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JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS VOL. 31, NO. 4, DECEMBER 1996 

Multifactor Portfolio Efficiency and Multifactor 

Asset Pricing 

Eugene F. Fama* 

Abstract 

The concept of multifactor portfolio efficiency plays a role in Merton's intertemporal CAPM 
(the ICAPM), like that of mean-variance efficiency in the Sharpe-Lintner CAPM. In the 
CAPM, the relation between the expected return on a security and its risk is just the condition 
on security weights that holds in any mean-variance-efficient portfolio, applied to the market 

portfolio M. The risk-return relation of the ICAPM is likewise just the application to M 
of the condition on security weights that produces ICAPM multifactor-efficient portfolios. 
The main testable implication of the CAPM is that equilibrium security prices require that 
M is mean-variance-efficient. The main testable implication ofthe ICAPM is that securities 
must be priced so that M is multifactor-efficient. As in the CAPM, building the ICAPM on 
multifactor efficiency exposes its simplicity and allows easy economic insights. 

I. Introduction 

In applications that require estimates of expected returns, the capital-asset- 
pricing model (CAPM) of Sharpe (1964) and Lintner (1965) is the popular choice. 
For example, textbooks in corporate finance typically recommend CAPM expected 
returns for estimating a firm's cost of capital. Studies of the performance of 

portfolio managers commonly use the CAPM to estimate benchmark expected 
returns. 

The CAPM says that the expected return on a security depends only on the 

sensitivity of its return to the market return?its market 0. There is, however, 
evidence that market 0 does not suffice to describe expected return. Variables 
that seem to help explain expected return include a firm's market capitalization, 

earnings/price ratio, leverage, and book-to-market-equity ratio (Banz (1981), Basu 

(1983), Bhandari (1988), Rosenberg, Reid, and Lanstein (1985), Chan, Hamao, 
and Lakonishok (1991), Fama and French (1992)). Moreover, Chen, Roll, and 

Ross (1986) and Fama and French (1996) find that the CAPM fares poorly in 

competition with multifactor alternatives. This evidence suggests that multifactor 
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models should be considered in research applications that require estimates of 

expected returns. 

One popular multifactor model is the arbitrage-pricing-theory (APT) of Ross 

(1976). The pure-arbitrage version of the APT has a well-known shortcoming. It 

provides exact predictions of expected returns only for perfectly diversified portfo? 
lios, that is, portfolios whose returns are completely captured by the common risk 
factors in returns. Connor's (1984) version ofthe APT produces exact statements 

about the expected returns on all securities. But his results come with two costs: 

i) the market portfolio must be perfectly diversified, and ii) the simple arbitrage 

argument that makes the APT so attractive is abandoned in favor of arguments 
based on utility maximization. 

In a classic paper, Merton (1973) develops an intertemporal model (the 

ICAPM) that uses utility maximization to get exact multifactor predictions of 

expected security returns. He gets exact results without assuming the market port? 
folio is perfectly diversified. The drawback of Merton's approach is degree of 

difficulty. His continuous-time methods do not yield easy insights. Long (1974) 

provides a discrete-time version of the ICAPM and an excellent discussion of the 

model's economics, but his formal story is again difficult. Although Merton and 

Long show that the CAPM is a special case ofthe ICAPM, their formal treatments 

of the ICAPM lack the simple intuition that makes the CAPM so attractive. 

The powerful intuition ofthe CAPM centers on Markowitz' (1959) concept 
of mean-variance-efficiency. The CAPM starts with assumptions that imply that 

investors hold mean-variance-efficient (MVE) portfolios. When there is a risk-free 

security,/, MVE portfolios combine/ with one MVE portfolio of risky securities, 
the tangency portfolio T. Since T is the risky component of all MVE portfolios, 

market-clearing security prices require that T is the value-weight market portfolio 
M. The familiar CAPM relation between the expected return on any security i, 

E(ri), and its market risk, $m (the slope in the regression of rr on r^), 

(1) E{n)-rf = /3iM[E(rM)-rf], 

is then just the application to M of the condition on security weights that holds in 

any MVE portfolio (Fama (1976), ch. 8, Roll (1977)). 

My goal is to show that Merton's ICAPM can be built on similar intuition. 

ICAPM investors hold multifactor-efficient portfolios that generalize the notion 

of portfolio efficiency. Like CAPM investors, ICAPM investors dislike wealth 

uncertainty. But ICAPM investors are also concerned with hedging more specific 

aspects of future consumption-investment opportunities, such as the relative prices 
of consumption goods and the risk-return tradeoffs they will face in capital markets. 

As a result, the typical ICAPM multifactor-efficient portfolio combines one of 

Markowitz' MVE portfolios with hedging portfolios that mimic uncertainty about 

the S future consumption-investment state variables of concern to investors. 

The ICAPM risk-return relation is then a natural generalization of (1). One 

simply adds risk premiums for the sensitivities of rt to the returns rs, s = 1,..., S, 
on the state-variable mimicking portfolios, 

s 

(2) E(n)-rf = 
/3/M[^(rM)-r/]+^A4^(r,)-r/], 
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where (3im and (5iS, s = 1,..., S, are the slopes from the multiple regression of r, 
on rM and rs,s = l,...,S. 

As in the CAPM, the ICAPM relation (2) between expected return and mul? 

tifactor risks is the condition on the weights for securities that holds in any 
multifactor-efficient portfolio, applied to the market portfolio M. And just as 
market equilibrium in the CAPM requires that M is mean-variance-efficient, in the 
ICAPM market-clearing prices imply that M is multifactor-efficient. 

The development of this story begins with a portfolio model for ICAPM 

investors (Section II), which leads to the characterization of optimal portfolios 
as multifactor-efficient (Section III). Sections IV to VI detail the properties of 

multifactor-efficient portfolios that, combined with market-clearing conditions in 

Section VII, deliver the main results of the ICAPM. The final step (Sections 
VIII and IX) is to explore special insights obtained from the multifactor-efficiency 

approach to the ICAPM. 

II. The Investor's Decision Problem 

The consumption-investment problem facing an ICAPM investor is that posed 

by Fama (1970). Time is discrete and, at any time t ? 1, the investor divides total 

wealth w,_ i between consumption c,_ i and a portfoliop that generates wealth wt = 

(w,_i - c,_i)(l + rpt), which, in turn, must be divided between consumption and a 

portfolio at time t. In making this sequence of decisions, the investor is assumed 

to be risk-averse and to maximize the expected utility of lifetime consumption. 
Fama (1970) shows that the dynamic program for the lifetime consumption- 

investment problem produces a derived utility function to be used in the decision 

at time t ? 1. The derived utility function, U(Ct-\,wt\Kt), depends on i) C,_i = 

(..., ct-2, ct-\), consumption up to and including time t ? 1, ii) wealth at the next 

point in time, wt, and iii) S state variables, Kt = (k\t,..., kSt), to be observed at t. 

(Upper-case symbols denote vectors and matrices.) The investor's risk aversion 

with respect to lifetime consumption carries over to the derived utility function: 

U(Ct-\,wt\Kt) is increasing and strictly concave in (Q_i, wt). 
The state variables enter U(Ct-\,wt\Kt) because the utility of wealth at t 

depends on the way it can be used in the markets for consumption goods and 

securities at t and periods after t. The state variables Kt include the prices of 

consumption goods at t, the risk-return tradeoffs that will be available in security 
markets at t, and variables observed at t that are informative about consumption- 
investment opportunities for periods after t. Other state variables, for example, 

employment opportunities, are also important. For concreteness, and because 

the analysis does not cover labor-supply decisions, I refer to Kt as consumption- 
investment opportunities. But it is understood that Kt includes all state variables 

of concern to any investor. 

By way of contrast, the Sharpe-Lintner CAPM ignores incentives to use in? 

vestments at t ? 1 to hedge future consumption-investment opportunities, implied 

by the dependence of utility on the state variables in U(Ct-\, wt\Kt). Instead, the 

CAPM uses the simpler portfolio model of Markowitz (1959), which assumes that 

utility U(Ct-\, wt) depends only on the history of consumption and the wealth 

generated at t by the portfolio chosen at f ? 1. If portfolio return distributions are 
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normal, optimal CAPM portfolios are easily described. Normality implies that, 

given a choice of cr_ i, the portfolio decision reduces to choosing a combination 

of mean and variance of return. Since investors are risk-averse, optimal portfo? 
lios are minimum-variance (MV): they have the smallest return variances, given 
their expected returns. Since investors prefer more wealth to less, optimal portfo? 
lios are mean-variance-efficient (MVE): they are the subset of MV portfolios that 
maximize expected return, given their variances. 

Unlike the CAPM, the ICAPM works with the general utility function U(Ct- x, 

wt\Kt), and a key idea is that covariance between security returns and the state 

variables allows investors to use their portfolio choices to hedge uncertainty about 

future consumption-investment opportunities. These hedging demands differen- 

tiate the ICAPM portfolio problem from the simpler mean-variance model of the 

CAPM. Merton (1973) and Long (1974) emphasize that because ICAPM investors 

use their portfolios to hedge consumption-investment opportunities, optimal port? 
folios are not typically mean-variance-efficient. 

My main point is that a generalized concept of portfolio efficiency, multifactor 

efficiency, drives the ICAPM. Building the ICAPM on multifactor efficiency 
leads to simple stories for the model's main results on i) spanning portfolios that 

can generate all the portfolios relevant for ICAPM investors, and ii) the relation 

between expected return and the multifactor risks of securities and portfolios. 

III. The Multifactor Efficiency of Optimal Portfolios 

Consider the consumption-investment decision at time t ? 1. Given a choice 

of C/_i, the utility function U(Ct^x,wt\Kt) says that the investor is concerned with 

wt, the wealth generated at t by the portfolio chosen at t ? 1, and with future 

consumption-investment opportunities, summarized by the state variables Kt. The 

properties of any portfolio p as a source of wealth at t and a hedge against state- 

variable uncertainty are summarized by the joint distribution of rpt and Kt. Like 

Merton and Long, I assume i) that there is complete agreement among investors 

about the joint distribution of security returns, Rt = (rXt,...,r^t)f, and the state 

variables, Kt, and ii) the distribution is multivariate normal. Though not explicit 
in the notation, it is also understood that the joint distribution of Rt and Kt is 

conditional on the information available at t ? 1. 

Multivariate normality of Rt and Kt implies that the joint distribution of the 

return on any portfolio, rpt, and the state variables Kt is multivariate normal. The 

joint distribution of rpt and Kt is thus described by i) the mean and variance of 

the portfolio's return, E(rp) and o2(rp), ii) the covariances between rpt and the 

state variables, cov(rp,ks), s = 1,... ,S, and iii) the joint distribution of the state 

variables. The distribution of the state variables is the same for all portfolios. 
Thus, the portfolio decision reduces to a choice of E(rp), o2(rp), and cov(rp,ks), 
s = l,...,S. The covariances, cov(rp,k5), s = l,...,S, capture a portfolio's 

properties as a hedge against future consumption-investment opportunities. 
There is another way to state this result that leads to the concept of multifactor 

efficiency. The joint normality of returns and the state variables implies that the 
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relation between the return on any security or portfolio p and the state variables is 

described by the linear regression, 

s 

(3) rpt = E (rpt) + ^T bpskst + ept, E (ept) = 0, 
s=l 

cov(ept,Kst) = 0, s = l,...,S, 

where, without loss of generality, the state variables are sealed to have means 

equal to 0.0. The vector of slopes Bp = (bp\,..., bps)' is the vector of covariances, 

cov(rp, ks), s = 1,..., S, multiplied by the inverse of the covariance matrix of the 

state variables. This inverse is the same for all p. Thus, a portfolio's properties 
as a hedge against state-variable uncertainty are also captured by its regression 

slopes or loadings on the state variables. The joint normality of returns and the 

state variables then implies that, given a choice of ct-\, the optimal portfolio for 

an investor depends only on E(rp), cr2(rp), and Bp. More specifically, 

Proposition 1. Since ICAPM investors are risk-averse with respect to wealth 

uncertainty, their optimal portfolios are multifactor-minimum-variance (MMV): 

they minimize cr2(rp), given their E(rp) and Bp. Since ICAPM investors like wealth, 

they choose from the subset of MMV portfolios that are multifactor-efficient (ME): 

they maximize E(rp), given their a2(rp) and Bp. 

The rest of the paper develops the implications of the multifactor efficiency 
of optimal portfolios. My claim is that multifactor efficiency provides a simple 

key to understanding the multifactor ICAPM, in the same way that mean-variance 

efficiency is the key to the CAPM. 

IV. Weights for Securities in Multifactor-Minimum-Variance 

(MMV) Portfolios 

An MMV portfolio minimizes cr2(rp), given its E(rp) and Bp. Assume, for 

the moment, that there is no risk-free security. Suppose Be = (be\,..., bes)' are the 

target loadings on the state variables for an MMV portfolio e, E(re) is the target 

expected return, and <7,y is the covariance between the returns on securities / andy. 
The MMV portfolio e is defined by the weights Xe = (x\e,.. .,XNe)' for securities 

that 

N N 
(4a) min a2(re) = Y^Y^xieXjeCTij, subject to, 

i=\ j=\ 
N 

(4b) Ysxiebis - bes, s = l,...,S, 
i=\ 

(4c) Jt*ieE(n) = E(re), 
i=\ 

(4d) XX = I- 
i=\ 

The set of MMV portfolios is given by the solutions to (4) for all feasible 

combinations of E(re) and Be. With unrestricted short-selling (assumed in (4)) 
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and N much greater than S, it is reasonable to assume that all combinations of 

loadings on the state variables are feasible. I also assume that all combinations of 

E(re) and Be are feasible, and this warrants comment. In the ICAPM, the number 

of securities is finite, and multifactor-efficient (ME) portfolios typically are not 

perfectly diversified, that is, they have return variation in (3) that is unexplained 
by the state variables. The residual variance of an ME portfolio is undiversifiable 

uncertainty about wealth that must be compensated in expected returns. Expected 
returns thus vary independently of loadings on the state variables. This key point 

distinguishes Merton's ICAPM from Ross' APT. It is discussed in more detail 

later. 

With unrestricted short-selling, the solution to (4) is obtained by forming the 

Lagrangean, 

N N 

(5) g = yz yz xiexje<Tjj+yz2^ 
i=l i=i s=l 

*?-5>A, 

+ 2A. S+l,e E(re)~^2xieE(ri) 
i=l 

i=\ 

+ 2A, >S+2,e i-?; 
i=\ 

where 2\se, s = 1,..., S + 2, are Lagrange multipliers for the constraints in (4). 
If the covariance matrix of security returns is positive definite, one solves (4) 

by differentiating G with respect to each of the xie and the 2Xse and setting the 

derivatives equal to 0.0. Differentiating G with respect to the Lagrange multipliers 

just says that the weights X[e for securities in the MMV portfolio e must satisfy (4b) 
to (4d). The interesting conditions are the N equations obtained by differentiating 
G with respect to the X(e, 

(6) ^ XJeaiJ 
~~ 

^ ^sebis ~ XS+\,eE (rt) - XS+2,e = 0, 

;'=i s=\ 

s 

co\(ri,re)-1^2\sebis-\s+x,eE(ri)-\s+2,e 
= 0, i = l,...,N. 

5=1 

Equation (6), the condition on security weights in an MMV portfolio, drives my 

analysis of the ICAPM. Much of what follows involves manipulating (6), first 

to characterize MMV portfolios, and then to show that the ICAPM risk-return 

relation (2) is implied by (6) when the MMV portfolio e is the market portfolio M. 

Since Markowitz' minimum-variance (MV) portfolios play a similar central 

role in the CAPM, it is interesting to compare (6) with the condition on security 

weights in an MV portfolio. Since CAPM investors do not use their portfolios to 

hedge uncertainty about consumption-investment state variables, the MV portfolio 
with expected return E(re) is just the solution to (4) without the constraints of (4b) 
on state-variable loadings. Dropping (4b) implies dropping the terms involving 
state-variable loadings in (6). MV portfolios are thus special cases of (6). Specif? 

ically, the weights for securities in the MV portfolio with expected return E(re) 
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must be chosen to produce a linear relation between the expected return on any 
security and the covariance of its return with the return on e, 

cov(rhre)- \s+i,eE(n)- Xs+2,e = 0, i=l,...,N. 

Thus, cov(r? re), the contribution of security / to a2(re), is the risk of / in the 
minimum-variance portfolio e. In contrast, (6) says that a security's risks in the 
multifactor-minimum-variance portfolio e ofthe ICAPM also include bn,..., bis, 
the loadings of its return on the state variables of concern to investors. 

V Basis or Spanning Portfolios for MMV Portfolios 

Characterizing minimum-variance (MV) and mean-variance efficient (MVE) 

portfolios is important for understanding the Sharpe-Lintner CAPM. With a risk- 

free security, /, all MV and MVE portfolios combine / and the MVE tangency 

portfolio T. When there is no risk-free security, all MV and MVE portfolios are 

spanned by (they can be generated from) any two MV portfolios (Black (1972)). 

Characterizing multifactor-minimum-variance (MMV) and multifactor-effi? 

cient (ME) portfolios is likewise important in Merton's ICAPM. This section 

develops the properties of MMV portfolios implied by (6). The exercise produces 
two main results: i) all portfolios of MMV portfolios are MMV; ii) with S state 

variables, any 5 + 2 linearly-independent MMV portfolios span all MMV and ME 

portfolios. Thus, whereas two minimum-variance portfolios span the portfolios 
relevant to investors in the CAPM, 5 + 2 multifactor-minimum-variance portfolios 
are needed in the ICAPM. The additional 5 portfolios cover the demands of 

investors to hedge uncertainty about future consumption-investment opportunities. 
The first step is to show that all MMV portfolios can be expressed as portfolios 

of a particular set of 5+2 portfolios. Given the Lagrange multipliers for the MMV 

portfolio e, (6) is a set of N linear equations that can be solved for the security 

weights in e. A little matrix algebra (see Appendix) shows that the weights are 

(7) Xie = 
^2^se ^dijbjs 

+ \S+\,e Y^dUE(rj) 

where the dy are the elements of D, the inverse ofthe covariance matrix of security 
returns. 

Only the Lagrange multipliers in (7) differ from one MMV portfolio to an? 

other. The bracketed terms in (7) are the same for all MMV portfolios. To show 

that this implies that all MMV portfolios are portfolios of 5 + 2 portfolios, rescale 

the 5 + 2 bracketed terms in (7) so that each becomes a set of weights for securities 

that sums to 1.0, 
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N N N 
(8a) xts = Y,diibjs/Y<Yldiibis> i = 1.---.W. s = 1,...,S, 

7=1 i=\ j=\ 

(8b) Xi,s+X = T,dijE(rj)/Y,T,dijE{rj), i = \,...,N, 
j=\ i=\ j=\ 

(8c) xiM2 = XX/?XH> l = i,...,^. 
j=i i=x j=\ 

To reproduce the weights for securities in the MMV portfolio e given by (7), 
one must then scale the Lagrange multipliers in (7) with the denominators of the 

portfolio weights in (8), 

(N 

N \ 

Yzy2diJbJs ' s = i"-->5' 

(N 

N \ 

i=\ j=\ ) 

(N 

N 

/ , / v dg 
i=\ j=\ 

With (8) and (9), (7) becomes 

5+2 

(10) xie = 
^2xisqse, i = 1,...,N. 

With (10), the return on the MMV portfolio e is 

W N /S+2 \ 

(11) re = 
^2xiert 

= 
YZ [ yZXisqse ) 

n 
i=\ r=l \s=\ / 
5+2 / N \ 5+2 

= 
^2qse (J2Xisrt) 

= 
Yl qseVs> 

S=X \ i=\ J 5=1 

where rs,s = 1,..., S + 2, are the portfolio returns defined by the security weights 
in (8), and qse, s = 1,..., S + 2, are the weights on these portfolios of (9). Since (4) 

says that e is a portfolio (the sum over i ofxie is 1.0), and since (8) says that each 

rs is a portfolio return (the sum over / of XjS is 1.0), one can infer that the solution 

to (4) requires that the sum over s of the ^r^ in (11) is 1.0. 

Since (11) applies to any MMV portfolio e, (11) implies that any MMV 

portfolio is indeed a portfolio of the S + 2 portfolios of (8). Moreover, since all 

combinations ofthe weights qse, 5=1,..., S+2, in (11) that sum to 1.0 are feasible: 

Proposition 2. The 5 + 2 portfolios of (8) are a spanning set that can generate all 

MMV portfolios, and any portfolio of the S + 2 portfolios of (8) is MMV. 
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The 5 + 2 portfolios of (8) are MMV since they are trivial cases of portfolios 
of the portfolios of (8). More important, Proposition 2 is next shown to imply: 

Proposition 3. Any portfolio of MMV portfolios is MMV 

Proposition 3 holds if any portfolio of MMV portfolios satisfies Proposition 2, 
thatis, it reduces to a portfolio ofthe 5+2 portfolios of (8). Consider any portfolio 
p formed by investing xep, e = 1,..., A, in any number A of MMV portfolios e, 

A A 

(12) rp = 
^?jXepre, ^>2xep 

= 1.0. 

Using (11), rp can be expressed as a combination of the 5 + 2 portfolios of 

(8), 

A A 5+2 

(1-3) Tp ? / Jxepre ? / jXep / v Qsers> 
e=\ e=\ s=\ 

Proposition 2 says that p is an MMV portfolio as long as the sum of the 

weights on the rs in (13) is 1.0. For each ofthe MMV portfolios e used to form p, 
the sum over s of qse, Usqse, is 1.0. Since the sum over e of xep is 1.0, p is indeed 

MMV, and (Proposition 3) any portfolio of MMV portfolios is MMV. 

The 5+2 MMV portfolios of (8) are a basis set that spans all MMV portfolios. 
But this basis set is hardly unique. The Appendix shows that Propositions 2 and 3 

imply: 

Proposition 4. Any MMV portfolio can be generated from any 5 + 2 linearly- 

independent MMV portfolios. Thus, any 5 + 2 linearly-independent MMV port? 
folios are a basis or spanning set. 

Proposition 3 is central when I later argue that in the ICAPM, a market equi? 
librium requires that the market portfolio is multifactor-efficient. Proposition 4, 
on the other hand, is the ICAPM analogy to Black's (1972) result that when there 

is no risk-free security, all the minimum-variance and mean-variance-efficient 

portfolios of the CAPM can be generated from any two minimum-variance port? 
folios. In the ICAPM, 5 + 2 multifactor-minimum-variance portfolios are needed 

to span multifactor-minimum-variance and multifactor-efficient portfolios. The 

additional 5 portfolios cover the demands of investors to hedge uncertainty about 

consumption-investment state variables. 

Finally, much of the preceding is old stuff. The lifetime consumption- 
investment problem in Section I follows Fama (1970). Multifactor efficiency 
is similar to Grinblatt and Titman's (1987) local efficiency. The analysis of the 

optimality of multifactor-efficient portfolios in Section III and the setup of the 

variance-minimization problem (4) in Section IV are similar to Elton and Gruber 

(1992), which derives results like Propositions 2 to 4. The algebra in Propositions 
2 to 4 appears in many places, e.g., Jobson and Korkie (1985), Grinblatt and Titman 

(1987), and Huberman, Kandel, and Stambaugh (1987). In bringing this material 

together, and extending it (mostly in the sections that follow), what I hope to show 

is that i) the role of multifactor efficiency in Merton's ICAPM is as central as the 
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role of mean-variance-efficiency in the Sharpe-Lintner CAPM, and ii) building the 

ICAPM on multifactor efficiency exposes its simplicity and allows easy insights 
into its economics. 

VI. Multifactor-Efficient Portfolios 

Propositions 2 to 4 describe multifactor-minimum-variance (MMV) portfo? 
lios. Since ICAPM investors hold multifactor-efficient (ME) portfolios, I next 

determine which MMV portfolios are ME. 

The characterization of ME portfolios is striking. Markowitz' mean-variance- 

efficient (MVE) portfolios are also ME. Other ME portfolios combine MVE 

portfolios with mimicking portfolios for the state variables. In economic terms, 
ICAPM investors use Markowitz' MVE portfolios to optimize the tradeoff of 

expected return for non-state-variable return variance, but they add in mimick? 

ing portfolios for the state variables to hedge more specific aspects of future 

consumption-investment opportunities. 

A. The Spanning Portfolios of Proposition 2 

Characterizing multifactor-efficient portfolios largely involves developing the 

properties of the spanning portfolios of (8). I show that these portfolios are so? 

lutions to the variance-minimization problem (4), always imposing the constraint 

(4d) that the sum of the weights for securities is 1.0, but imposing at most one of 

the constraints of (4b) and (4c) on state-variable loadings and the target expected 
return. 

First, suppose the constraints of (4b) and (4c) on expected return and state- 

variable loadings are dropped. The resulting portfolio has the smallest possible 
return variance: it is the global-minimum-variance (GMV) portfolio. Dropping 
(4b) and (4c) from the variance-minimization problem (4) is equivalent to setting 
the Lagrange multipliers A^, s = 1,..., 5+ 1, in (5) to (7) equal to 0.0. Equations 
(8) to (11) then imply that the GMV portfolio is the portfolio 5 + 2, defined by the 

security weights of (8c). 
Next, consider the portfolio obtained by solving (4) without the constraints 

of (4b) on state-variable loadings. This portfolio has the smallest return variance 

given its expected return: it is one of Markowitz' minimum-variance (MV) port? 
folios. Dropping (4b) from (4) amounts to setting the Lagrange multipliers A^, 
5 = 1,... ,5, in (5) to (7) equal to 0.0. Equations (8) to (11) then say that the 

portfolio is a combination [qs+X,ers+\ + 0 ? qs+\,e)rs+i\ ofthe portfolios 5 + 1 and 

5 + 2 defined by the security weights of (8b) and (8c). The set of MV portfolios 
is the set of all values of qs+X,e in [qs+\,ers+\ + 0 ? 

qs+i,e)rs+2\- Thus, portfolio 
5+1, like 5 + 2, is one of Markowitz' MV portfolios. In fact, Roll ((1977), p. 165) 
shows that if E(rs+2) > 0.0, 5+ 1 is mean-variance-efficient (MVE). Specifically, 

portfolio 5 + 1 is the tangency of the line from the origin to the MVE boundary 
in Figure 1. In this case, E(rs+X) > E(rs+2) and MVE portfolios are the subset of 

[qs+\,ers+\ + (1 ? 
qs+\,e)rs+i\ with qs+x,e > 0-0- Since portfolios 5+ 1 and 5 + 2 are 

also multifactor-minimum-variance (MMV), Proposition 3 says that Markowitz' 

MV and MVE portfolios are MMV. 
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FIGURE 1 

Markowitz' Mean-Variance-Efficient (MVE) Portfolios 

With risk-free borrowing and lending, MVE portfolios are all combinations [97-^7- + (1 - 

qje)rf], qje > 0.0, where T is the tangency of a line from rf to the curved boundary of 
MVE portfolios of risky securities. If rf = 0.0, the tangency point moves down the curved 
boundary to portfolio S+1. When there is no risk-free security, S+1 is the portfolio defined 
by the weights for securities in (8b). MVE portfolios are then combinations [<7s+l,erS+l + 
(1 ~Qs+l,e)rS+2l> 9s+1,e ^ ?-?- wnere $+2 is the global-minimum-variance portfolio of risky 
securities, defined by the security weights in (8c). Multifactor-efficient portfolios combine 
an MVE portfolio with the S mimicking portfolios for the state variables, defined by the 
security weights in (8a). Technical point: the curved minimum-variance boundary for risky 
securities is a hyperbola (Merton (1972)). Thus, the tangency portfolio 7~is well-defined 
only if E(rs+2) ? rf> anc* portfolio S+ 1 of (8b) is well-defined only if E(rs+2) ^ 0.0. 

E(r) 

Similar arguments imply that a portfolio that minimizes return variance sub? 

ject to a target loading on state variable s, but with no constraint on expected return 

or loadings on other state variables, is a combination [qsef"s + (1 ? qse)rs+i] ofthe 

GMV portfolio 5+2 and the portfolio s defined by the security weights of (8a). The 

portfolios s, s = 1,..., 5, of (8a) can then be viewed as mimicking portfolios for the 

state variables. Specifically, each rs, s = 1,..., S, obtained from (8a) is a portfolio 
return with the smallest variance, given a particular target loading on state variable 

This content downloaded from 129.97.58.73 on Sat, 15 Jun 2013 21:54:55 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


452 Journal of Financial and Quantitative Analysis 

5 (that implied by qse = 1.0 in [qsers + (1 - qse)rs+2i), but with no constraints on the 

portfolio's expected return or its loadings on other state variables. Geometrically, 

portfolio 5 + 2 is the global-minimum-variance portfolio in the [bs,o(r)] plane 

(Figure 2), and a variant of Roll's ((1977), p. 165) analysis implies that portfolio 
5 is the tangency of the line from the origin to the minimum-variance boundary in 

the [bs, o(r)] plane. 

FIGURE 2 

Portfolios that Minimize Variance Subject to Having a Particular Loading on State Variable s, 
but with No Constraint on Expected Return or Loadings on Other State Variables 

When there is no risk-free security, these MMV portfolios are the curved boundary defined 
by the combinations [qsers + (1 - qse)rs+2l> where S + 2 is the global-minimum-variance 
portfolio of (8c). With a risk-free security, the portfolios are on the two line segments given 
by [qse/s + (1 - qseVf], where s is the tangency of the line from the origin [bfs = a(rf) = 0.0] 
to the curved boundary. (If bs+2 were less than 0.0, s would be the tangency portfolio 
of a line from the origin to the negatively sloped portion of the curved boundary.) With or 
without a risk-free security, rs is the return on the mimicking portfolio for state variable s of 
(8a). Technical point: the analysis in Merton (1972) implies that the curved boundary for 
-isky securities is a hyperbola. Thus, the mimicking portfolio s of (8a) is well-defined only 
f bS+2,s + 0.0. 
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B. The Set of Multifactor-Efficient Portfolios 

Equation (11) says that any MMV portfolio is a portfolio of the rs, s = 

l,...,5 + 2,of(8), 

5+2 

(14) re = 
Ylasers' 
s=l 

Any combination of qse, s = 1,...,5 + 2, in (14) that sums to 1.0 is a 

multifactor-minimum-variance (MMV) portfolio. Which MMV portfolios are 

multifactor-efficient (ME)? Merton (1973) and Long (1974) argue that with? 

out further restrictions on investor tastes, one cannot restrict the loadings on the 

state variables in optimal portfolios. There is an ME portfolio for any set of bes, 
s - 1,..., 5, and, thus, for any set of qse, s = 1,..., 5, in (14). Intuitively, given 
the premiums for state-variable risks, some investors may take long positions in a 

state-variable risk, while others take short positions. 
With respect to residual variance in (3), that is, return variance not explained 

by the state variables, the issue is more clear-cut. For risk-averse investors, only 
MMV portfolios that offer a positive tradeoff of expected return for residual vari? 

ance are multifactor-efficient. To identify these portfolios, restate (14) to acknowl- 

edge that the role ofthe GMV portfolio 5+2 is to ensure that in any MMV portfolio 
e, the weights on the 5 + 2 portfolios of (8) sum to 1.0, 

(15) re = 
]P qsers + qs+i,ers+i + 

s=\ 
7 v qse ? qs+\,( 
s=l 

rs+2- 

Roughly speaking, (15) says that the weights qS?, s = 1,... ,5, can control 

the loadings of MMV portfolios on the state variables. To ensure that the portfolio 

weights sum to 1.0, the sum of ? qse, s = 1,..., 5, is invested in rs+2. To control 

the tradeoff of expected return for residual variance in MMV portfolios, one can 

then vary the investments qs+\,e in rs+\ and 1 ? qs+i,e in rs+2. 

Varying qs+iie in [qs+i,ers+i +(1 - qs+\,e)rs+2l generates the set of Markowitz' 

minimum-variance (MV) portfolios, which includes mean-variance-efficient 

(MVE) portfolios. An MVE portfolio maximizes expected return, given its re? 

turn variance. But this implies that it maximizes expected return, given its return 

variance and whatever happen to be its state-variable loadings. MVE portfolios 
are thus multifactor-efficient. Conversely, an MV portfolio that is not MVE has 

minimum expected return, given its return variances, which means it has mini? 

mum expected return, given its return variance and state-variable loadings. It is 

thus multifactor-inefficient as well as mean-variance-inefficient. 

In short, in terms of (15), a multifactor-efficient portfolio combines one of 

Markowitz' MVE portfolios (an MVE combination [qs+i,e^s+\ + (1 - qs+\,e)fs+2\) 
with the 5 state-variable mimicking portfolios, with the positions in the mimicking 

portfolios financed by offsetting positions in the GMV portfolio 5 + 2. All such 

combinations of an MVE portfolio with the state-variable mimicking portfolios 
are ME. In economic terms, Merton's ICAPM investors use Markowitz' MVE 

portfolios to optimize the tradeoff of expected return for non-state-variable return 
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variance, and they combine MVE portfolios with state-variable mimicking port? 
folios to hedge uncertainty about future consumption-investment opportunities. 

It is worth noting that since MVE portfolios are also multifactor-efficient, the 

investors of the Sharpe-Lintner CAPM (who do not differentiate among sources of 

risk) are covered by the ICAPM. Investors concerned with some but not all state- 

variable risks are also covered. They choose portfolios that maximize expected 
return, given their return variances and loadings on the state variables of interest. 

But such portfolios maximize expected return, given their return variances and 

loadings on all state variables. Like Markowitz's MVE portfolios, they are special 
cases of multifactor-efficient portfolios. 

Finally, it is easy to show that any portfolio of multifactor-efficient portfolios 
where the weights on the component ME portfolios are positive, reduces to a 

combination of an MVE portfolio with the state-variable mimicking portfolios. 
Thus, 

Proposition 5. All portfolios of positively-weighted ME portfolios are ME. 

C. Risk-Free Borrowing and Lending 

Like the Sharpe-Lintner CAPM, most treatments of the ICAPM assume that 

there is a risk-free security. Adding a risk-free security to the opportunity set 

simply involves adding a security with sure return ry- to the variance-minimization 

problem (4). Skipping the details, i) the risk-free security replaces the GMV 

portfolio 5 + 2 in the basis set of (15). ii) Adding a risk-free security has no effect 

on the state-variable mimicking portfolios in (15); they are still defined by the 

security weights of (8b). iii) With a risk-free security, Markowitz's MV portfolios 
are combinations [qrerT + (1 - #re )*"/], where portfolio T is the tangency of a line 

from rf to the MVE boundary for risky securities in Figure 1. T thus replaces 

portfolio 5 +1 (the tangency of a line from the origin to the MVE boundary) in the 

basis setof (15). 
In short, when there is a risk-free security, r/ replaces rs+2 in (15), ry replaces 

rs+\, and MMV portfolios are all combinations of /y, ry, and rs,s = 1,..., 5, in 

(16) re = 
5Z^r5+^rr + 

5=1 

5 

i - 
YZq$e ~qje 
5=1 

rf- 

A multifactor-efficient (ME) portfolio again combines one of Markowitz' 

mean-variance-efficient portfolios ([qre^T + (1 ? 
qTe)ff]> aTe > 0 in Figure 1) with 

the 5 state-variable mimicking portfolios, with the positions in the mimicking 

portfolios financed by offsetting positions in the risk-free security. All such com? 

binations of an MVE portfolio with the state-variable mimicking portfolios are 

ME. 

Adding a risk-free security does not affect Proposition 5: any portfolio of 

positively-weighted multifactor-efficient portfolios reduces to a combination of an 

MVE portfolio with the state-variable mimicking portfolios, so all portfolios of 

positively-weighted ME portfolios are ME. 
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VII. Market Equilibrium and the Market Portfolio 

This section discusses the main results of the ICAPM on spanning portfolios 
and the relation between multifactor risks and expected return. I show that when 

there is no risk-free security, the market portfolio M can replace portfolio 5 + 1 

in the spanning set of (15). Or, when there is risk-free borrowing and lending, M 

can replace the tangency portfolio T in the spanning set of (16). I then show that 

the risk-return relation (2) of the ICAPM is just the first-order condition on the 

weights for securities in any MMV portfolio, applied to M. All these results use 

the fact, established first, that in a market equilibrium, the market portfolio must 

be multifactor-efficient. 

A. Market Equilibrium 

Market-clearing prices imply that supply equals demand for each security. 

Equivalently, a market equilibrium requires that when one combines the portfolios 
chosen by investors, weighting each by that investor's nonnegative share of invested 

wealth, one gets the market portfolio M. Since investors choose ME portfolios, M 

is a portfolio of positively-weighted ME portfolios, so, from Proposition 5, 

Proposition 6. In a market equilibrium, the value-weight market portfolio M is 

multifactor-efficient. 

Suppose there is no risk-free security and the market portfolio has a nonzero 

weight qs+\,e in (15). In other words, M is not just a combination of the GMV 

portfolio 5 + 2 and the 5 state-variable mimicking portfolios. Then, since M is 

multifactor-efficient, Proposition 4 says that replacing rs+\ with rM in (15) produces 
another basis set that spans MMV and ME portfolios. Thus, 

Proposition 7. When there is no risk-free security, MMV and ME portfolios 
are spanned by 5 + 2 portfolios that include M, the 5 state-variable mimicking 

portfolios, and the GMV portfolio. 

Alternatively, suppose there is a risk-free security and M has a nonzero weight 
on portfolio T in (16). Since M is multifactor-efficient, Proposition 4 says that 

replacing rj with r\j in (16) produces another basis set for MMV and ME portfolios. 
Thus, 

Proposition 8. When there is a risk-free security/, MMV and ME portfolios are 

spanned by 5 + 2 portfolios that include/, M, and the 5 state-variable mimicking 

portfolios. 

Proposition 8 is commonly taken to be the central portfolio-spanning result 

ofthe ICAPM. 

A caveat is in order. The fact that the market portfolio can replace portfolio 
5 + 1 in (15), or the tangency portfolio T in (16), is implied by Proposition 4: any 
5 + 2 linearly-independent MMV portfolios are a basis set. In particular, replacing 
5 + 1 (or T) with M does not mean that M is mean-variance-efficient (MVE). In 

the ICAPM, M is multifactor-efficient, but it almost surely is not MVE. 
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Since it goes to the heart ofthe difference between the ICAPM and the CAPM, 
this point warrants emphasis. ICAPM investors use Markowitz' MVE portfo? 
lios to optimize the tradeoff of expected return for generalized return variance. 
But ICAPM investors are also concerned with state-variable risks, and optimal 
(multifactor-efficient) portfolios typically combine an MVE portfolio with some 
or all ofthe state-variable mimicking portfolios. This means that the market portfo? 
lio (which aggregates the portfolios chosen by investors) almost surely combines 
an MVE portfolio with some or all of the state-variable mimicking portfolios. 
Thus, M is multifactor-efficient, but it is not mean-variance-efficient. 

B. The Risk-Return Relation (2) 

The characterizations of MMV spanning portfolios in (15) and (16) derive 

from the first-order condition on security weights in any MMV portfolio. The 

multifactor efficiency of the market portfolio then allows one to transform (15) 
and (16) into the ICAPM spanning Propositions 7 and 8. 

The ICAPM risk-return relation (2) is also just a manipulated version of the 

first-order condition on security weights in an MMV portfolio, applied to M. The 

Appendix shows that when there is a risk-free security, the expression for the 

weights of securities in any MMV portfolio e implies 

5 

(17) E(n)-rf = 
(3ie[E(re)-rf]+Y<P"[E(r^-rf]> 

5=1 

i = l,...,N, 

where (3ie and (3is, s = 1,... ,5, are the slopes in the multiple regression of the 

return on security / on the returns on the MMV portfolio e and the 5 state-variable 

mimicking portfolios. The tedious algebra in the Appendix just says that the 

security weights that satisfy the first-order condition for the MMV portfolio e also 

produce regression slopes (multifactor risk measures) that satisfy the risk-return 

relation (17). 
The risk-return equation (2) ofthe ICAPM is (17) with the market portfolio M 

as the MMV portfolio e. A market equilibrium indeed implies that M is multifactor- 

efficient. Thus, M can be the MMV portfolio e in (17), and (2) holds. 

My main point is now clear. The multifactor risk-return relation (2) is just the 

fact that in the ICAPM, securities must be priced so that their weights in the market 

portfolio satisfy the first-order condition on the weights in any multifactor-efficient 

portfolio. This generalizes the result that the risk-return relation (1) of the CAPM 

is just the fact that in a market equilibrium, M must be mean-variance-efficient 

(Fama (1976), Roll (1977)). Moreover, the difference between the ICAPM risk- 

return relation (2) and the CAPM risk-return relation (1) is that in the ICAPM, 
the market portfolio is multifactor-efficient, but it is not mean-variance-efficient. 

Thus, market (3 does not suffice to explain expected return. 

VIII. Odds and Ends 

The spanning Proposition 8 and the risk-return relation (2) are the main results 

ofthe ICAPM. I turn now to peripheral issues neatly tackled with the multifactor- 
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efficiency story. I consider i) the risk premiums in (2), ii) the special role of the 

market portfolio in tests ofthe ICAPM, and iii) the links between Merton's ICAPM 

and Ross' APT. 

A. Expected Risk Premiums 

The ICAPM provides a ready-made open system for testing hypotheses about 

which state variables are of concern to investors and so affect expected returns. 

But this flexibility has a cost. The signs of the premiums for state-variable risks, 

E(rs) ? 
r/,s= 1,..., 5 in (2), are indeterminate. They can be positive or negative, 

depending on investor tastes for different aspects of future consumption-investment 

opportunities. 
The risk aversion of investors does imply a positive premium for the residual 

variance of an ME portfolio, that is, return variance left unexplained by the state 

variables in (3). Does this imply a positive expected premium, E(rM) ? 
rf, in 

the market return? Since M is multifactor-efficient, the premium for the residual 

variance of M is positive. But, at least in principle, this positive component of 

E(tm) ? 
rf can be offset by negative premiums due to the properties of M as 

a hedge against state-variable uncertainty. Thus, the sign of E(rM) ? 
rf is also 

indeterminate! 

In truth, even the positive premium E(rr) ? 
rf for the MVE tangency portfolio 

in Figure 1 requires that the expected return E(rs+2) on the GMV portfolio is greater 
than rf. In the CAPM, market clearing requires that E(rs+2) > rf, but I see no 

similar argument for the ICAPM. If E(rs+2) < rf, then (as in Figure 3) T is 

the tangency of a line from rf to the negatively sloped portion of the minimum- 

variance boundary, and E(rj) ? 
rf < 0.0. MVE portfolios are then combinations 

[#7fef:r+(l ? 
<]Te)rf] with qTe < 0.0, and multifactor-efficient portfolios also involve 

short positions in T. Note, though, that Propositions 5, 6, and 8 and the risk-return 

relation (2) hold whether or not T is MVE. 

B. The Special Role of the Market Portfolio 

Huberman and Kandel (1987) shows that if a set of Y portfolios spans 
Markowitz' minimum-variance (MV) portfolios, then in the regression of the re? 

turn on any security on the returns on the Y portfolios, the intercept is 0.0 and 

the slopes sum to 1.0. Since MV portfolios are a subset of the set of multifactor- 

minimum-variance (MMV) portfolios, Proposition 4 implies that any basis set of 

MMV portfolios spans MV portfolios. The return on any security / can thus be 

expressed as 

s+i 

(18) n - re = 
]T (3iv (rv - re) + e,, 
v=l 

where re and rv, v = 1,..., 5 + 1, are the returns on any basis set of 5 + 2 MMV 

portfolios, e is any portfolio from this set, and I use HK's result that the slope for 
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FIGURE 3 

Markowitz' Mean-Variance-Efficient (MVE) Portfolios when the Expected Return on the 
GMV Portfolio of Risky Securities is Less than the Risk-Free Rate [E(rs+2) < rf] 

With risk-free borrowing and lending, MVE portfolios are combinations [qjerT + (1 ? 

QTe)rf\> Q-Te ̂ 0.0, where Tis the tangency of a line from ^ to the negatively sloped portion 
of Markowitz' minimum-variance boundary for risky securities. When there is no risk-free 
security, the position of the portfolio S+ 1, defined by the weights for securities in (8b), 
depends on whether the expected return on the GMV portfolio S + 2 is greater or less 
than 0.0. When E(rs+2) > 0.0, portfolio S + 1 is the tangency of a line from the origin to 
the MVE boundary (Figure 1). When, as shown here, E(r^+2) < 0.0, portfolio S+ 1 is the 
tangency of a line from the origin to the negatively sloped portion of the minimum-variance 
boundary. MVE portfolios are then combinations [q$+-\ erS+1 + 0 ~ ^S+1 e)rS+2i> w'^ 

qs+J\,e ^ 0.0. Multifactor-efficient portfolios always combine an MVE portfolio with the S 
mimicking portfolios for the state variables, defined by the weights in (8a). 

E(r) 

a(r) 

any portfolio e in a basis set is 1.0 minus the sum of the slopes on the other 5+1 

portfolios. Taking expected values in (18) yields 

5+1 

(19) E (n -re) = 
]T (5ivE (rv - re). 
v=l 
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Thus, there is a risk-return relation (19), like (2), for any basis set of MMV 

portfolios. And excess returns can be measured relative to any portfolio e in a 

basis set. Note, though, that these results are just implications of the algebra of 

MMV and MV portfolios. They say nothing about asset pricing. 
The point merits discussion. Suppose asset pricing is governed by an ICAPM 

in which there are 5 state variables that carry special premiums. It is nevertheless 
true that any two of Markowitz' minimum-variance portfolios can describe the 

expected returns on all securities and portfolios. As Fama (1976) and Roll (1977) 

emphasize, this result is implied by the algebra of MV portfolios. It does not imply 
CAPM pricing. The testable equilibrium condition ofthe CAPM is that the market 

portfolio M is priced to be mean-variance efficient, so M can be one of the two 

MV portfolios used to describe expected returns. 

Similarly, consider the set of MMV portfolios that minimize variance subject 
to constraints on expected return and loadings on a given subset S' < 5 of the 

state variables. The algebra of MMV portfolios implies that any Sf + 2 portfolios 
from this set can describe the expected returns on all securities and portfolios; 
that is, there are equations like (18) and (19) for these S' + 2 portfolios. But this 

does not mean expected returns are governed by an ICAPM in which only the 

S' < 5 state variables carry special premiums. The equilibrium condition of an 

S' state-variable ICAPM is that the market portfolio M is one of the S' + 2 MMV 

portfolios that can used to describe expected returns. 

In short, the market portfolio has a special role in Merton's ICAPM, much 

like its role in the Sharpe-Lintner CAPM. The main testable implication of the 

CAPM (Fama (1976), Roll (1977)) is that equilibrium security prices require that 

M is mean-variance-efficient. The main testable implication ofthe ICAPM is that 

securities must be priced so that M is multifactor-efficient. 

IX. The Market Return and the APT 

A. Is the Market Return a State Variable? 

The market portfolio and the state-variable mimicking portfolios seem to 

have similar roles in the risk-return relation (2). This suggests that rM should be 

treated as just another state variable. This approach, however, is likely to obscure 

the economic role of M in (2). In the ICAPM, the number of securities is finite 

and individual securities can be nontrivial in value relative to total wealth. Thus, 
multifactor-efficient (ME) portfolios generally have positive residual variances 

in (3). With risk-averse investors, the residual variances of ME portfolios are 

undiversifiable risks that must be compensated in expected returns. With 5 state 

variables, the residual variances of ME portfolios are the reason 5 + 2 (rather than 

5+1) portfolios are needed to span MMV portfolios, and 5+ 1 (rather than 5) risk 

premiums are needed to describe expected returns. 

In the basis set of (16), the tangency portfolio T captures variation in expected 
returns that is independent of loadings on the 5 state variables?the variation in 

expected returns due to the residual variances of ME portfolios. But this role can 

be played by any ME (or MMV) portfolio that is not just a combination ofthe state- 

variable mimicking portfolios. In the basis set of (2), the market portfolio fills in 
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for T. Put a bit differently, M appears in (2), along with the mimicking portfolios 
for the state variables, because in the ICAPM, M is multifactor-efficient and has 

a positive residual variance in (3). Thus, the part of r^ legitimately treated as a 

separate state variable is the variation in rM?the uncertainty about total invested 
wealth?not explained by the other 5 state variables. 

B. The ICAPM and the APT 

The argument that the market portfolio appears in the ICAPM risk-return 

relation (2) because r^ contains undiversifiable residual variance becomes clear 

if Merton's ICAPM is contrasted with Ross' APT, especially Connor's (1984) 
version of the APT. 

First some housekeeping. Since a state variable may affect the return on 

only one security, Merton's state variables need not be Ross' common factors in 

returns. If many securities have private state variables, however, Merton's ICAPM 

is empty; its restrictions on expected returns are too loose. Conversely, all the 

common factors in Ross' APT need not be state variables that give rise to special 

hedging demands by investors. The comparison of the two models is simplified, 
however, if one assumes that Merton's state variables are the common factors of 

the APT. 

The pure-arbitrage version of the APT is easily summarized. By definition, 
a perfectly diversified portfolio has no residual variance in (3). Suppose there 

are 5 perfectly diversified state-variable mimicking portfolios that, along with a 

risk-free security, generate perfectly diversified portfolios with any loadings on the 

state variables. The APT then says that the ICAPM risk-return relation (2) holds 

for these perfectly diversified portfolios, but without the term, (3PAf[E(rM 
? 

rf)], 
for the market portfolio, 

5 

(20) E(rp)-rf = 
? /3ps [E(r.) 

- 
rf] . 

5=1 

Intuitively, perfectly diversified portfolios have no residual variances in (3), 
so the absence of arbitrage opportunities implies that their expected returns do 

not contain the compensation for residual variance captured by the market term 

in (2). The expected returns on perfectly diversified portfolios depend only on 

the sensitivities of their returns to the returns on the state-variable mimicking 

portfolios. 
The pure-arbitrage version of the APT delivers (20) only for perfectly di? 

versified portfolios. Connor (1984) develops an APT in which (20) holds for all 

securities. (See also Chen and Ingersoll (1983).) Like the pure-arbitrage APT, 
Connor assumes that the state-variable mimicking portfolios are perfectly diversi? 

fied. Like Merton, however, Connor uses utility maximization to develop an exact 

expression for expected security returns. Unlike Merton, Connor assumes that the 

market portfolio is perfectly diversified. My multifactor-efficiency story provides 
a simple ICAPM interpretation ofthe effect of this key assumption. 

In the ICAPM, when there is a risk-free security/, all MMV portfolios are 

portfolios of /, the market portfolio M, and the 5 state-variable mimicking port? 
folios. But if M and the mimicking portfolios are perfectly diversified (Connor's 
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assumptions), they have no residual variances in (3). This means there is a port? 
folio of the risk-free security and the state-variable mimicking portfolios that has 

the same loadings on the state variables as M and is perfectly correlated with M. 

The absence of arbitrage then implies that this portfolio and M must have the same 

expected return. M is thus redundant in the basis set of (2). All MMV portfo? 
lios are combinations of the risk-free security and the 5 state-variable mimicking 
portfolios. Proposition 3 in Huberman and Kandel (1987) then says that M is also 

redundant for describing expected returns; expected returns on all securities are 

given by (20). 
In short, Connor's APT can be viewed as a special case of Merton's ICAPM in 

which all MMV and ME portfolios are perfectly diversified so there is no variation 

in expected returns independent of loadings on the state variables. 5 + 1 linearly- 

independent MMV portfolios span MMV portfolios and describe expected security 
returns. In contrast, in the general version ofthe ICAPM, the market portfolio is 

not perfectly diversified. The residual variances of M and other ME portfolios are 

then undiversifiable risks that must be compensated in expected returns. (Dybvig 

(1983) and Grinblatt and Titman (1983) can be interpreted as making a similar 

point.) Because of these residual risks (and the risks of the 5 state variables), 5 + 2 

portfolios are needed to span MMV and ME portfolios and to describe expected 
returns. 

X. Conclusions 

The Sharpe-Lintner CAPM starts with assumptions that imply that investors 

hold mean-variance-efficient (MVE) portfolios. Assumptions are added to guar? 
antee that the market portfolio M is MVE. The risk-return relation of the CAPM 

is then just the application to M of the condition on security weights that holds in 

any MVE portfolio (Fama (1976), ch. 8, Roll (1977)). 
There is a similar story for Merton's intertemporal CAPM. ICAPM investors 

hold multifactor-efficient portfolios that generalize the notion of portfolio effi? 

ciency. Like CAPM investors, ICAPM investors dislike wealth uncertainty, and 

they use Markowitz' MVE portfolios to optimize the tradeoff of expected return for 

general sources of return variance. But ICAPM investors are also concerned with 

hedging more specific aspects of future consumption-investment opportunities, 
such as the relative prices of consumption goods and the risk-return tradeoffs they 
will face in capital markets. As a result, the typical multifactor-efficient portfolio 
of the ICAPM combines an MVE portfolio with hedging portfolios that mimic 

uncertainty about consumption-investment state variables. 

As in the CAPM, the relation between expected return and multifactor risks 

in the ICAPM is the condition on the weights for securities that holds in any 
multifactor-efficient portfolio, applied to the market portfolio M. And just as 

market equilibrium in the CAPM requires that M is mean-variance-efficient, in the 

ICAPM, market-clearing prices imply that M is multifactor-efficient. 
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Appendix 

This appendix derives i) equation (7) for the security weights in any MMV 

portfolio, ii) Proposition 4, and iii) the risk-return relation (2) of the ICAPM. 

A. The Weights of (7) for Securities in an MMV Portfolio 

Given the Lagrange multipliers for the MMV portfolio e, (6) is a set of N 

linear equations that can be solved for the security weights Xe = (xie,... ,x^e)'. 
Define: 

V = N x N nonsingular matrix of covariances cr/, between security returns, 
withD = V~u, 

B = N x 5 matrix of loadings bis of security returns on the 5 state variables; 

E(R) = N x 1 vector of expected security returns, ?(r,), / = l,...,N; 

Le = 5x1 vector of Xse, s = 1,..., 5; 

lN = N x 1 vector of ls. 

In matrix form, the Af equations of (6) are then 

(21) VXe = BLe + \s+uE(R) + \s+2,elN, 

and the security weights that solve the variance-minimization problem (4) are 

(22) Xe = DBLe + Xs+u[DE(R)]+Xs+2,emN]^ 

Equation (22) is the matrix version of (7). 

B. Proposition 4 

Equation (10) for the security weights in any MMV portfolio e can be written 

as 

(23) Xe = Xs+2Qe = Xs+2ZZ~lQe, 

where Xs+2 is the N x (5 + 2) matrix of security weights for the 5 + 2 portfolios of 

(8), Qe is the (5 + 2) x 1 vector of weights for these portfolios of (9), and Z is any 

nonsingular (5 + 2) x (5 + 2) matrix with Z'\s+2 = ls+2- 

Proposition 2 implies thatX^Z is a set of weights for 5+2 linearly-independent 
MMV portfolios. Equation (23) then says that Z~lQe is the (5 + 2) x 1 vector of 

weights for these portfolios that produces the weights for securities in the MMV 

portfolio e. Since e can be any MMV portfolio, (23) says that the 5+2 MMV port? 
folios Xs+2Z can generate all MMV portfolios. Moreover, Proposition 2 implies 
that there is a Z such that Xs+2Z generates any particular 5+2 linearly-independent 
MMV portfolios. One can infer that (Proposition 4) any 5+2 linearly-independent 
MMV portfolios are a basis set for MMV portfolios. 
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C. The Risk-Return Relation (2) of Theorem 2 

I next show that the risk-return relation (2) is a manipulated version ofthe first- 

order condition on the weights for securities in an MMV portfolio. The analysis 
fleshes out Breeden ((1979), fn. 7). 

When there is a risk-free security, the matrix version of the first-order condi? 
tion (6) on the weights for securities in the target MMV portfolio e is 

(24) E(R)-Rf = (l/\s+he)VXe-B(Le/Xs+u) 
= (l/Xs+u)Vie-VDB(Le/Xs+u), 

where, E(R) ? 
Rf is the Af x 1 vector of expected excess security returns, and 

Vie = VXe is the vector of cov(r,, re), i= 1,..., N. 

LetXs be the N x 5 matrix of weights for securities in the mimicking portfolios 
for the 5 state variables in (8a). Since the columns of DB are proportional to the 

columns of Xs, no harm is done (I simply redefine the Lagrange multipliers Le), if 

I replace DB in (24) with Xs. Then, 

(25) E(R)-Rf = (l/Xs+Ue)Vie-VXs(Le/Xs+he) 
= (l/XS+U) Vie ~ Vis (Le/XS+X,e) , 

where V& = VXS is the N x 5 matrix of covariances between security returns and 

the mimicking portfolio returns. If I define the N x (5+ l)matrix V^es = [Vie, Vis], 

(25) becomes 

(26) E(R)-Rf = Vu 
iA 

-Ul\ 

5+1 ,e 

*5+l,<? 

The final step to the risk-return relation (2) involves expressing the Lagrange 

multipliers in (26) in terms of the expected excess returns on the target MMV 

portfolio e and the 5 mimicking portfolios for the state variables. Let E(RS) - 
Rf 

be the 5 x 1 vector of expected excess returns on the mimicking portfolios, and 

let Xes = [Xe,Xs] be the N x (5 + 1) matrix of weights for securities in e and 

the 5 mimicking portfolios. The vector of expected excess returns on e and the 5 

mimicking portfolios can then be expressed in terms ofthe expected excess returns 

on securities given by (26) as 

(27) 
E(re)-rf 

E(RS)-Rf 

- X' V ? ^esvU 

= Vrs 

where Ves,es is the (5 + 1) x (5 + 1) covariance matrix for the returns on e and the 5 

mimicking portfolios. YfDeses is the inverse of Ves>es, then (26) says that the vector 

of Lagrange multipliers is 

(28) De. 
E(re)-rf 

E(RS)-Rf 

l/As+i.e 

?Le/Xs+X,e 
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Substituting (28) into (26) gives, 

(29) E(R)-Rf = V,,?D?ift 
E(re)-rf 

E(R5)-Rf 

Finally, the N x (5 + 1) matrix of slopes in the (with intercept) regressions 
of security returns on the returns on the MMV portfolio e and the 5 mimicking 

portfolios for the state variables is 

(30) 

and (29) becomes 

(31) 

Hi,es -~ ^i,es^es,esy 

E(R)-Rf = fres 
E(re)-rf 

E(RS)-Rf 

Equation (31) is a manipulated version of (24), the condition on the weights for 

securities in any MMV portfolio e. The tedious algebra above simply says that the 

security weights that solve (24) also deliver regression slopes that satisfy (31). The 

risk-return relation (2) is (31) with the market portfolio M as the MMV portfolio e. 

Market-clearing prices for securities indeed imply that M is multifactor-efficient. 

Thus, M can be the MMV portfolio e in (31). 
There is a simpler path to (2). Like any basis set, the set of MMV portfolios 

that includes the risk-free security, the market portfolio, and the 5 state-variable 

mimicking portfolios can generate all of Markowitz' minimum-variance portfo? 
lios. Proposition 3 of Huberman and Kandel (1987) then implies that the relation 

between the excess return on any security and the excess returns on the market 

portfolio and the mimicking portfolios for the state variables is the linear regres? 
sion, 

(32) n - 
rf = PiM (rM 

~ 
rf) + ^T (3is (rs 

- 
rf) + eh 

s=\ 

Taking expected values in (32) yields (2). 
But the elegant conciseness of this proof conceals the main point of equations 

(24) to (31), indeed the main point of this paper: the risk-return relation (2) of 

Merton's ICAPM is just the first-order condition on the weights for securities in 

any MMV portfolio, applied to the market portfolio M. 
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