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A central challenge of artificial intelligence is to create machines
that can learn from their own experience and perform at the level of
human experts. Using an evolutionary algorithm, a computer pro-
gram has learned to play chess by playing games against itself. The
program learned to evaluate chessboard configurations by using
the positions of pieces, material and positional values, and neural
networks to assess specific sections of the chessboard. During
evolution, the program improved its play by almost 400 rating
points. Testing under simulated tournament conditions against
Pocket Fritz 2.0 indicated that the evolved program performs above
the master level.
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I. INTRODUCTION

A fundamental approach to artificial intelligence has been
to capture human expertise in the form of programmed rules
of behavior that, when executed on a computer, emulate the
behavior of the human expert. Simulating the symptoms of
intelligent behavior rather than the mechanisms that underlie
that behavior was a natural outgrowth of the pressure to de-
sign useful software applications. This approach, however,
presents a significant limitation: artificial intelligence pro-
grams are restricted mainly to those problems that are, in
large part, already solved. The challenge of creating ma-
chines that can learn from their own experience without sig-
nificant human intervention has remained elusive.

Efforts in machine learning have often been focused on
reinforcement learning, in which a series of actions leads to
success or failure and some form of credit or blame for the
final result is apportioned back to each action [1]–[3]. In a
game of strategy, such as chess, the final result of win, lose,
or draw is associated with numerous decisions made from the
first to the final move. The credit assignment problem then
has been to find rules for rewarding “correct” actions and pe-
nalizing “incorrect” actions. It must be acknowledged, how-
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ever, that describing any particular action as correct or incor-
rect may be vacuous because the end result is typically a non-
linear function of the interaction of the moves played by both
players. The final result is more than simply the sum of the
attributed worth of each move in a series. Nevertheless, the
credit assignment approach has been adopted largely based
on a long-standing belief that there is insufficient information
in “win, lose, or draw” when referred to the entire game to
“provide any feedback for learning at all over available time
scales.”1

Experiments described here indicate that in contrast, a
machine learning algorithm based on the principles of Dar-
winian evolution [4] can adapt a chess program that plays
at a rating that is commensurate with a grandmaster without
relying on any specific credit assignment algorithms.2 Not
only is the outcome of any specific game not used as direct
feedback, only a point score reflecting performance over a
series of games is used to judge the performance of com-
peting programs. This protocol is adopted to indicate the
versatility of the evolutionary approach.

II. BACKGROUND

For more than 50 years, the game of chess has served as
a testing ground for efforts in artificial intelligence, both
in terms of computers playing against other computers and
computers playing against humans [5]–[12]. During these
five decades, the progress of chess programs in terms of
their measured performance ratings has been steady. This
progress, however, has not arisen mainly because of any
real improvements in anything that might be described as
“artificial intelligence.”

Instead, progress has come most directly from the increase
in the speed of computer hardware [13], and also straight-
forward software optimization. Deep Blue, the famous
computer program and hardware (32 computing nodes, each
with eight very-large-scale integrated processors) that de-
feated Kasparov in 1997, evaluated 200 million alternative

1A. Newell, quoted in [2].
2Earning an official designation of grandmaster requires competition in

sanctioned tournaments against other grandmasters.
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positions per second. By contrast, the computer that exe-
cuted Belle, the first program to earn the title of U.S. master
in 1983, was more than 100 000 times slower. Faster com-
puting and optimized programming allows a chess program
to evaluate chessboard positions further into the prospective
future. Such a program can then choose current moves that
can be expected to lead to better outcomes that might not
be seen by a program running on a slower computer or with
inefficient programming.

Chess programs rely typically on a database of opening
moves and endgame positions and use a mathematical
function to evaluate intermediate positions. This function
usually comprises features regarding the values assigned to
individual pieces (material strength), mobility, tempo, and
king safety, as well as tables that are used to assign values
to pieces based on their position (positional values) on the
chessboard. The parameters that govern these features are
set by human experts, but can be improved upon by using
an evolutionary algorithm. Furthermore, an evolutionary
algorithm can be employed to discover features that lead to
improved play.

To accomplish this, the evolutionary program described
here used three artificial neural networks (i.e., networked
layers of nonlinear processing elements) that were used
to evaluate the worth of alternative potential positions in
sections of the chessboard (front, back, and middle). The
procedure started with a population of alternative simulated
players, each initialized to rely on standard material and po-
sitional values taken from open-source chess programs, and
supplemented each player with the three neural networks.
The simulated players then competed against each other
for survival and the right to generate “offspring” through a
process of random variation applied to the standard parame-
ters and neural connection weights.

Survival was determined by the quality of play in a series
of chess games played against opponents from the same
population. Over successive generations of variation and
selection, the surviving players extracted information from
the game and improved their performance. The best-evolved
player was tested against Chessmaster 8000, a popular
commercial program, in 120 games and attained a rating that
was almost 400 rating points higher than the open-source
programs used to start the evolutionary learning process.
The evolved player was then tested in simulated tournament
conditions in 12 games (six as black, six as white) against
Pocket Fritz 2.0, a standard chess program that plays at a
rating of 2300–2350 (high-level master). The evolved player
won this contest with nine wins, two losses, and one draw.

III. METHOD

The rules for chess are well known and are found easily
on the Internet.3 A chess engine was provided by Digenetics,
Inc., La Jolla, CA, and extended for the current experiments.
The baseline chess program functioned as follows. Each
chessboard position was represented by a vector of length 64,

3http://www.uschess.org/beginners/letsplay.php

with each component in the vector corresponding to an avail-
able position on the board. Components in the vector could
take on values from

, where 0 represented an
empty square and the variables , , , , , and
represented material values for pawns, knights, bishops,
rooks, and the queen and king, respectively. The chess
engine assigned a material value to kings even though the
king cannot actually be captured during a match. The sign
of the value indicated whether or not the piece in question
belonged to the player (positive) or the opponent (negative).

A player’s move was determined by evaluating the pre-
sumed quality of potential future positions. An evaluation
function was structured as a linear combination of: 1) the sum
of the material values attributed to each player; 2) values de-
rived from tables that indicated the worth of having specific
pieces in specific locations on the board, termed “positional
value tables” (PVTs); and 3) three neural networks, each
associated with specific areas of the chessboard. Each piece
type other than a king had a corresponding PVT that assigned
a real value to each of the 64 squares, which indicated the
presumptive value of having a piece of that type in that
position on the chessboard. For kings, each had three PVTs:
one for the case before a king had castled, and the others for
the cases of the king having already castled on the kingside
or queenside. The PVTs for the opponent were the mirror
image of the player’s PVTs (i.e., rotated 180 ). The entries
in the PVTs could be positive and negative, thereby encour-
aging and discouraging the player from moving pieces to
selected positions on the chessboard. The nominal (i.e., not
considering the inclusion of neural networks) final evalua-
tion of any position was the sum of all material values plus
the values taken from the PVTs for each of the player’s
own pieces (as well as typically minor contributions from
other tables that were used to assess piece mobility and
king safety for both sides). The opponent’s values from
the PVTs were not used in evaluating the quality of any
prospective position.

Games were played using an alpha–beta search [14] of
the associated game tree for each board position looking a
selected number of moves into the future. With the excep-
tion of moves made from opening and endgame databases,
the minimax move for a given ply (two ply corresponds to
a move from each player) was determined by selecting the
available move that afforded the opponent the opportunity to
do the least damage as determined by the evaluation func-
tion on the resulting position. The depth of the search was
set to four ply to allow for reasonable execution times in
the evolutionary computing experiments (50 generations on
a 2.2-GHz Celeron with 128 MB of RAM required 36 h).
Fig. 1 shows the flowchart for a typical evolutionary algo-
rithm, and Fig. 2 shows the architecture for a simple neural
network. The search depth was extended in particular situ-
ations as determined by a quiescence routine that checked
for any possible piece captures, putting a king in check, and
passed pawns that had reached at least the sixth rank on the
board (anticipating pawn promotion), in which case the ply
depth was extended by two (following earlier work [15], [16]
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Fig. 1. Flowchart for the evolutionary algorithm. A population of
candidate chess-playing programs is created, perhaps completely
at random. These “parent” players are used to create offspring by
randomly varying their components. The worth (fitness) of each
parent and offspring is evaluated in head-to-head competition.
Selection is applied to eliminate those players that do not score
well relative to others in the population. The survivors become the
parents for the next iteration (generation).

that evolved strategies for the game of checkers). The best
move to make was chosen by iteratively minimizing or maxi-
mizing over the leaves of the game tree at each ply according
to whether or not that ply corresponded to the opponent’s
move or the player’s. The games were executed until one
player suffered checkmate, upon which the victor was as-
signed a win and the loser was assigned a loss, or until a
position was obtained that was a known draw (e.g., one king
versus one king) or the same position was obtained three
times in one game (i.e., a threefold repetition draw), or if
50 total moves were exceeded for both players. (This should
not be confused with the so-called 50-move rule for declaring
a draw in competitive play.) Points were accumulated, with
players receiving 1 for a win, 0 for a draw, and 1 for a
loss.

A. Initialization

The evolutionary experiment was initialized with a popu-
lation of 20 computer players (ten parents and ten offspring
in subsequent generations) each having nominal material
values and entries in their PVTs and randomized neural
networks.

The initial material values for , , , , , and were
1, 3, 3, 5, 9, and 10 000, respectively. The king value was not
mutable.

The initial entries in the PVTs were in the range of 50 to
40 for kings, 40 to 80 for queens and rooks, 10 to
30 for bishops and knights, and 3 to 5 for pawns,

and followed values gleaned from other open-source chess
programs.

Fig. 2. Typical neural network architecture. Artificial neurons are
connected via variable weights. The input neurons sense objects in
a scene (such as chess pieces on a board represented by numeric
values). The dot product of the weights and input neuron values
(known as activations) is computed at each “hidden neuron” and
passed through a nonlinear transformation, typically a sigmoid
function. The outputs of the hidden neurons are then processed
similarly until reaching the output neurons, which compute the
observable output of the neural network. For the case of evolving
neural networks in chessboard evaluation, there was only one
output neuron, representing the imputed worth of the position of the
pieces in the sensed area of the chessboard. Object neural networks
focus on specific objects or regions in a scene.

Three object neural networks were added to the protocol
described in the baseline experiment. The neural networks
were fully connected feedforward networks with 16 inputs,
ten hidden nodes, and a single output node. The neural
networks focused on the first two rows, the back two rows,
and the center of the chessboard, respectively (Fig. 3). These
choices were made to reflect areas of known importance
for protecting one’s own territory, advancing into the op-
ponent’s territory, and control of the center. The choice of
ten hidden nodes was arbitrary, and future efforts will be
made to adjust this structure and allow the neural networks’
topologies to evolve along with their weights and connec-
tions. The hidden nodes used standard sigmoid transfer
functions , where was the dot
product of the incoming activations from the chessboard and
the associated weights between the input and hidden nodes,
offset by each hidden node’s bias term. The output nodes
also used the standard sigmoid function but were scaled in
the range of [ 50, 50], on par with elements of the PVTs.
The outputs of the three neural networks were added to the
material and PVT values to come to an overall assessment
of each alternative board position. All weights and biases
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Fig. 3. Three chessboards indicate the areas in which the object neural networks focused attention.
The upper-left panel highlights the player’s front two rows. The 16 squares as numbered were used
for inputs to a neural network. The upper-right panel highlights the back two rows, and the contents
were similarly used as input for a neural network. The lower-left panel highlights the center of the
chessboard, which was again used as input for a neural network. In all, there were three neural
networks, one for each focused section. Each network was designed as shown in the lower-right
panel, with 16 inputs (as numbered for each of the sections), ten hidden nodes (h1–h10), and a single
output node. The bias terms on the hidden and output are not shown.

were initially distributed randomly in accordance with a uni-
form random variable 0.025 0.025 and initial strategy
parameters were distributed 0.05 .

Candidate strategies for the game were, thus, represented
in the population as the material values, the PVT values, the
weights and bias terms of the three neural networks, and as-
sociated self-adaptive strategy parameters for each of these
parameters, explained as follows.

B. Variation

One offspring was created from each surviving parent by
mutating all (each one of) the parental material, PVT values,
and weights and biases of all three neural networks. Mutation
was implemented on material values according to

(1)

where is a sample from a Gaussian random variable
with mean and standard deviation , is the material

value of the th element assigned to the offspring, is the
material value of the piece in question ( th index position)
for the parent, and is a self-adaptive step size (variance),
called a strategy parameter, for the th index position that
was evolved following the standard practice of lognormal
perturbations

(2)

where , and was the number of evolvable
parameters, which varied in each experimental setup. The
material value and PVT strategy parameters were set initially
to random samples from 0,0.05 , where is the uniform
distribution. Mutation for the PVT values, as well as each
of the weights and biases of the neural networks, followed
the same Gaussian form of mutation as applied to material
values. In the case where a mutated material value took on a
negative number, it was reset to zero.
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Table 1
Results of Playing the Best-Evolved Player From Each of the Ten Trials With Evolvable Material,
PVT, and Three Feedforward Fully Connected Object Neural Networks as Black
Against the Nonevolved Player in 200 Games

The results show statistically significant evidence that the evolved player is superior to the nonevolved player (sign-test, P < 0:05).
Win% indicates the ratio of wins to decisions. Z-score indicates the z-statistic for a probability test (null hypothesis of p = 0:5) and
6 of 10 trials result in data that are statistically significant (� = 0:05, z = �1:96; Note that a one-sided test could be adopted but the
more conservative two-sided test is reported here).

C. Selection

Competition for survival was conducted by having each
player play ten games (five as white and five as black)
against randomly selected opponents from the population
(with replacement, not including itself). The outcome of
each game was recorded and points summed for all players
in all games. After all 20 players completed their games, the
ten best players according to their accumulated point totals
were retained to become parents of the next generation.

D. Experimental Design

A series of ten independent trials was conducted. The
available computational capability (stated earlier) limited
the population size to ten parents and ten offspring in each
trial. Fifty generations were executed in each of ten trials,
whereupon the best-evolved player was tested as black
against the initial nonevolved chess engine in 200 games.
The results of these competitions are indicated in Table 1.
All ten trials favored the evolved player over the nonevolved
player (sign-test favoring the evolved player, ),
indicating a replicable result.

IV. RESULTS

The best result was observed in trial 8, which evidenced
the greatest number of wins against the nonevolved player
and also the greatest difference in wins and losses. (The
corresponding evolved player from this trial was named
Blondie25, following earlier research using a similar pro-
tocol that evolved a checkers-playing program called
Blondie24 [13], [17]). The evolved program’s performance
was assessed at six-ply by playing 120 games (60 as black)
against the commercial program Chessmaster 8000, which

is a popular commercial game that has over a decade of
history, published in several successively updated versions.
Chessmaster 8000 offers computer opponents that can play
at indicated rating levels. The chess rating system is the
one adopted by the United States Chess Federation (USCF),
which uses the formula

Outcome (3)

where , Outcome is 1
if a win, 0.5 if a draw, and 0 if a loss, is the opponent’s
rating, and for ratings less than 2100, for rat-
ings between 2101 and 2400, and for ratings above
2400. The rating system awards more points to players who
defeat opponents that are rated higher, and takes away more
points from players who lose to presumed lesser competition.
The standard class intervals are designated in Table 2.

Fig. 4 shows the histogram of the results separated by in-
tervals of 100 rating points. An iterative statistical procedure
for determining the evolved player’s rating was employed
and yielded a final estimate of 2437 ( 3.19) after 5000 per-
turbations of the ordering of the 120 games played. The best
results were a win against Chessmaster 8000 playing at an
indicated rating of 2818, and a draw at 2860. The win over
Chessmaster 8000 at 2818 came after Chessmaster 8000 was
leading by two pawns and blundered (perhaps as the result of
a software bug or logical flaw) and does not represent perfor-
mance at the level of world-class players.

To quantify a baseline control measure to calibrate the
increase in performance that the evolutionary procedure
provided, an additional 120 games were played against
Chessmaster 8000 with the nonevolved program, absent the
inclusion of the neural networks (i.e., relying on the standard
facets of the chess program). Fig. 5 shows the histogram of
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Table 2
Relevant Categories of Player Indicated By the Corresponding
Range of Rating Score

The title of “Senior Master” is used by the USCF.
FIDE, an international chess organization, confers ti-
tles of FIDE Master, International Master, and Grand-
master based on rating and tournament performance.

results. The nonevolved program’s rating was estimated at
2066 ( 3.56), indicating that the evolutionary procedure
accounted for an increase in 371 rating points over the
nonevolved player.

Many chess devotees spend considerable effort in deter-
mining and publishing the rating of chess programs. One
such listing4 indicates that the current best chess program is
Shredder 7.04, tested on an Athlon 1200 MHz with 256 MB
of RAM, with a rating of 2808 26 across over 866 tested
games. By contrast, Chessmaster 8000 rates at 2517 (Athlon
450 MHz/128 MB), and the closely related Chessmaster
9000 rates at 2718 (Athlon 1200 MHz/256 MB), both lower
than the indicated 2800+ rating offered when executing the
Chessmaster 8000 program in the above experiments. Thus
the rating of 2437 for the evolved player at only six ply
cannot be used reliably for claiming any absolute level of
performance.

At the suggestion of Kasparov [18] the best-evolved pro-
gram was tested (using an Athlon 2400+/256 MB) against
Pocket Fritz 2.0 under simulated tournament conditions,
which provide 120 min for the first 40 moves, 60 min for
the next 20 moves, and an additional 30 min for all re-
maining moves. Unlike Pocket Fritz 2.0 and other standard
chess programs, the evolved player does not treat the time
per move dynamically. The time per move was prorated
evenly across the first 40 moves after leaving the opening
book, with 3 min per move allocated to subsequent moves.

4The Swedish Chess Computer Association publishes ratings of the
top 50 computer programs at http://w1.859.telia.com/~u85 924 109/
ssdf/list.htm

Pocket Fritz 2.0 was executed on a “pocket PC” running at
206 MHz/64 MB RAM, with all computational options set
to their maximum strength. Pocket Fritz 2.0 is known to play
at the level of 2300–2350 (high-level master) under these
conditions [18].

A series of 12 games were played, with the evolved pro-
gram playing six as black and six as white. The evolved
program won nine, lost two, and drew one. The move lists
for each of these games are available5 along with annota-
tion by one of the authors of this paper (J. Quon), a na-
tional chess master who is rated 2301. The results provide
evidence to estimate a so-called “performance rating” of the
evolved player under tournament settings at approximately
2550, about 250 points higher than Pocket Fritz 2.0, and is
to our knowledge the first result of a program that has taught
itself to play chess at this high level of performance.

V. DISCUSSION

The best-evolved chess player cannot yet compete with
other chess programs at the highest levels of play (e.g.,
Shredder, Deep Fritz, Deep Junior). Yet the evolutionary
program exhibits a flexibility that cannot be achieved
with these programs, each of which relies on its “intelli-
gence” being preprogrammed. The evolutionary algorithm
is capable of adapting its play to meet more demanding
challenges from superior opponents. It can invent new
unorthodox tactics. Indeed, in earlier research that evolved
strategies for playing checkers (also known as draughts)
[13], it was common for human opponents to offer com-
ments that the evolved player’s moves were “strange,” yet
the level of play was often described as “very tough” or with
other complimentary terms.

Although the evolution of a high-level chess program
is itself significant, it signifies the broader utility of the
evolutionary approach to problem solving. This approach to
computational intelligence does not complete an exhaustive
search of all possible designs, yet it can quickly identify
and converge on useful solutions. This may provide an ef-
fective means for going beyond the structured conventional
engineering approach that is common to many forms of
human design. The process can be used to address problems
for which there are no known solutions, or it can be hy-
bridized with existing human knowledge and discover ways
to supplement that knowledge. The evolutionary process
is inherently parallel and could be accelerated greatly by
utilizing a distributed network of small and inexpensive
processors.6 Furthermore, no explicit design criteria are
required. At a minimum, all that is necessary is to be able
to compare two solutions and determine which is better.
The process of evolution can then optimize the solution for
the given problem. In this manner, evolutionary machine
learning can meet, supplement, and potentially exceed the
capabilities of human expertise.

5The annotated moves are available at http://www.natural-selection.
com/chessgames.html

6See http://neural-chess.netfirms.com/HTML/project.html
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Fig. 4. Histogram of wins, draws, and losses for the best evolved player against Chessmaster 8000.
Each rating category represents a 100-point range (e.g., 2100 represents 2100–2199).

Fig. 5. Histogram of wins, draws, and losses for the nonevolved player against Chessmaster 8000.
The results are much poorer than those of the best evolved player, which rated 379 points higher.
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