. when the value of a register

is queried) or asynchronously (e.g. to notify the VMI IDS that there has been a change

to a portion of memory).
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3.4.3 The VMI IDS

The VMI IDS is responsible for implementing intrusion detection policies by analyz-

ing machine state and machine events through the VMM interface. The VMI IDS

is divided into two parts, the OS interface library and the policy engine. The OS

interface library’s job is to provide an OS-level view of the virtual machine’s state

to facilitate easy policy development and implementation. The policy engine’s job

is purely to execute IDS policies by using the OS interface library and the VMM

interface.

The OS Interface Library

VMMs manage state strictly at the hardware level, but prefer to reason about intru-

sion detection in terms of OS-level semantics. Consider a situation where we want to

detect tampering with our sshd process by periodically performing integrity checks

on its code segment. A VMM can provide us access to any page of physical memory or

disk block in a virtual machine, but discovering the contents of sshd’s code segment

requires answering queries about machine state in the context of the OS running in

the VM: “where in virtual memory does sshd’s code segment reside?”, “what part of

the code segment is in memory?”, and “what part is out on disk?”

We need to provide some means of interpreting low-level machine state from the

VMM in terms of the higher-level OS structures. We would like to write the code to

do this once and provide a common interface to it, instead of having to re implement

this functionality for each new policy in our IDS. Our solution must also take into

account variations in OS structure such as differences in OS versions, configurations,

etc.

The OS interface library solves this problem by using knowledge about the guest

OS implementation to interpret the VM’s machine state, which is exported by the

VMM. The policy engine is provided with an interface for making high-level queries

about the OS of the monitored host. The OS interface library must be matched with

the guest OS; different guest OSes will have different OS interface libraries.

Some examples of the type of queries that the OS interface library facilitates are:
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“give me a list of all the processes currently running on the system,” or “tell me all

the processes which are currently holding raw sockets.” The OS interface library also

facilitates queries at the level of kernel code, similar to the queries that one might

give to gdb like “show me the contents of virtual memory from x to y in the context

of the login process,” or “display the contents of task structure for the process with

PID 231.”

The Policy Engine

At the heart of any intrusion detection system is the policy engine. This component

interprets system state and events from the VMM interface and OS interface library,

and decides whether or not the system has been compromised. If the system has

been compromised, the policy engine is responsible for responding in an appropriate

manner. For example, in case of a break-in, the policy engine can suspend or reboot

the virtual machine, and report the break-in. Since the focus of our work has been

studying VMI as a platform for IDS, we have focused on implementing variations

on mainstream HIDS style policies [84] such as burglar alarms, misuse detectors and

integrity checkers. A policy engine implementing complex anomaly detection and

other, more exotic techniques can also be supported in this architecture.

3.5 Implementation

To better understand the implementation difficulties, performance overhead, usability,

and practical effectiveness of our VMI architecture, we built Livewire, a prototype

VMI IDS. For our VMM we used a modified version of VMware Workstation [121]

for Linux x86. Our OS library was built by modifying Mission Critical’s crash [87]

program. Our policy engine consists of a framework and modules written in the

Python programming language [52]. Each of these components runs in its own process

in Linux, our host OS.



CHAPTER 3. VIRTUAL MACHINE INTROSPECTION 62

3.5.1 VMM

We used a modified version of VMware Workstation for Linux to provide us with a

virtual machine monitor capable of running common x86-based operating systems. To

support VMI, we added hooks to VMware to allow inspection of memory, registers,

and device state. We also added hooks to allow interposition on certain events, such

as interrupts and updates to device and memory state.

The virtual machine monitor supports virtual I/O devices that are capable of

doing direct memory access (DMA). These virtual devices can use DMA to read any

memory location in the virtual machine. We used this virtual DMA capability to

support direct physical memory access in the VMM interface. We accomplished this

with minimal changes to the VMM.

As part of this virtualization process, the VMM shadows the page tables of the

physical machine, allowing the monitor to enforce more restrictive protection of cer-

tain memory pages. An example of how this functionality can be applied is the

copy-on-write page sharing of the Disco virtual machine monitor [19]. We used this

mechanism to write protect pages and provide notification if the VM attempted to

modify a protected page.

Interactions with virtual I/O devices such as Ethernet interfaces are intercepted

by the VMM and mapped actual hardware devices in the course of normal VMM

operation. We easily added hooks to notify us when the VM attempted to change

this state. Hooks to inspect the state of virtual devices such as the virtual Ethernet

card were also added.

Adding anything to a VMM is worrisome as it means changing low-level code that

is critical to both the correctness and performance of the system. However, we found

we could support the required interposition and inspection hooks with only minor

changes to VMware by leveraging functionality required to support basic virtualiza-

tion. The functionality that we leveraged is common to most VMMs, thus, we believe

that adding interposition support to other VMMs should be straightforward.
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3.5.2 VMM Interface

The VMM interface provides a channel for the VMI IDS processes to communicate

with the VMware VMM process. This interface is composed of two parts: first, a

Unix domain socket that allows the VMI IDS to send commands to, and receive

responses and event notifications from, the VMM; and second, a memory-mapped file

that supports efficient access to the physical memory of the monitored VM.

In Livewire, when an event occurs, the VM’s execution is suspended until the VMI

IDS responds with an administrative command to continue. We opted for this model

of event notification as our policies only use monitor commands for notification of

definite misuse, which we handle by halting as a matter of policy. For other policies,

such as monitoring interrupts to do system call pattern-based anomaly detection [73],

an event delivery model where the VM does not suspend could also be supported.

3.5.3 OS Interface Library

Our OS interface library was built by modifying the Linux crash dump examination

tool crash [87] to interpret the machine state exported by the VMM interface. The

critical intuition here is that in practice there is very little difference between examin-

ing a running kernel through /dev/kmem with a crash dump analysis tool from within

a guest OS, and running the same tool outside the guest OS. The VMM exports an

interface similar to /dev/kmem that provides access to the monitored host’s memory

in the form of a flat file.

Information about the specifics of the kernel being analyzed (the symbol table,

data types, etc.) are all derived from the debugging information of the kernel binary

by crash or readelf. All other problems related to dealing with differences in kernel

versions were dealt with by crash.

The IDS communicates with the OS interface library over a full-duplex pipe, using

it both to send and receive their responses. The command set and responses were

simply those exported by crash.
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3.5.4 Policy Engine

The policy engine consists of two pieces: the policy framework, a common API for

writing security policies, and the policy modules that implement actual security poli-

cies. The policy engine was built entirely using Python.

Policy Framework

The policy framework allows the policy implementer to interact with the major com-

ponents of the system with minimal hassle by encapsulating them in simple high level

APIs. The policy framework provides the following interfaces:

OS Interface Library: The OS interface library presents a simple request/response

to the module writer for sending commands to the OS interface library, and receiv-

ing responses that have been marshaled in native data formats. Tables containing

key-value pairs that provide information about the current kernel (e.g. the kernel’s

symbol table) are also provided.

VMM Interface: The VMM interface provides direct access to the VM’s phys-

ical address space and register state. Physical memory space is accessed as a single

large array. This provides an easy way for the programmer to search the VM’s mem-

ory, or to calculate secure hashes of portions of memory for performing integrity

checks.

Monitor commands are used by registering callbacks for events that a policy mod-

ule wants to be notified of, e.g. a write to a range of memory, or modification of the

NIC’s MAC address. Callbacks can also be registered for VM-level events, such as the

VM rebooting or powering down. Finally, the VM interface exports administrative

commands that allow policy modules to suspend, restart, and checkpoint the VM.

Livewire Front End: The front end code is responsible for bootstrapping

the system, starting the OS interface library process, loading policy modules, and

running policy modules in concert. Interfaces are provided for obtaining configuration

information, reporting intrusions, and registering policy modules with a common

controller.
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Policy Modules

We have implemented six sample security policy modules in Livewire. Four modules

are polling modules, modules that run periodically and check for signs of an intrusion.

The other two are event-driven modules that are triggered by a specific event, such

as an attempt to write to sensitive memory.

Each policy module is an individual Python module (i.e. a single file) that leverages

the policy framework. Policy modules can be run stand-alone or in concert with other

policy modules.

We found writing modules using the Livewire policy framework a modest task.

Most of the polling modules were written in less than 50 lines of Python, including

comments. Only the user program integrity detector (see Section 3.6.1) required

more code than this, at 130 lines of Python. The event-driven modules were also

quite simple, each one requiring roughly 30 lines of code.

A detailed discussion of the policy modules we implemented is given in the next

section.

3.6 Example Policy Modules

In this section we present a variety of policy modules that we have implemented

in Livewire. Our goal with these policies was not to provide a complete intrusion

detection package, nor was it to experiment with novel policy design. Instead we

chose policies as simple examples that illustrate more general paradigms of policy

design that can be supported by this architecture.

3.6.1 Polling Policy Modules

Polling modules periodically check the system for signs of malicious activity. All of

our polling modules possess close HIDS analogues, as they only leverage the VMM

for isolation and inspection. The former is not essential to their function, and the

latter can be provided by normal OS mechanisms for accessing low-level system state.

In fact, we initially developed some of our polling checkers by running Livewire on
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the guest OS it was monitoring and inspecting system state through /dev/kmem.

Lie Detector

Attackers often achieve stealth by modifying the OS kernel, shared libraries, or user-

level services to mask their activities. For example, suppose an intruder wants to

modify the system to hide malicious processes. The attacker can modify ps, modify

shared libraries, or modify the /proc interface that ps uses to find out about currently

running processes. These modification can lead to inconsistencies between the kernel,

or hardware view of the system, and the view provided by user-level programs. A

variety of HIDS programs detect intruders by noting these inconsistencies [83].

The lie detector module works by directly inspecting hardware and kernel state,

and by querying the host system through user-level programs (e.g. ps, ifconfig,

netstat) via a remote shell. If it detects conflicts between these two views (i.e. the

system is lying), it reports the presence of malicious tampering. This technique

has the nice property that it does not matter what part of the system the intruder

modified to elicit the malicious behavior. One concern we had when building this

checker was ensuring that the views we compared were from the same point in time.

In practice, we did not encounter any problems with skew that led to false positives.

User Program Integrity Detector

Checking the integrity of a program binary on disk (ala. tripwire [65]) does not

ensure that the corresponding in memory image of that program has not been mod-

ified (e.g. via ptrace [9]). Our integrity checker attempts to detect if a running

user-level program has been tampered with by periodically taking a secure hash of

the immutable sections (.text, etc.) of a running program, and comparing it to a

known good hash. This approach is particularly well suited to securing long running

programs such as sshd, inetd, and syslogd that are continuously present in memory.

One complication we encountered while implementing this checker was is that

portions of large programs may be paged out to disk, or simply never demand-paged

into memory in the first place. Our current implementation deals with this issue
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by taking per-page hashes and only examining the portion of a program that is in

memory.

Signature Detector

Scanning the file system for the presence of known malicious program based on a

known “signature” substring of the program is a popular intrusion detection tech-

nique. It is employed by anti-virus tools as well as root-kit detection tools like

chkrootkit [88].These tools leverage the fact that most attackers do not write their

own tools, but instead rely on a relatively small number of publicly available rootkits,

backdoors, Trojan horses and other attack tools. Popular examples include “sub-

seven,” “backorifice,” and “netbus” Trojan horses for Windows, or the “adore” and

“knark” kernel backdoors under Linux. Most Unix HIDS systems that look for sig-

nature strings only scan a few selected files for signatures. Our signature detector

performs a scan of all of host memory for attack signatures. This more aggressive

approach requires a more careful selection of signatures to avoid false positives. It

also means that malicious programs that have not yet been installed may also be

detected, e.g. in the filesystem buffer cache.

Raw Socket Detector

Raw sockets have legitimate applications in certain network diagnostic tools, but they

are also used by a variety of “stealth” backdoors, tools for ARP-spoofing, and other

malicious applications that require low-level network access. The raw socket detector

is a “burglar alarm” [84] style policy module for detecting the use of raw sockets

by user-level programs for the purpose of catching such malicious applications. This

is accomplished by querying the kernel about the type of all sockets held by user

processes.

3.6.2 Event Driven Policy Modules

Event-driven checkers run when the VMM detects changes to hardware state, such

as a write to a sensitive location in memory. At startup, each event-driven checker
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registers all of the events it would like to be notified of with the policy framework.

At runtime, when one of these events occurs, the VMM relays a message to the

policy framework. The policy framework runs the checker(s) which have registered

to receive the event. In a purely intrusion-detection role, event-driven checkers can

simply report the event that has occurred according to their policy, and allow the

virtual machine to continue to run. The VMM can also be directed to suspend on

events, thus allowing the policy module to also serve as a reference monitor that

regulates access to sensitive hardware.

Memory Access Enforcer

Modern computer architectures generally allow programs running in ring 0 (i.e. the

kernel) to render certain sections of memory read-only, such as their text segment and

read-only data, as a standard part of their the memory protection interface. However,

they also allow anything else running in ring 0 to disable these access controls. Thus,

while these mechanisms are useful for detecting accidental protection violations due

to faulty code, they are relatively useless for protecting the kernel from tampering by

other malicious code that is running in ring 0 (for example a kernel backdoor).

Detecting tampering with an OS code segment can be an useful mechanism for

discovering the presence of malicious code, and preventing its installation into the

kernel proper. Our kernel memory enforcer works by marking the code section, sys_

call_table, and other sensitive portions of the kernel as read-only through the VMM.

If a malicious program, such as a kernel back door tries to modify these sections of

memory, the VM will be halted and the kernel memory protection enforcer notified.

Several HIDS tools [117, 96] attempt to detect modifications to the sys_call_table

and system call code through the use of integrity checking. However, this approach

is far less attractive due to its lack of immediacy (and inability to prevent attacks)

as well as the additional overhead it incurs. Sensitive registers like the idtr can also

be locked down.
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NIC Access Enforcer

The NIC Access Enforcer prevents the Ethernet device entering promiscuous mode,

or being configured with a MAC address which has not been pre-specified. Using

this module we can prevent variety of common misuses of the NIC to be detected and

prevented. In spite of its simple functionality the NIC module provides a useful policy

enforcement tool. It is more robust to attack than normal host-based solutions, and

not susceptible to evasion, as is a problem with remote promiscuous mode detection

solutions [30].

3.7 Experimental Results

In this section we present an experimental evaluation of our Livewire prototype.

Our evaluation consists of two parts. First, we test the effectiveness of our security

policies against some common attacks. This portion of our evaluation was undertaken

to ensure that our policies worked in practice, and to gain experience with utilizing

Livewire against real attacks. The second part of our evaluation consisted of testing

the performance overhead of Livewire on several sample work loads.

Our target host consisted of virtual machine with a 256 MB allocation of physical

memory and a 4 GB virtual disk, running a relatively standard installation of Debian

GNU/Linux. The virtual machine monitor (a modified version VMware Workstation

for Linux version 3.1) was run on a 1.8 GHz Pentium IV laptop with 1 GB of physical

memory, running Debian GNU/Linux as a host OS.

3.7.1 Sample Attacks

Our test suite of sample attacks consisted of kernel- and user-level rootkits and back-

doors [102, 40, 118, 25, 111] Trojan horses [78], packet sniffers [110, 78], and a worm

[26]. All test attacks were obtained from public sources and were modified only as

necessary for configuration, or for adaptation to our kernel. A selection of nine at-

tacks that we feel provides a good representative cross-section has been chosen for

our discussion. A summary of the attacks and our results is depicted in Table 3.7.
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Name Description nic raw sig int lie mem
cdoor Stealth user level remote backdoor D
t0rn Precompiled user level rootkit D D

Ramen Linux Worm D
lrk5 Source based user level rootkit P D D D

knark-0.59 LKM based kernel backdoor/rootkit D D P
adore-0.42 LKM based kernel backdoor/rootkit D D P
dsniff 2.4 All-purpose packet sniffer for switched networks P
SUCKIT /dev/kmem patching based kernel backdoor D D P

Table 3.1: Results of Livewire policy modules against common attacks. Within the grid,
“P” designates a prevented attack and “D” a detected attack.

3.7.2 Detection Results

To collect our detection results we set up our system under Livewire and then down-

loaded, installed, and ran each attack. Once an attack had been tested the system

was rolled back to a clean state before another attack was attempted.

Our Signature Scanner (“sig”) was able to detect all of the attacks we provided

signatures for. This was a predictable result; the only interesting surprise was that

it often detected the presence of malicious code before it had been run, based on the

presence of the signature in the buffer cache (when we examined them on disk), in

the memory of ssh (as they were being downloaded), or in memory once activated.

Initially, we encountered several false positives due to overly general signatures. For

example, the string “adore” works fine as a signature for a file system-based checker,

such as chkrootkit, but is too general a signature for a scanner looking at all of

memory. Our Raw Socket Detector (“raw”) raw socket detector detected the

presence of cd00r and a similar stealth backdoor we included in our test attack suite.

Our Lie Detector (“lie”) modules proved especially effective against rootkits both

at kernel and user level since they all provided functionality to hide processes. The

User Program Integrity Checker (“int”) was able to detect the presence of t0rn

and lrk5 based on their use of backdoored version of inetd and sshd. We also found it

also effective in detecting backdoored versions of syslog. Our Memory Protection

Enforcer (“mem”) was able to detect and prevent the installation of all of our kernel

backdoors. knark and adore were stopped by blocking their attempt to modify
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Figure 3.2: Performance of Polling Policy Modules

sys call table. SUCKIT was stopped by blocking its attempt to modify the interrupt

dispatch table. Our NIC access enforcer (“nic”) was trivially able to detect and

prevent the packet sniffers in our test attack suite from operating, based on their

reliance on running the NIC in promiscuous mode.

3.7.3 Performance

To evaluate the performance of our system we considered two sample work loads.

First, we unzipped and untarred the Linux 2.4.18 kernel to provide a CPU-intensive

task. Second, we copied the kernel from one directory to another using the cp -r

command to provide a more I/O intensive task.
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We used the first workload to evaluate the overhead of running event-driven check-

ers in the common case when they are not being triggered. As expected, no measur-

able overhead was imposed on the system.

We used our second workload to evaluate the overhead associated with running

our checkers at different polling intervals. The results are shown in figure 2. The

baseline measurement shows performance of the workload without Livewire running.

Our performance results were somewhat surprising to us. We had expected the time

taken by polling modules as a function of the total time to decrease linearly as the

cost of checking was amortized over the total running time of the the workload.

While this was generally the trend, we found that as the polling interval decreased

the interactions with the workload became more erratic.

3.8 Weaknesses and Attacks

In this section we present avenues for attacking and evading VMI-based IDS architec-

tures and explore approaches to addressing these problems. Some of the issues that

we present are unique to the problem of building a VMI IDS; other are more general

issues that arise in attempts to build secure systems with VMMs.

3.8.1 Attacking the VMM

Indirect Attacks

VMMs may provide interfaces accessible from outside of a VM that provide an avenue

of attack. For example, a hosted VMM might be running on a host OS with a remotely

exploitable network stack, or application-level network service. In a VMI IDS, the

threat of indirect attacks can be minimized by using a traditional VMM that possesses

no network stack or by disabling the network stack in a hosted environment.

Detecting the VMM

The first step in evading a VMI IDS is detecting its presence. A significant hint that

a VMI IDS may be present is the presence of a VMM. Unfortunately, masking the
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presence of a VMM is almost impossible due to differences in the relative amount of

time that I/O operations, device access, virtualized instructions, and other processes

take as compared to a non-virtualized interface [51]. Hiding these disparities is im-

practical and not worth the little bit of additional stealth it would provide the IDS.

Timing can also leak information that could betray the presence of a VMI IDS and

its activities.

Directly Subverting the VMM

The VMM may expose the VMI IDS to direct attack in two ways: flaws in the

design of the VMM or flaws in its implementation. The former problem can occur

when VMMs are not designed with malicious guest code in mind. For example,

virtual environments like User-Mode Linux are sometimes designed with debugging

or application compatibility as their primary application and do not provide secure

isolation. The latter problem occurs when there is an error in the VMM code, or code

the VMM relies upon. We conjecture that such errors would most likely be found in

device driver code leveraged by virtual devices. While secure VMMs have been built

with malicious users in mind, device drivers are often less paranoid about sanitizing

their inputs, and thus can be subject to attack [13]. The VMM can attempt to deal

with this issue defensively by judiciously checking and sanitizing data flowing from

virtual devices to device drivers. This helps to minimize the risk of these inputs

compromising the device driver. All devices drivers used with a VMM should be

carefully screened.

Attacking the VMM through the IDS

The presence of the VMI IDS introduces another avenue for attacking the VMM.

Fortunately, the VMI IDS requires minimal privilege beyond its ability to manipulate

the guest VM, so that the impact of an IDS compromise on the VMM can be mitigated

by running the IDS in its own VM, or by isolating it from the VMM through some

other mechanism.
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3.8.2 Attacking the IDS

Fooling the OS Interface Library

The OS interface library relies on meta-data gleaned from a kernel binary or other

sources to interpret the structure of the OS. If an attacker can modify the structure

of the guest OS so that it is inconsistent with the meta-data that the OS interface

library possess, he can fool the OS interface library about the true state of the system.

This style of attack is used against kernel modules that attempt to detect tampering

with the sys_call_table through integrity checking [102]. To subvert these modules,

attackers modify the interrupt dispatch table so that the kernel uses a different system

call table altogether, while the module continues to check a system call table that

is no longer in use. The problem of maintaining a consistent view of the system is

fundamental to the VMI-based IDS approach. Livewire attempts to counter this type

of attack through the memory access enforcer by disabling the attacker’s ability to

modify memory locations and registers that could allow sensitive kernel structures to

be relocated, thus fooling the OS interface library. There are many sensitive mutable

kernel data structures that we do not yet protect that could present an avenue for

attack. We have simply tried to “raise the bar,” and prevent the most obvious of

cases of this class of attack. Finding better methods for identifying and enforcing the

static and dynamic invariants that a VMI IDS relies upon seems an important area

for further study.

Compromising the OS Interface Library

The OS interface library is the VMI IDS’s point of greatest exposure to potentially

malicious inputs. Because of this it is vital to carefully sanitize inputs, and treat all

data gleaned from the virtual machine by direct inspection as tainted. The potential

for problems in this part of the system is especially apparent in our Livewire pro-

totype. The OS interface libraries are based on crash dump analysis tools written

in C, thus presenting an ideal opportunity for a buffer overflow. Another means of

attacking the OS interface library is by modifying kernel data structures to violate

invariants that the OS interface library assumes. For example, introducing a loop
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into a linked list in the kernel that the OS interface library will read (e.g. a list of

file descriptors) could induce resource exhaustion, or simply cause the OS interface

library to wedge in a loop. The OS interface library must not assume any invariants

about the structure of its inputs that are not explicitly enforced through the VMM.

Given the potentially complex nature of the OS interface library, it seems advisable

to isolate it from the policy engine and give it minimal privilege. In Livewire, this

is approximated by running the OS interface library in a separate process, with only

enough privilege to inspect the memory and registers of the monitored VM. If the OS

interface library hangs, the policy engine can kill and restart it.

Compromising the Policy Engine

The extent to which the policy engine is vulnerable to compromise is dependent on

the policies and implementation of the policy engine. We have taken several steps in

our Livewire prototype to reduce the risk of a policy engine compromise:

• Sanitize Inputs: The need to carefully check and sanitize inputs from the

guest OS cannot be emphasized enough. Inputs that come from the VMM

interface and OS interface library should also have sanity checks applied to

them.

• A High-Level Policy Language: Building IDSes that utilize a high-level pol-

icy language is a proven technique for building flexible, extensible NIDSes [92].

VMI IDSes also realize these benefits with a high-level policy language. Addi-

tionally, high-level policy languages also reduce the possibility of a total com-

promise due to memory safety problems. A high-level language like Python is

especially well suited for doing pattern matching, manipulating complex data

types, and other operations that are frequently useful for introspection. This

expressiveness and ease of use allows policies to be written in a concise and

easy-to-understand manner that minimizes errors.

• Failing Closed: In Livewire, the VMM can suspend on the last synchronous

event that occurred and will not continue until explicitly instructed by the
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IDS. This means that even if the policy engine crashes, protected hardware

interfaces will still not be exposed. This type of fail-closed behavior is always

recommended when a VMI IDS is also being used as a reference monitor.

• Event Flow Control: In the case when Livewire cannot keep up with queued

asynchronous events, the VMM can suspend until Livewire can catch up. Unlike

an NIDS which cannot necessarily stem the flow of traffic [92], it is easy to stem

the flow of events to the VMI IDS.

• Avoiding Wedging with Timers: In Livewire, the polling module are run

serially by a single thread of control. This introduces the risk that a bug in one

policy module could cause the entire IDS to hang. We have tried to address this

problem in two ways. First, all of our policy modules are written defensively,

attempting to avoid operations that could hang indefinitely, and using timers

to break out of these operations when necessary. Second, each policy module is

only given a set amount of time to complete its task, and will be interrupted if

it exceeds that limit, so that the next module can run.

3.9 Related Work

Classical operating system security issues such as confinement and protection have

been studied extensively in traditional VMMs. In previous years thorough studies of

these problems have been presented for VM/370 [100, 48, 47, 46] and the Vax Security

Kernel [64]. The most recent implementation study of a security kernel can be found

in work on the Denali isolation kernel[126]. A recent application of VMMs for pure

isolation can be found in the NSA’s nettop [86] architecture.

VMMs have also become a popular platform for building honey pots [103]. Often

a network of virtual machines on a single platform will be built to form a honey net,

providing a low-cost laboratory for studying the behavior of attackers.

The idea of collocating security services with the host that they are monitoring,

as we study in this work, has also seen attention in the ReVirt [31] system, which

facilitates secure logging and replay by having the guest operating system (the OS
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running inside the VM) instrumented to work in conjunction with the VMM.

Chen et al. [22] proposed running code in a VM to discover if it is malicious before

proceeding with its normal execution. This idea is similar to the application of VMs

to fault tolerance explored by Bressoud and Schneider in their Hypervisor [18] work.

Goldberg’s work on architectural requirements for VMMs [50] and his survey of

VMM research up to 1974 [51] are the standard classic works on VMMs. More recent

noteworthy work on VMM architectural issues can be found in Disco [19], and in

work on virtualizing I/O [112] and resource management [123] in VMware.

Also relevant to the topic of VM introspection is work on whole-machine simula-

tion in SimOS [97], which also looked at the issues involved in instrumenting virtual

hardware and extrapolating guest operating system state from hardware state.

3.10 Future Work

There are still many significant questions to be addressed about how VMI-based

intrusion detection systems can best be implemented and used.

Livewire has taken an extremely conservative approach to introspection by pri-

marily engaging in passive checks that incur no visible impact on system performance.

This decision allowed Livewire to be implemented with only minimal changes to the

virtual machine monitor. However, the cost of this was that monitoring frequent

asynchronous events, e.g. all system calls, may be quite performance intensive. Our

current architecture could support frequent asynchronous checks, such as monitoring

and processing system call, and supporting lightweight data watchpoints with relative

efficiency via. hard coding the functionality to log these events directly into the mon-

itor, then offloading the processing of these logs to the policy engine. However, this

approach seems somewhat inflexible. We believe a more promising approach would

involve support for providing a small, safe and extensible mechanism for efficiently

filtering architecture events in the VMM, in much the same fashion that current OSes

provides this functionality for filtering packets via BPF.

In Livewire we made the choice to leverage the crash program in order to provide

us with an OS interface library. This provided the functionality to experiment with
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a wide range of policies while minimizing implementation time. However, given the

OS interface libraries exposure to attack it would be desirable to have a dedicated OS

interface library of significantly smaller size, ideally written in a safe language. An-

other factor deserving further study in the OS interface library is that of concurrency.

How can system kernel state be safely observed in the presence of constant updates

to kernel state? How should the OS interface library respect OS locking primitives?

Other IDS tools can benefit from the capability of a VMM to allow secure col-

location of monitoring on the same machine as the host, even without the use of

introspection. HIDS techniques such as filesystem integrity checking could easily be

moved outside of the host for better isolation. Conversely, NIDSes could be moved

onto the same platform as the host, thereby distributing the load of performing packet

analysis to end hosts, and potentially facilitating the use of more complex policies.

Finally, the benefits of isolating protection mechanisms from the host has received

little attention. Moving distributed firewalls as described by Ioniddis et. al . [60]

outside of the host seems like an obvious application for this mechanism. An isolated

keystore is another natural application of this mechanism.



Chapter 4

Overshadow Data Protection

4.1 Introduction

Commodity operating systems are ubiquitous in home, commercial, government, and

military settings. Consequently, these systems are tasked with handling all manner

of sensitive data, from individual passwords and crypto keys, to databases of social

security numbers, to sensitive documents and voice traffic.

Unfortunately, the security provided by commodity operating systems is often

inadequate. Trusted OS components include not just the kernel but also device

drivers and system services that run with privilege (e.g., daemons that run as root in

Linux). These components generally comprise a large body of code, with broad attack

surfaces that are frequently vulnerable to exploitable bugs or misconfigurations. Once

such privileged code is compromised, an attacker gains complete access to sensitive

data on a system. While some facets of security in these systems will continue to

improve, we believe competitive pressures to provide richer functionality and retain

compatibility with existing applications will keep the complexity of such systems high,

and their assurance poor.

To ameliorate this problem, many have attempted to retrofit higher-assurance

execution environments onto commodity systems. Previous efforts have explored ex-

ecuting applications handling sensitive data in separate virtual machines [41, 114, 37],

using secure co-processors [34], or changing the processor architecture to introduce

79
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orthogonal protection mechanisms that protect application data from the OS [32, 59,

70, 76, 105]. Unfortunately, these generally demand major changes in the way that

applications are written [34, 37, 70, 74, 107] and used [37, 41], and how OS resources

are managed [41, 114]. Such radical departures pose a substantial barrier to adoption.

We offer an alternative in a system called Overshadow . Overshadow protects

legacy applications from the commodity operating systems running them. Unlike

other approaches, it requires no changes to existing operating systems or applications,

nor any additional hardware support. Instead, it works by extending the isolation

capabilities of the virtualization layer to allow protection of entities inside a virtual

machine.

Overshadow adds this protection through a novel technique called multi-shadowing

which leverages the extra level of indirection offered by memory virtualization in a

virtual machine monitor (VMM). Conceptually, a typical VMM maintains a one-to-

one mapping from guest “physical” addresses to actual machine addresses. Multi-

shadowing replaces this with a one-to-many, context-dependent mapping, providing

multiple views of guest memory. Overshadow leverages this mechanism to present

an application with a cleartext view of its pages, and the OS with an encrypted

view, a technique we call cloaking. Encryption-based protection allows resources to

remain accessible to the OS, yet secure, permitting it to manage resources without

compromising application privacy or integrity.

Cloaking is a low-level primitive that operates on basic memory pages. However,

nearly all higher-level application resources – including code, data, files, and even

IPC streams – are already managed as memory-mapped objects by modern operating

systems, or can be adapted as such. As a result, cloaking is sufficiently general to

protect all of an application’s major resources.

Using cloaking to protect a legacy application running on an unmodified OS re-

quires some changes to the normal execution environment. To accommodate these

changes while maintaining compatibility, Overshadow introduces a shim at load time

into the address space of each cloaked application to mediate all communication with

the OS. With assistance from the VMM, the shim interposes on events such as sys-

tem calls and signal delivery, modifying their semantics to enable safe resource sharing
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between a cloaked application and an untrusted OS.

The next section presents our design goals and threat model for Overshadow.

Section 4.3 reviews virtualized memory systems, and describes extensions to sup-

port multi-shadowing and cloaking. Section 4.4 introduces the challenges that arise

when applying cloaking to protect real applications, and provides an overview of the

Overshadow architecture. Section 4.5 describes how the shim and VMM adapt ap-

plications for a cloaked environment, and Section 4.6 explains how particular system

calls are mediated. Section 4.7 discusses how cryptographic metadata is managed and

stored, to protect against reordering and replay attacks. Section 4.8 evaluates our

implementation in the VMware VMM using large unmodified applications running

on an unmodified Linux kernel. Section 4.9 discusses future work. Related work is

examined in Section 4.10.

4.2 Design Goals

Overshadow offers a last line of defense for application data in the event of an OS com-

promise. We begin with a discussion of why Overshadow targets whole-application

protection, and the threats it attempts to address.

4.2.1 Whole-Application Protection

We were motivated to build a practical system that could be adopted easily, deployed

incrementally, and used for diverse applications. As a result, we designed Overshadow

to protect entire existing applications in situ in existing commodity operating systems.

This approach has several advantages:

Ease of Adoption. Previous work on protecting applications requires partitioning

an application into protected and unprotected parts – forcing developers to modify

their applications heavily [37, 107] or port to a new OS [114]. Changes to how software

is packaged and used may also be required [41, 114].
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Support for Diverse Applications. Solutions for providing higher assurance are

often restricted to a limited set of applications or data, such as passwords [37, 34].

However, sensitive data is remarkably diverse, from databases of credit card num-

bers, to files containing medical patient information. Sensitive data in real applica-

tions frequently doesn’t lend itself to being placed in a neat separate container, and

restructuring applications is often impractical.

Incremental Path to Higher Assurance. Even after taking the operating sys-

tem out of the application’s trusted computing base, large, complex applications will

still have significant assurance concerns. Refactoring applications into more-critical

and less-critical pieces running in separate protection domains [37, 107] is ultimately

a compelling goal. Overshadow provides an incremental path to achieving this, as

cloaking can be used for whole application protection as well as fine-grained compart-

mentalization.

4.2.2 Threat Model

Overshadow prevents the guest operating system from reading or modifying appli-

cation code, data and registers, but makes no attempt to provide availability in the

face of a hostile OS. All non-application access to cloaked data, including DMA from

virtual I/O devices, only reveals the data in encrypted form. Data secrecy, integrity,

ordering and freshness are protected up to the strength of the cryptography used. If

the OS or other hostile code tries to modify encrypted data, the application will be

terminated.

Control transfers to and from a cloaked application are permitted only at well-

defined entry and exit points through mechanisms such as system calls and signal

delivery. Application registers are also protected from the OS, and are saved and

restored securely upon entry and exit from an application’s execution context. Over-

shadow can also protect information shared between cloaked applications via the file

system, shared memory or other forms of IPC.

A malicious kernel can still observe an application’s memory access patterns, and

measure the time that application code sections take to complete. In extreme cases,
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such side channel information can leak private information, including application

crypto keys [68]. Overshadow does not protect against these side-channel attacks.

However, most contemporary cryptographic application code (such as OpenSSL) is

designed to resist side channel attacks.

Security is ultimately limited by the application being protected. Logical or se-

mantic weaknesses in the application, such as an exploitable buffer overflow, or a

DumpMyMemory

c

ommand, could allow a malicious OS to fool it into revealing its data, or otherwise

exploit it. The implications of maliciously changing the behavior of seemingly innocu-

ous parts of the system call API, such as those for managing identity and concurrency,

are still largely unstudied.

Assurance in Overshadow is ultimately limited by the VMM. While our current

implementation uses the VMware VMM, a much simpler, high-assurance hypervisor

could be used for running a single VM securely. Regardless, Overshadow offers a

valuable additional layer of defense-in-depth. As its protection model is orthogonal

to that of the guest OS, protected applications require no additional privileges within

the guest.

We make no attempt to protect network I/O, as this is addressed by existing

technologies such as SSL. Although a trusted path for user input and secure display

is also desirable [37], and could be facilitated by Overshadow, we have not tried to

support this in the current system.

4.3 Multi-Shadowed Cloaking

In this section we review how traditional virtualized memory systems work, and

explain how they can be extended to support multi-shadowing. Multi-shadowing is

then coupled with encryption to implement cloaking, providing both encrypted and

unencrypted views of memory.
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4.3.1 Classical Memory Virtualization

Conventional operating systems use page tables to map virtual addresses to physical

addresses with page granularity. A virtual page number (VPN) is mapped to a

physical page number (PPN), and VPN-to-PPN translations are cached by a hardware

TLB.

A classical virtual machine monitor (VMM) provides each virtual machine (VM)

with the illusion of being a dedicated physical machine that is fully protected and

isolated from other virtual machines [98]. To support this illusion, physical memory is

virtualized by adding an extra level of address translation. The terms machine address

and machine page number (MPN) are commonly used to refer to actual hardware

memory [19, 124]. In contrast, “physical” memory is a software abstraction that

presents the illusion of hardware memory to a VM. We refer to address translation

performed by a guest operating system in a VM as mapping a guest virtual page

number (GVPN) to a guest physical page number (GPPN).

The VMM maintains a pmap data structure for each VM to store GPPN-to-MPN

translations. The VMM also typically manages separate shadow page tables, which

contain GVPN-to-MPN mappings, and keeps them consistent with the GVPN-to-

GPPN mappings managed by the guest OS [5]. Since the hardware TLB caches direct

GVPN-to-MPN mappings, ordinary memory references execute without incurring

virtualization overhead.

4.3.2 Multi-Shadowing

Existing virtualization systems present a single view of guest “physical” memory,

faithfully emulating the properties of real hardware. One-to-one GPPN-to-MPN map-

pings are typically employed, backing each guest physical page with a distinct machine

page. Some systems implement many-to-one mappings to support shared memory;

e.g., transparent page sharing maps multiple GPPNs copy-on-write to a single MPN

[19, 124]. However, existing virtualization systems do not provide flexible support for
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mapping a single GPPN to multiple MPNs.1

Multi-shadowing is a novel mechanism that supports context-dependent, one-to-

many GPPN-to-MPN mappings. Conceptually, multiple shadow page tables are used

to provide different views of guest physical memory to different shadow contexts. The

“context” that determines which view (shadow page table) to use for a particular

memory access can be defined in terms of any state accessible to the VMM, such as

the current protection ring, page table, instruction pointer, or some other criteria.

Traditional operating systems and processor architectures implement hierarchical

protection domains, such as protection rings [101]. Multi-shadowing offers an ad-

ditional dimension of protection orthogonal to existing hierarchies, enabling a wide

range of unconventional protection policies.

4.3.3 Memory Cloaking

Cloaking combines multi-shadowing with encryption, presenting different views of

memory – plaintext and encrypted – to different guest contexts. Our use of encryp-

tion is similar to XOM [76, 74], which modified both the processor architecture and

operating system to encrypt and isolate application memory. The term “cloaking”

has also been used by Intel’s LaGrande Technology (LT) [59], which introduced a

different architectural mechanism for creating orthogonal protection domains.

In contrast to XOM and LT, our virtualization-based cloaking does not require

any changes to the processor architecture, OS, or applications. In fact, cloaking

based on multi-shadowing represents a relatively small change to the core MMU

functionality already implemented by a VMM. We initially describe cloaking using

a high-level model. Details concerning metadata management and integration with

existing systems are presented in later sections.

Single Page, Encrypted/Unencrypted Views. We represent each GPPN using

only a single MPN, and dynamically encrypt and decrypt its contents depending on

1Some x86 VMMs do statically map a single GPPN to multiple MPNs to emulate the legacy A20
line, for compatibility with real-mode applications. The A20 line forces physical address bit 20 to
zero, aliasing adjacent 1MB regions of memory.
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Figure 4.1: Basic Cloaking Protocol. State transition diagram for maintaining the
secrecy and integrity of a single cloaked page. Application reads RA and writes WA manipu-
late plaintext page contents, while kernel reads RK and writes WK use an encrypted version
of the page. A secure hash H is computed and stored immediately after page encryption,
and verified immediately prior to page decryption.

the view currently accessing the page. This works well, since few pages are accessed

simultaneously by both the application and the kernel in practice. As an optimization,

the system could keep two read-only copies of the page, one encrypted, and one

plaintext, for pages that are read concurrently from both views.

When a cloaked page is accessed from outside the shadow context to which it

belongs, the VMM first encrypts the page, using a fresh, randomly-generated initial-

ization vector (IV), then takes a secure hash H of this ciphertext. The pair (IV, H) is

stored securely for future use. During decryption, the correct hash is first verified. If

verification fails, the application is terminated. If it succeeds, the cloaked page is de-

crypted, and execution proceeds as normal. By checking the hash before decryption,

any attempts to corrupt cloaked pages will be detected.

Overshadow currently uses a single secret key KVMM managed by the VMM to

encrypt all pages; see Section 4.7.7 for details. Encryption uses AES-128 in CBC

mode, and hashing uses SHA-256; both are standard constructions. An integrity-

only mode could be supported easily, but is not part of the current implementation.
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Basic Cloaking Protocol. Consider a single guest “physical” page (GPPN). At

any point in time, the page is mapped into only one shadow page table – either a

protected application shadow used by a cloaked user-space process, or the system

shadow used for all other accesses. When the page is mapped into the application

shadow, its contents are ordinary plaintext, and application reads and writes proceed

normally.

Figure 4.1 presents the basic state transition diagram for managing cloaked pages.

When the cloaked page is accessed via the system shadow (transition 1), the VMM

unmaps the page from the application shadow, encrypts the page, generates an in-

tegrity hash, and maps the page into the system shadow. The kernel may then read

the encrypted contents, e.g., to swap the page to disk, and may also overwrite its

contents, e.g., to swap in a previously-encrypted page from disk.

When the encrypted page is subsequently accessed via the application shadow

(transitions 2 or 3), the VMM unmaps the page from the system shadow, verifies its

integrity hash, decrypts the page, and maps the page into the application shadow.

For an application read (transition 3), the page is mapped read-only and its (IV, H)

is retained. If the page is later written by the application (transition 4), the (IV, H)

is discarded, and the page protection is changed to read/write. If the page is instead

accessed by the kernel (transition 5), the VMM proceeds as in transition 1, except

that the hash for the (unmodified) page is not recomputed.

The read-only plaintext state, where the (IV, H) is retained, is required to cor-

rectly handle the case where the kernel legitimately caches a copy of the encrypted

page contents. For example, this could occur if the kernel swaps a cloaked page to

disk, which is later paged in due to an application read, and then swapped out again

before the application modifies it. The kernel can optimize the second page-out by

noticing that the page is not dirty, and simply unmap the page without reading it,

since the on-disk swapped copy is still valid. If the (IV, H) had been discarded, it

would not be possible to decrypt the page after it is swapped back in.

Cloaking is compatible with copy-on-write (COW) techniques for sharing identical

pages within or between VMs. Plaintext pages can be shared transparently, and page

encryption handled like a COW fault.
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Virtual DMA. Cloaking is also compatible with virtual devices that access guest

memory using DMA. For example, suppose the guest kernel performs disk I/O on a

cloaked memory page via a virtual SCSI adapter. For a disk read, the cloaked page

contents are already encrypted on disk, and the VMM simply permits the kernel to

issue a DMA request to read the page.

For a disk write, the action taken by the VMM depends on the current state of

the cloaked page. If the page is already encrypted, the VMM allows the DMA to be

performed directly. When the page is in the plaintext read-only state, the VMM first

encrypts the page contents with its existing (IV, H) into a separate page that is used

for the DMA operation. Similarly, if the page is in the plaintext read-write state, the

VMM encrypts its contents into a separate page used for the DMA operation. The

cloaked page then transitions to the read-only plaintext state, and is associated with

the newly-generated (IV, H). Note that in both plaintext states, the original guest

page is still accessible in plaintext form to the application, since a transient encrypted

copy is used during the actual DMA.

4.4 Overshadow Overview

Cloaking is a low-level primitive that protects the privacy and integrity of individual

memory pages. Overshadow leverages this basic mechanism to cloak whole applica-

tions, cryptographically isolating application resources from the operating system.

Figure 4.2 provides an overview of the Overshadow architecture. A single VM is

depicted, consisting of a guest OS together with multiple applications, one of which is

cloaked. The VMM enforces a virtualization barrier between the cloaked application

and the OS, similar to the barrier it enforces between the guest OS and host hardware.

Overshadow introduces a shim into the address space of the cloaked application, which

cooperates with the VMM to mediate all interactions with the OS.

Realizing the Overshadow design goal of whole-application protection for unmod-

ified applications running on unmodified commodity operating systems has proved

challenging. In this section, we describe several key challenges, sketch high-level solu-

tions, and explain where more complete technical details can be found in subsequent
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Figure 4.2: Overshadow Architecture. The VMM enforces two virtualization barriers
(gray lines). One isolates the guest from the host, and the other cryptographically isolates
cloaked applications from the guest OS. The shim cooperates with the VMM to interpose
on all control flow between the cloaked application and OS.

sections.

Context Identification. The VMM must identify the guest context accessing a

cloaked resource precisely and securely, in order to use the shadow page table with

the correct GPPN-to-MPN view. Section 4.5 explains how Overshadow leverages the

shim to help identify application contexts, without relying on an untrusted OS.

Secure Control Transfer. Applications must interact with the OS to perform use-

ful work, and need to be adapted for cloaked execution. Overshadow performs this

adaptation by injecting a shim into the address space of each cloaked application. The

VMM cooperates with the shim to implement a transparent trampoline that inter-

poses on all control transfers between the application and OS. The detailed mechanics

of shim-based interposition for interrupts, faults, and system calls are discussed in

Section 4.5.

System Call Adaptation. Most system calls require only simple argument mar-

shalling between cloaked and uncloaked memory. Others, such as file I/O operations,
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need more complex emulation. For example, read and write system calls are im-

plemented using mmap for encrypted I/O. Section 4.6 explains how particular system

calls are adapted for cloaked execution.

Mapping Cloaked Resources. Overshadow must track the correspondence be-

tween application virtual addresses and cloaked resources. The shim is responsible

for keeping a complete list of mappings, which is cached by the VMM. The shim re-

sides in the same guest virtual address as the application, and interposes on all calls

that modify it, such as mmap and mremap. A more detailed discussion is presented in

Section 4.7.

Managing Protection Metadata. The VMM must maintain protection meta-

data, such as (IV, H) pairs, for each encrypted page, to ensure privacy and integrity.

For active mappings, the VMM maintains an in-memory metadata cache that is not

accessible to the guest. Metadata associated with persistent cloaked resources, such as

file-backed memory regions, is stored securely within the guest filesystem. Section 4.7

contains a detailed treatment of Overshadow metadata management.

4.5 OS Integration with Cloaking

The VMM interposes on transitions between the cloaked user-mode application and

the guest kernel, using distinct shadow page tables for each. Privilege-mode tran-

sitions include asynchronous interrupts, faults, and signals, and system calls issued

by the cloaked application. Mediating these interactions in a secure, backwards-

compatible manner requires adapting the protocols used to interact with the operat-

ing system, as well as some system calls. This is facilitated by a small shim that is

loaded into a cloaked application’s address space on startup.

We describe the shim in the context of our Linux implementation, although we

believe this approach could be applied to other operating systems, including Microsoft

Windows. While the system call interface varies across kernels, low-level mechanisms

for system call vectoring, fault handling, and memory sharing are tied more closely
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to the processor architecture than to a particular OS.

We begin by discussing the basic operation of the shim, how it helps the VMM

manage identity, and its interaction with the kernel and VMM to adapt the applica-

tion for cloaked execution. Support for handling faults, interrupts, and system calls

is presented in detail. A discussion of how particular system calls are mediated is

deferred until the next section.

4.5.1 Shim Overview

The shim is responsible for managing transitions between the cloaked application and

the operating system. It uses an explicit hypercall interface for interacting with the

VMM, i.e., a secure communication mechanism between the guest and the VMM.

This arrangement allows relatively complex operations, such as OS-specific system

call proxying, to be located in user-mode shim code, instead of the VMM. It also

facilitates extensibility, providing a convenient place to add custom or OS-specific

functionality without modifying the VMM.

Shim Memory. In memory, the shim consists of both cloaked and uncloaked re-

gions, each with its own distinct code, data and stack space. Each application thread

has its own shim instance, and all thread-specific data used by the shim is kept in

thread-local storage, preventing conflicts between different instances.

The cloaked shim is multi-shadowed like the rest of the application. It is re-

sponsible for tasks where trust is required to maintain protection, such as providing

well-defined entry and exit points for control transfers, and moving data between

cloaked and uncloaked memory securely. The cloaked shim also includes a cloaked

thread context (CTC) page, which is set aside for the VMM to store sensitive data

used for control transfers. This includes areas for saving register contents, a table of

entry points to shim functions, and the identity of the shadow context containing the

shim.

The uncloaked shim contains buffer space that provides a neutral area for the

kernel and application to exchange uncloaked data. It also contains simple trampoline

code to facilitate transitions from the kernel to cloaked code. Nothing in the uncloaked
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shim is trusted or necessary for protection. If its code or data is corrupted, it will

merely cause the application to crash.

Hypercall Interface. The VMM exports a small hypercall interface to the shim.

Uncloaked code is allowed to invoke operations to initialize a new cloaked context

(used to bootstrap). It can also make calls to enter and resume cloaked execution.

Since control can be transferred only to an existing cloaked context, these calls can

be initiated safely by untrusted code. Cloaked code can make hypercalls to cloak

new memory regions, unseal existing cloaked data, create new shadow contexts, and

access other useful interfaces, such as metadata cache operations.

Loading Cloaked Applications. To start a cloaked application, a minimal loader

program is run with the shim linked into a distinct portion of its address space. The

actual loader is part of the shim; before taking steps to load the program, the shim

must bootstrap into a cloaked context.

To create a new shadow context, the shim issues a hypercall with a pointer to itself

and protection metadata containing hashes for all pages associated with cloaked code

and data; see Section 4.7 for details. The VMM uses this metadata to verify its

integrity, as the cloaked shim will have access to the address space of the cloaked

application. Thus, to bootstrap a secure protection domain for the application, the

shim must be trusted; i.e., not malicious to the application. The call to create a new

context also takes a pointer to a portion of thread-local storage in which the VMM

can setup a new CTC. Once this setup is complete, the VMM transfers control to

start execution in the cloaked shim.

The cloaked shim then runs its loading routine, which reads the application binary,

and maps appropriate sections into memory. When creating anonymous memory

regions or memory-mapping protected files, the shim performs hypercalls to cloak

their corresponding virtual memory ranges. After the cloaked application has been

loaded, it may launch additional programs. On a subsequent execve, if the target

program is cloaked, the loader program is prepended to the exec call so that the new

program will also be cloaked.
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Identity Management. To switch between shadow page tables appropriately, the

VMM must employ some reliable procedure for identifying shadow contexts uniquely.

Precise identification is challenging – contexts are associated with guest-level process

abstractions, and scheduling is controlled by the OS, not the VMM. For example, the

guest kernel may switch contexts while handling a fault or system call.

Existing approaches for VMM tracking of guest-level processes, such as monitor-

ing assignments to the current page table root in Antfarm [63], work fairly well, but

are not foolproof. Other schemes, such as accessing guest OS state at fixed kernel

addresses (e.g., Linux current pointer), or having the VMM store identifying in-

formation at some fixed virtual address, are generally fragile, or assume application

pages can be pinned in physical memory. Most importantly, these approaches cannot

be guaranteed to work in the presence of an adversarial OS. Overshadow takes an

alternative shim-based approach that avoids these problems.

The VMM maintains a separate shadow context for each application address space,

for which it assigns a unique address space identifier (ASID). Each address space may

contain multiple threads, each with its own distinct cloaked thread context. When

the shim begins execution, it makes a hypercall to initialize its CTC. During this

initialization, the VMM writes the ASID and a random value into the CTC, and

returns the ASID to the caller. The ASID value is not protected, and can be used

by the uncloaked shim. However, since the CTC is cloaked, the random value is

protected, and cannot be read by the uncloaked shim.

Shim hypercalls that transition from uncloaked to cloaked execution are self-

identifying. The uncloaked shim passes arguments to the VMM containing its ASID,

and the address of its CTC. The hypercall handler verifies that the CTC contains

the expected random value, and also that its ASID matches the specified value. Note

that the CTC resides in ordinary, unpinned application virtual memory. If the hy-

percall handler finds that the GVPN for the CTC is not currently mapped, it returns

a failure code to the uncloaked shim, which simply touches the page to fault it back

into physical memory, and then retries the hypercall.
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Figure 4.3: Control Flow for Handling Faults and Interrupts

4.5.2 Faults and Interrupts

While a cloaked application is executing, OS intervention is required to service faults

or interrupts, such as application page faults and virtual timer interrupts. Figure 4.3

illustrates the flow of control for handling a fault from a cloaked application, involving

the application, its associated shim, the guest kernel, and the VMM. The procedure

for handling a virtual interrupt is essentially identical.

The fault occurs in step 1, and control is transferred to the VMM. In step 2, the

VMM saves the contents of all application registers to the CTC in the cloaked shim.

The VMM then zeros out the application’s general-purpose registers to prevent their

contents from being leaked to the OS. Next, the return instruction pointer (IP) and

stack pointer (SP) registers are modified to point to addresses in the uncloaked shim,

setting up a simple trampoline handler to which the kernel will return after servicing

the fault. Finally, the VMM transfers control to the kernel.

The kernel handles the fault as usual in step 3, and then returns to the trampoline

handler in the uncloaked shim setup in step 2. In step 4, this handler performs a self-

identifying hypercall into the VMM to resume cloaked execution. In step 5, the VMM

restores the registers saved in step 2, and returns control to the faulting instruction

in the cloaked application.
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Figure 4.4: Control Flow for Handling System Calls

Note that the active shadow page table must be switched when transitioning be-

tween uncloaked and cloaked contexts. Two shadow page table switches are required

to handle a fault, in steps 2 and 5.

4.5.3 System Call Redirection

Unlike faults and interrupts, which are intended to be transparent to the application,

system calls represent an explicit interaction between the cloaked application and

the kernel. A system call is issued by the application using the standard OS calling

convention. Figure 4.4 depicts the flow of control for handling a system call from a

cloaked application, involving the application, its associated shim, the guest kernel,

and the VMM. Note that the transitions involved in performing a system call are a

strict superset of the transitions presented for handling a fault in Figure 4.3.

In step 1, the cloaked application performs a system call, and control is transferred

to the VMM. In step 2, the VMM saves the contents of all application registers to

the CTC in the cloaked shim. The IP is set to an entry point in the cloaked shim

corresponding to a system call dispatch handler; similarly, the SP is set to a private

stack in the cloaked shim for executing this handler. The VMM then redirects control

to the dispatch handler in the cloaked shim.

In step 3, the cloaked dispatch handler performs any operations required to proxy
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the system call on behalf of the application. For some system calls, this may involve

marshalling arguments, copying them to a buffer in the uncloaked shim. The dispatch

handler then reissues the system call, substituting the marshalled arguments in place

of the original application-specified values. As before, the VMM again intercepts the

system call.

In step 4, the VMM saves the contents of all application registers in the CTC.

Note that the CTC contains two distinct register save areas: one for the application

registers saved earlier in step 2, and one for the shim registers saved in this step.

The VMM then scrubs the contents of any application registers that are not required

by the kernel system call interface. The return IP and SP are modified to point to

addresses in the uncloaked shim, setting up a simple trampoline handler to which the

kernel will return after executing the system call. Finally, the VMM transfers control

to the kernel.

The kernel executes the system call as usual in step 5, and then returns to the

trampoline handler in the uncloaked shim setup in step 4. In step 6, this handler

performs a self-identifying hypercall into the VMM to enter cloaked execution. In

step 7, the VMM restores the shim registers saved in step 4, and resumes execution

in the cloaked dispatch handler.

The cloaked dispatch handler continues execution in step 8, performing any op-

erations required to finish proxying the system call. For some calls, this may involve

unmarshalling result values, and copying them into cloaked application memory. The

dispatch handler then performs a hypercall into the VMM, requesting resumption of

the cloaked application. In step 9, the VMM restores the application registers saved

in step 2, and returns control to the instruction after the original system call in the

application.

As in the case of fault handling, only two transitions require shadow page table

switches between uncloaked and cloaked contexts, during steps 4 and 7.
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4.6 Adapting System Calls

Cloaking necessarily changes the way the OS can manage process memory – it cannot

modify it or introduce any sort of sharing without application help. It also changes

the way the OS transfers control – it can only branch to well-defined entry and exit

points within the application. Accommodating these changes requires adapting the

semantics of a variety of system calls.

4.6.1 Pass-through and Marshalling

A majority of system calls can be passed through to the OS with no special handling.

These include calls with scalar arguments that have no interesting side effects, such

as getpid, nice, and sync. The shim need not alter arguments to these system

calls, so the cloaked shim is bypassed altogether, resulting in control flow like that in

Figure 4.3. Note that the VMM itself is not aware of system call semantics; during

initialization, the shim simply indicates which system call numbers can be bypassed.

Many other calls have non-scalar arguments that normally require the OS to

read or modify data in the cloaked application’s address space, for example, path

names and struct sockaddrs. Such arguments are marshalled into a buffer in the

uncloaked shim, and registers are modified so the system call uses this buffer as the

new source (or destination) for non-scalar data. After the system call completes,

results are copied back into the cloaked application, if necessary. Implementing all

this manually would be tedious and error prone, so we instead generate this code

automatically from a simple specification, and the resulting code is used by the shim.

4.6.2 More Complex Examples

Several system calls require changes to resolve incompatibilities between cloaked se-

mantics and normal OS semantics. We first describe system calls that require non-

trivial emulation, and then discuss thread creation and signal handling.
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Emulation. We are forced to emulate the semantics of several system calls. For

example, pipe normally creates a queue in the kernel for communicating bytes. We

cannot easily protect this, so instead we emulate a pipe between cloaked applications

with a queue in cloaked shared memory. To preserve the normal blocking semantics

of calls such as read, write, and poll, reads and writes are performed over the pipe

as normal, except that the sender sends zeros instead of actual data. For the receiver,

zeros are read, then actual data is copied from the protected queue. Support for

futex (Linux fast mutex) calls is another example of where emulation is required, as

the normal OS implementation involves direct access to process memory.

Thread Creation. Handling the clone and fork system calls is particularly in-

teresting, since these are intimately related with how the shim manages resources. A

clone call begins by allocating thread-local storage for the new thread. Next, the

child’s cloaked thread context (CTC) is setup by making a copy of the parent’s CTC,

and fixing all thread-local pointers for the child. Finally, it changes the IP and SP for

entering cloaked mode in the child’s CTC, arranging for the child to start executing

in a child start

f

unction located in the child’s shim, which will complete its initialization.

Normally, the CTC would be modified by the VMM on a switch from cloaked to

uncloaked mode. However, in this case, the child’s CTC is not currently being used.

Thus, on a clone system call, only the parent’s CTC is modified. We also setup

the uncloaked stack that will be used by the cloned thread when returning from the

system call, so that it will start running the new cloaked context. After returning

from the system call, the parent thread returns to the original execution context. The

child thread begins execution in child start

,

as described above.

Signal Handling. Normal Unix signal-handling semantics are incompatible with

cloaking, as we cannot allow the operating system to transfer control into an arbitrary
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section of cloaked code. Keeping portions of the shim non-preemptible also simplifies

its implementation.

When the application registers a signal handler with signal, the shim emulates

it, registering the handler in its own table. All actual signal handlers (those reg-

istered with the kernel) use a single handler located in the uncloaked shim. This

signal handler makes a hypercall to the VMM immediately upon receiving a signal,

indicating which shadow context received the signal, the signal that occurred, and

any additional signal parameters.

The VMM examines the cloaked context and checks the signal status to deter-

mine in which context the signal occurred: the cloaked shim, uncloaked shim, cloaked

application, or other uncloaked code. If the signal occurred when the cloaked appli-

cation was executing, the VMM transfers control to a well-defined signal entry point

in the shim, with relevant signal information. If the signal occurred while the shim

was executing, the VMM further checks a flag in the CTC to determine whether to

safely rollback execution to the last application system call entry point, or to defer

the signal delivery until shim exit, when execution has effectively returned to the

application.

4.6.3 File I/O

Extending Overshadow’s cryptographic protection to files on disk requires interposing

on I/O related system calls. Unprotected files are handled using simple argument

marshalling, while protected files must be adapted to utilize cloaking.

Encrypted file I/O for cloaked applications is implemented in the shim using

mmap. For example, read and write system calls are emulated by copying data

to/from memory-mapped buffers. File data is always mapped using the MAP_SHARED

flag, to ensure that other processes that may open the same file obtain a consistent

view. By transforming all file I/O into memory-mapped I/O, file data is decrypted

automatically when it is read by a cloaked application, and encrypted automatically

when it is flushed to disk by the kernel. To allow the VMM to protect integrity and

ordering of file data, the shim may need to load protection metadata from disk when
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the file is opened; this is described in detail in Section 4.7.6. For efficiency, the shim

maintains a cache of mapped file regions; our current implementation maps regions

using 1MB chunks to amortize the cost of the underlying mmap and munmap calls.

Using mmap for file I/O obviates the need to implement any cryptography in the

shim. Also, encryption and decryption are performed only when necessary. An ap-

plication can read and write portions of a file repeatedly without causing additional

decryptions. Similarly, data is only encrypted when the OS flushes it to disk.

A single-page Overshadow header is prepended to each cloaked file. This header

contains the actual file size, which may differ from the current on-disk size due to the

1MB mapping granularity. Each shim using the file maps its header using a shared

mmap, to properly emulate operations such as fstat and lseek. The shim also tracks

all operations that create or manipulate file descriptors, such as dup, and maintains a

table of all open files, their offsets, and whether they are cloaked. This table is kept

in a shared anonymous region to properly track and share descriptors across process

forks.

4.7 Managing Protection Metadata

Overshadow introduces OS-neutral abstractions for cloaking both persistent and non-

persistent resources, such as files and private memory regions. For each resource, pro-

tection metadata, such as (IV, H) pairs, must be managed to enforce privacy and in-

tegrity, ordering, and freshness (to prevent rollback). Figure 4.5 provides an overview

of the components involved in metadata protection. We begin by examining how

metadata is stored and mapped to protected objects, then consider how it is used to

enforce protection.

4.7.1 Protected Resources

Each cloaked resource, such as a file or anonymous memory region, is associated with

a unique 64-bit resource identifier (RID). Each RID has a corresponding resource

metadata object (RMD) that stores metadata needed to decrypt, check integrity, and
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Figure 4.5: Protection Metadata Management

preserve ordering. Concretely, an RMD is an ordered set of (IV, H) pairs, one per

encrypted page, addressed by a 32-bit resource page number (RPN). In our current

system, each RMD is implemented with a data structure similar to a three-level page

table to efficiently support large, potentially-sparse address spaces, up to 256GB.

When a resource is mapped into memory, its RMD is loaded into the metadata

cache (MDC) in the VMM. A single MDC caches metadata for all cloaked resources

mapped by the guest. This design ensures metadata consistency for shared objects,

such as files and shared memory regions. When a resource is not in use by any process,

its RMD is stored on disk in a metadata file. The MDC provides primitive operations

to get, set, and invalidate metadata entries, as well as higher-level operations for

cloning and persisting metadata, described later in this section.

4.7.2 Protected Address Spaces

Access control and sharing for cloaked resources are determined strictly by a unique

security identifier (SID) that identifies an Overshadow protection domain. In the

current implementation, a SID is associated with an application instance, which may

contain multiple processes. Processes with the same SID have common access to

cloaked resources. The address space for a cloaked process is identified by a unique

address space identifier (ASID) that defines its shadow context. Portions of multiple
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cloaked resources are typically mapped into the guest virtual address space associated

with a given ASID.

The VMM maintains a per-ASID cache of resource mappings in its virtual address

space, called the metadata lookaside buffer (MLB). The MLB is used to map a virtual

address to a resource. An MLB entry has the form (start,end) 7→ (RID, RPN), where

start and end denote the virtual address range into which the resource is mapped, RID

denotes the resource being mapped, and RPN denotes the first RPN in the mapping.

For example, if file setspace.styfoo.txt has RID 4, and its third page is mapped into

the first GVPN in the virtual address space, this is modeled as (0, 4096) 7→ (4, 2).

The shim is responsible for keeping a complete list of resource mappings for both

cloaked and uncloaked memory, updating the MLB on any change. The shim resides

in the same guest virtual address space, and interposes on all calls that modify it,

such as mmap, munmap, and mremap in Linux; more details appear in Section 4.5. By

delegating this responsibility to the user-mode shim, the VMM implementation is

kept simple and OS-neutral.

On an MLB miss, the VMM performs an upcall into the shim to obtain the

required mapping, and installs it in the MLB, illustrated by the miss action in Fig-

ure 4.5. The mappings for the shim itself are pinned in the MLB, preventing recursion.

Note that even if some bug caused the MLB to have an incorrect mapping, it gener-

ally fails-closed; the wrong address range or cloaking status will cause decryption to

fail, or the application will end up accessing ciphertext, causing it to fail.

4.7.3 Page Decryption

When a process accesses a cloaked page in its shadow context, its ASID and GVPN

are known. If the page is unencrypted, then the memory access proceeds normally,

without any VMM intervention.

If the page is encrypted, the access will fault into the VMM, since the GVPN is

not mapped into the shadow for that ASID. The VMM looks up the faulting address

in the MLB, and uses the resulting (RID, RPN) to index into the MDC and fetch the

(IV, H) needed to decrypt and integrity check the page contents; see the find operation
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in Figure 4.5. The hash, check, and decrypt steps are performed using the protocol

described previously. If the decryption succeeds, and the page is marked writable,

(RID, RPN) is invalidated in the MDC. The page is then zapped, i.e., removed from all

shadows, and mapped into the current shadow for the ASID. The original application

access is then allowed to proceed.

There is one special case. Operating systems commonly zero the contents of a

page before mapping it into userspace, and applications depend on this initialization.

If an access is made to a GVPN that is not mapped in the current shadow, and the

(RID, RPN) for that page is not in the MDC, then this must be the first application

access to the page, and no decryption is necessary. We check that the page contents

are indeed zero-filled, and assuming this succeeds, the page is simply zapped and

then mapped into the current shadow, and the original memory access is allowed to

proceed.

Finally, the VMM stores the (RID, RPN) used for each decryption with the as-

sociated GPPN in the existing VMM pmap structure which stores GPPN-to-MPN

translations.

4.7.4 Page Encryption

When the guest kernel (or any context that doesn’t match the application SID) ac-

cesses a cloaked page, its GPPN is known, but its ASID and GVPN may not be

known. The access could originate from any guest context, e.g., during a virtual

DMA operation. If the page is already encrypted, then the memory access proceeds

normally, without any VMM intervention.

If the page is unencrypted, the access will fault into the VMM, since it is not

mapped in the current shadow. If the page is writable, the VMM generates a new

random IV; for a read-only page, the existing IV is reused. The VMM then encrypts

the page contents, and computes a secure hash H over the encrypted contents. It

stores the resulting (IV, H) in the MDC, at the (RID, RPN) previously associated

with the GPPN in the pmap during its last decryption. The page is then zapped and

mapped into the current shadow, and the original kernel access is allowed to proceed.
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4.7.5 Cloning Metadata

The MDC also provides operations to facilitate support for address space cloning, such

as clone or fork in Linux. Suppose a cloaked process forks a child. Immediately

after the fork, the parent and child processes share their private memory regions

copy-on-write (COW). Overshadow must ensure that the metadata associated with

all unmodified COW pages remains accessible and synchronized between the parent

and child.

When the fork occurs, each of the parent’s private RMDs is cloned eagerly for the

child, by copying all of its existing metadata entries, and assigning it a new RID. This

ensures that metadata for any pages encrypted prior to the fork remain available to

the child, even if the parent later modifies them.

However, suppose the parent encrypts a COW-shared page after the fork; a sub-

sequent access by the child would not find the metadata required for decryption. One

approach is to forcibly encrypt all pages in the parent during the fork, but this would

be extremely inefficient, since few private pages remain encrypted in practice, unless

the system is swapping heavily. Another option is to store a complete backmap for

every GPPN, containing all (ASID, GVPN) pairs that map it, but this would be

extremely complex.

The solution we implemented is to mirror the application’s process tree in the

MDC; each RMD has pointers to its parent, first child, and next sibling RMDs, if

any. The MDC also maintains a global 64-bit version number, which is incremented

on every RMD creation and page decryption. A version is stored with each RMD,

set to the global version when it is created. Similarly, a version is stored along with

the (RID, RPN) in the pmap for each GPPN, and set to the global version each time

it is decrypted. Whenever a page is encrypted, the (IV, H) is stored at the (RID,

RPN) associated with the GPPN, and also recursively propagated to any child RMDs

with versions greater than the GPPN’s version. Thus, metadata is propagated to all

children with pages whose contents existed prior to the fork, as desired. A subtle point

worth noting is that when the parent modifies a COW page, it will be encrypted (and

its metadata propagated to the child) prior to the modification, since the guest OS

must first read the page to make a private copy for the parent during the COW fault.
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4.7.6 Persisting Metadata

RMDs associated with non-persistent memory regions (e.g., application stack, data,

or anonymous shared memory), can be discarded when no longer in use. However,

RMDs associated with persistent content, such as file-backed memory regions, must

be saved to disk. Each cloaked file has an associated metadata file in the guest

for storing its RMD persistently. Metadata file integrity is protected by a message

authentication code (MAC) stored in the file, computed using a key derived from the

VMM’s secret key KVMM. The current implementation uses HMAC with SHA-256.

When a process opens a cloaked file, the shim makes a hypercall to determine if

the metadata for its RID is in the MDC. If the metadata is not present, the shim

performs a hypercall to allocate a new RMD for that RID, reads the entire metadata

file, and passes its contents to the VMM, which verifies its integrity, as illustrated

by the load action in Figure 4.5. Frequently reloading the RMD or recomputing its

MAC might raise efficiency concerns. This can be optimized by keeping RMDs cached

longer in the MDC, instead of evicting them eagerly after they have been committed

to disk. Another option would be to store MACs in a Merkle hash tree [85], allowing

for more efficient verification and updates.

To ensure freshness, a 128-bit generation number is also written to the metadata

file, and protected by the MAC. The VMM checks this number against a master list

of valid generations when the file is loaded. This number is stored in the MDC as part

of the RMD. Just prior to eviction, it is incremented in both the RMD and master

list. The master list is stored in the guest, protected by a MAC and its own counter

which is stored outside of the guest by the VMM.

RMDs are written to metadata files by the Overshadow file daemon (osfd). The

osfd communicates with the VMM via a simple hypercall interface, polling for meta-

data that should be evicted from the MDC and persisted to disk. The daemon extracts

the metadata for all of its valid RPNs, obtains their MAC as generated by the VMM,

commits everything to disk, and finally evicts the RID from the MDC; refer to the

evict action in Figure 4.5. Notably, the osfd daemon is not trusted, and all data it

handles is protected cryptographically. Its compromise would sacrifice only system

availability, not data privacy or integrity.
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4.7.7 Key Management and Access Control

Our usage model during Overshadow development has been to set up a clean VM

and cloak an unmodified application in place. However, one could easily use our tools

from outside the VM to convert existing Linux packages (e.g., rpm files) by encrypting

their files, and adding corresponding metadata files to the package.

Given the simple primitives in our architecture, a wide range of access control

policies could be supported, as SIDs provide a basic primitive for identifying subjects,

and RIDs provide a basic primitive for identifying objects. We currently use a simple

model that assumes mutual trust between all parts of an application and dynamically

assigns SIDs at startup.

Our current implementation performs all encryption using a single set of encryp-

tion and MAC keys. It is important to note that key management and access control

in Overshadow are orthogonal. The VMM arbitrates who is allowed to access what

resources, regardless of the key with which it was encrypted. Additional keys could

be added to support delegation of administrative tasks; e.g., a key per RID would

allow different parties to package their own sets of encrypted files outside of the VM.

4.8 Evaluation

The current Overshadow implementation realizes the full system described in earlier

sections. It supports cloaking for all application memory regions – private and shared,

anonymous and file-backed. We demonstrate that the system is practical by present-

ing quantitative results for experiments running substantial, unmodified applications

on an unmodified Linux operating system.

4.8.1 Implementation

The Overshadow implementation is based on a version of the VMware VMM for 32-

bit x86 processors that uses binary translation for guest kernel code [5]. The modified

VMM was built as a VMware Workstation binary running in a “hosted” configuration
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on top of an existing Linux host OS.2 Since multi-shadowed memory cloaking does

not depend on specific features of the VMware VMM, it could also be realized in

other virtualization platforms.

Our VMM modifications included approximately 4600 new lines of code, plus 2000

additional lines from publicly-available cryptographic routines. The shim handles

nearly all system calls supported by the Linux 2.6 kernel interface, and is sufficiently

complete to run large, unmodified Linux programs. The shim consists of 13,100 lines

of code, including roughly 8500 lines of new code, and 4600 lines of standard library

and utility routines.

Changes would be required to enable hardware-assist for x86 virtualization, such

as Intel VT [89] and AMD SVM [6]. For example, system call transitions between

guest user-mode and kernel-mode are always trapped by a binary-translating VMM,

but are not typically trapped by a hardware-assisted VMM. Forcing system calls to

trap for Overshadow interposition would likely introduce additional overhead. Never-

theless, we expect that hardware support for nested page tables will accelerate many

Overshadow operations, improving overall performance. Reducing the cost of hard-

ware context switches is also desirable. For Overshadow, the ability to redirect a trap

to guest user-mode code would be ideal, making it possible to redirect system calls

to handlers in the shim without dynamic VMM intervention.

4.8.2 Performance

All experiments were conducted on a Dell Precision 390 host configured with a

2.66GHz Intel Core2 Duo processor and 4GB RAM. The VM was configured with

one CPU and 2GB memory running an unmodified Fedora Core 7 guest OS (Linux

2.6.21-1 kernel).

Microbenchmarks. Figure 4.6 presents the results of microbenchmarks that mea-

sure the overhead of system call redirection and cloaking. Each data point plots the

2In this configuration, the VMM is not fully protected from the Linux host OS. Secure deployment
of Overshadow would require running the VMM directly on hardware, like VMware ESX Server [124],
Xen [15], or IBM z/VM.
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Figure 4.6: Microbenchmarks. Percentage of uncloaked performance attained with
full cloaking of all memory regions and files.

ratio of cloaked to uncloaked performance, using the mean over the best 5 of 7 trials

for both. In these experiments, all the benchmarks exhibited low runtime variability

(standard deviation within 2.4% of the mean).

The ppid and resuid benchmarks measure raw system call overheads, for both

getppid, implemented using pass-through, and getresuid, requiring simple argu-

ment marshalling. Cloaking clearly increases system call costs significantly (by a

factor of 3 to 5), primarily due to the extra pair of address-space switches on transi-

tions between cloaked and uncloaked guest contexts.

The forkw benchmark highlights the overhead of process creation, destruction,

and synchronization using fork and wait. Cloaking introduces overhead due to

encryption and decryption for copy-on-write (COW) pages, as well as execution in

the shim handler and VMM during process creation.

The mmapw benchmark measures the cost of writing one word to each page in a

large file-backed memory region, and flushing the data to disk. The cloaking overhead

is dominated by the cost of encryption during disk write operations. mmapr measures

the cost of reading one word from each page of a large memory region backed by the

file written by mmapw. This benchmark incurs page faults, but does not perform

disk I/O, as pages containing the file data still reside in the guest buffer cache. In

this experiment, cloaking does not cause decryptions because these pages remain

accessible to the application in plaintext form during virtual DMA (see Section 4.3.3).
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Figure 4.7: SPEC CINT2006 Benchmarks. Percentage of uncloaked performance
attained with full cloaking of all memory regions and files (gray), and cloaking anonymous
memory regions only (white).

The results indicate that cloaking approximately doubles the cost of a minor page

fault.

Application Benchmarks. Figures 4.7 and 4.8 present results from the spec

cpu2006 integer suite and aggressively-loaded Linux web and database servers. All

data points are averages over at least three trials. Despite high overheads on some mi-

crobenchmarks (Figure 4.6), real applications perform additional work that amortizes

these costs.

Figure 4.8 plots the geometric mean for the entire spec suite, showing that overall

the spec benchmarks incur very little overhead from cloaking. When we consider the

spec benchmarks individually (Figure 4.7), only gcc has non-trivial overhead. This

overhead comes from gcc’s relatively high system call and page fault rates.

The web server experiment used the standard prefork configuration of apache

2.2.4, with caching disabled. A remote host generated client requests for fetching

a 28 KB HTML file using the ab benchmarking tool with 50 concurrent connec-

tions. The client and server were connected by a 100Mbps (apache-100m) or 1Gbps

(apache-1g) switch. We measured the total number of requests served per second.

With full cloaking, performance for apache-100m was within 1% of uncloaked per-

formance. When using the 1 Gbps switch (apache-1g), fully-cloaked performance
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Figure 4.8: Benchmark Summary. Percentage of uncloaked performance attained
with full cloaking of all memory regions and files (gray), and cloaking anonymous memory
regions only (white).

degraded relative to the uncloaked server. These results are explained by the fact that

cloaked applications have higher CPU occupancy; for the more realistic load (few web

servers saturate 100 Mbps Internet links), the processor was not fully utilized, and

cloaking didn’t affect performance. With the network bottleneck removed, cloaking

scales well until it saturates the CPU. Naturally, this saturation point will occur later

for multicore VM configurations (our experiments utilize only one processor).

The database workload uses the dbt2 transactional database performance test

suite running with a PostgreSQL 8.2.4 server. This test simulates a wholesale parts

supplier with 22 warehouses and 11 concurrent clients at the peak throughput; the

clients run uncloaked in the same VM as the server. We measured the number of “new

order” transactions per minute during steady-state operation, the standard metric

from this suite. With full cloaking enabled for this 8.6 GB database, performance

was more than 70% of the uncloaked baseline.

While there are ample opportunities for optimization, the current implementation

of full cloaking is practical for many realistic workloads. For applications that require

only anonymous regions to be cloaked, performance is uniformly above 80% of the

baseline.
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4.9 Future Work

A variety of interesting research opportunities remain in the areas of retrofitting

protection to legacy operating systems, and leveraging multi-shadowing to define

new protection models. We also describe extensions to our current implementation.

Retrofitting Protection. Applications are not designed with the expectation that

the operating system can become hostile. A more formal treatment of how an OS

might mislead an application – and how such attacks can be mitigated – is an in-

teresting topic for future research. For example, an application might be misled into

revealing information if it is run with a particular uid. One possible defense is to

provide a “reverse sandbox” that filters system calls to prevent such attacks.

We are also investigating a trusted path for user interface devices, as this would

enable complete protection of many compelling applications, including web, email,

and VOIP clients. In principle, user interaction could be protected in the current im-

plementation if the application uses a remote display system that renders to software

frame buffers.

Protecting Device Memory. Many I/O devices present a memory-mapped inter-

face to software. For some devices, multi-shadowing can be employed to protect the

contents of “physical” device memory from being inspected or modified by untrusted

software. For example, an interactive VM typically provides a virtual high-resolution

graphics display that uses a memory-mapped frame buffer. A multi-shadowed frame

buffer could help implement a trusted path, by ensuring that a cloaked application’s

output remains private. While this approach can be used to prevent the operat-

ing system from observing raw device memory, additional work is needed to cloak

off-screen display images and other memory used by window managers and graphics

subsystems.

Fine-Grained Cloaking. Applications can be modified to apply multi-shadowing

selectively, cloaking only sensitive pages. For example, two shadow contexts could

be defined for each application: a protected shadow containing cloaked code and
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data, and an unprotected shadow for uncloaked code and data. In this simple model,

cloaked memory can be accessed only by cloaked code. A shadow context is identified

by the virtual address of the current instruction pointer.

In order to interpose on transitions between these shadow contexts, a VMM can

change the execute permission of pages in the shadow page tables (independent of

guest PTE permissions). In the unprotected shadow, all protected pages are marked

non-executable; similarly, in the protected shadow, all unprotected pages are marked

non-executable. When the application branches between protected and unprotected

code, the resulting permissions-based page fault will trap into the VMM, allowing it

to switch between shadow page tables.

Storage Extensions. Our current implementation has a few storage-related lim-

itations. First, the RID for a file is simply constructed from its device and inode

numbers; this is problematic on network file systems where uniqueness can’t be ex-

pected.

Next, Overshadow currently offers no protection for file system metadata; conse-

quently, the OS could maliciously swap inputs on an application. A simple solution

is to provide a secure namespace, associating pathnames with (RID, MAC) pairs.

This could be implemented by employing a protected daemon or shared file, which

would be updated on file operations such as rename, create, and unlink. More

sophisticated approaches have been explored by others [45, 39, 72].

Finally, we currently don’t maintain consistency between file system data and

metadata in the event of a system crash. If the guest OS crashes before we commit

the metadata for a given file, or before the data for a given file is committed to disk,

we could end up in a state where data and metadata are out of sync. We believe all

of these issues are tractable, but a full treatment remains a topic for future work.
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4.10 Related Work

Memory virtualization enables transparent remapping of guest physical pages. Pre-

vious systems have leveraged this ability for transparent swapping [19, 124], trans-

parent page sharing [19, 124], transparent page migration across NUMA nodes [19],

and transparent VM migration across physical hosts [24, 90]. Overshadow takes ad-

vantage of this extra level of indirection to provide isolated, context-dependent views

of guest physical memory.

Many prior systems have attempted to tackle the problem of providing a higher-

assurance execution environment on commodity platforms. All have aimed to elim-

inate the need to trust commodity operating systems with the security of sensitive

data.

Intel’s LaGrande Technology (LT) [59] provides hardware mechanisms for isolat-

ing a portion of a machine’s address space to create orthogonal protection domains

within the guest. The NGSCB [37] (formerly Palladium) architecture proposed using

this functionality to split commodity systems into low-assurance and high-assurance

partitions. The low-assurance partition would run a commodity operating system

(Windows); the other, a simpler trusted operating system (the Nexus). Applications

would correspondingly be split into a small trusted part (the agent, run under the

Nexus) and the untrusted part, run on the commodity OS.

Proxos [114] takes a similar, but more backwards-compatible approach. It splits

the system into multiple VMs, one running an untrusted commodity OS, the other(s)

running trusted, application-specific operating systems. Sensitive applications are run

in a trusted VM, but still interact with resources in the untrusted VM via a process

that proxies system calls for it, manipulating resources on its behalf. The Terra [41]

architecture proposes moving the entire application into a separate VM with its own

application-specific software stack tailored to its assurance needs. While Overshadow

takes an OS-level approach to application protection, unlike all of these earlier sys-

tems, it does not introduce any additional resource management mechanisms or new

operating systems.
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Retrofitting protection via an encryption layer is a familiar concept from net-

working. In storage, systems like SUNDR [72] and Sirius [45] have examined se-

curing block and file-level storage on untrusted substrates, and similar work exists

for databases [82]. However, this approach is rarely encountered in the OS literature,

with the exception of architecture-level research such as XOM [74, 76] and SP [32, 70].

XOM and SP also provide a dual encrypted-unencrypted view of memory, like Over-

shadow, though they achieve this through custom processor architectures, and target

a threat model where hardware attacks are possible, i.e., main memory is untrusted.

Overshadow considers only software attacks, but works with off-the-shelf hard-

ware. Compared to architecture-level approaches, Overshadow also gains substan-

tial flexibility by being software-based. XOM requires applications and/or the OS

to be substantially modified or rewritten [74]. SP also requires applications to be

rewritten, explicitly specifying which code and data to protect. While SP does not

need OS modifications, it supports only one protection domain per device [70]. In

contrast, Overshadow makes integration with unmodified operating systems and ap-

plications feasible, and enables sharing between protection domains. Nevertheless,

Overshadow’s software mechanisms could be combined with more hardware-centric

approaches to provide similar benefits.

We have developed Overshadow as a means of enhancing security in commodity

systems, where redesigning applications and using a high-assurance OS [54, 104] is

not an option. However, we believe cloaking is useful as a more general OS abstrac-

tion, with novel properties not afforded by normal memory protection. In particular,

cloaking provides an OS-level analog to end-to-end encryption in networks, eliminat-

ing the need to trust those pieces of the system that are merely responsible for moving

data from one place to another, versus those that are actively using that data.
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Conclusion

In this thesis we have explored three major paradigms for enhancing operating system

security using the new capabilities afforded by virtualization technology.

First, we presented a flexible architecture for trusted computing, called Terra.

Terra allows applications to run in an “open box” VM with the semantics of a mod-

ern open platform, or in a “closed box” VM with those of dedicated, tamper-resistant

hardware. The key primitive that Terra builds on is a trusted virtual machine mon-

itor (TVMM). The TVMM mechanisms allow Terra to partition the platform into

multiple, isolated VMs. Each VM can tailor its software stack to its security and

compatibility requirements. We examined the primitives the TVMM provides for

building closed-box VMs, in particular those required to support “attestation,” the

mechanism used to cryptographically identify the contents of closed-box VMs to re-

mote parties. We described how to efficiently implement these primitives. We imple-

mented these primitives in a prototype implementation of Terra and built a selection

of applications using this prototype that demonstrate its capabilities. We believe that

the closed-box VM abstraction provided in the Terra architecture forms the basis for

a truly general-purpose trusted computing platform.

Next, we explored virtual machine introspection, an approach to intrusion detec-

tion which co-locates an IDS on the same machine as the host it is monitoring and

leverages a virtual machine monitor to isolate the IDS from the monitored host. The

activity of the host is analyzed by directly observing hardware state and inferring
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software state based on a priori knowledge of its structure. This approach allows the

IDS to: maintain high visibility, provides high evasion resistance in the face of host

compromise, provides high attack resistance due to strong isolation, and provides

the unique capability to mediate access to host hardware, allowing hardware access

control policies to be enforced in the face of total host compromise. We showed

that implementing our architecture is practical and feasible using current technol-

ogy by implementing a prototype VMI IDS and demonstrating its ability to detect

real attacks with acceptable performance. We believe VMI IDS occupies a new and

important point in the space of intrusion detection architectures.

Finally, we presented Overshadow, a system that cryptographically isolates an ap-

plication inside a virtual machine from the operating system it is running on, offering

another layer of protection for application data, even in the face of total OS compro-

mise. This capability is enabled by multi-shadowing, a novel technique for presenting

different views of “physical” memory in virtualized systems. This allows memory to

be cloaked, so that it appears normal to an application, but encrypted to the op-

erating system. Cloaking supports a separation of responsibilities for isolation and

resource management, allowing the use of a complex commodity operating systems

to manage application virtual memory and other resources, while relying on a much

simpler hypervisor to ensure data privacy and integrity. Unlike previous approaches

to enhancing assurance in commodity systems, Overshadow is backwards-compatible,

protecting a broad range of unmodified legacy applications, managed by unmodified

commodity operating systems. While Overshadow is not a panacea, we believe it

demonstrates a promising approach to enhancing data security in commodity com-

puting environments.

While the face of the computing landscape will continue to change, and thus the

role of virtualization with it, we believe that the paradigms presented here represent

fundamental architectural patterns that will continue to have relevance in virtualized

platforms for decades to come.
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