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Abstract

This paper rectifies a design problem in the Santa Fe Institute
Artificial Stock Market Model. The mutation operator caused the
resulting bit distribution to be systematically upwardly biased, thus
suggesting emergent technical trading at faster learning speeds. The
modified version now partly supports the Marimon-Sargent-Hypothe-
sis which states that adaptive classifier agents in an artificial stock
market will discover the homogeneous rational expectation equilib-
rium. While agents always learn the correct solution of non-bit usage,
analyzing the simulated price series reveals that the updated model
still shifts into a more complex regime, however, only at faster learning
rates than the original model suggests.
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platz 8–9, 06099 Halle/Saale (Germany), E-mail: ehrentreich@wiwi.uni-halle.de, phone:
+49-345-552-3453. The market model was programmed using Java and the RePast-library.
The author wishes to thank Ulrike Neyer, Lars Schiefner, Manfred Jäger, Heinz-Peter
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1 Introduction

In the last decade, the use of agent-based simulations of markets has gained
more and more acceptance among social scientists. This methodology has
first been heavily used by physical scientists who simulate complex systems of
many interacting particles. In financial economics, such a ‘particle’ is repre-
sented by an investor who interacts with other investors. A major advantage
is that these models allow the removal of many restrictive assumptions that
are required by analytical models for tractability. For instance, all investors
could be modeled as heterogeneous with respect to their preferences, endow-
ments, and trading strategies.

Among the numerous agent-based simulations of financial markets [e.g.,
Levy, Levy, and Solomon (1994), Lux and Marchesi (1999), or Cont and
Bouchaud (2000)], the Santa Fe Institute Artificial Stock Market Model (SFI-
ASM) is one of the pioneering models and thus probably the most well-known
and best studied. According to Waldrop (1992, p. 270), it emerged from a
discussion between Ramon Marimon and Thomas Sargent on the one side and
John Holland and Brian W. Arthur on the other side. Marimon and Sargent
claimed that artificially intelligent agents in such a stock market simulation
would quickly learn the neoclassical rational equilibrium solution.1 Since
Holland and Arthur could not agree with this hypothesis, they started in
1989 to develop the SFI-ASM which has been described by Palmer et al.
(1994), Arthur et al. (1997), or LeBaron et al. (1999).2

Within the framework of the SFI-ASM, the Marimon-Sargent hypothesis
comprises two parts. First, there should be no significant use of fundamental
or technical trading information, and second, the price series should behave

1They were led to this statement through their own research [Marimon, McGrattan
and Sargent (1990)] in which they assigned adaptive classifier agents to solve Wicksell’s
triangle in a Kiyotaki-Wright (1989) type model. There, they found that the agents always
discovered the neoclassical solution, i.e., the good with the lowest storage cost emerged as
a medium of exchange.

2There are, in fact, several ‘generations’ of the SFI-ASM on different programming
platforms. An overview over the SFI market hi story can be found in LeBaron (2002)
and Johnson (2002). A current objective-C version using the Swarm package is currently
hosted by Paul Johnson at http://ArtStkMkt.sourceforge.net. The design of the original
SFI-ASM model as reported in section 2 is based on the objective-C version 7.1.2, which
also served as a blueprint for the author’s own reprogrammed Java version using the
RePast library. The source code is available on request.
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”nicely”, i.e., as predicted by the standard neoclassical solution. However,
the model’s main result is the identification of a single parameter, i.e., the
learning speed of agents, which is able to shift the model to either a regime
that is close to the homogeneous rational expectation equilibrium, or to a
more complex regime that better fits the empirical facts. The complex regime
emerges for fast learning rates and is characterized by more complicated
price time series and by substantial levels of technical trading. Thus, for fast
learning speeds both parts of the Marimon-Sargent hypothesis are rejected.

Arthur et al. (1997) asked themselves to

“what extent is the existence of the complex regime an artifact of de-

sign assumptions in our model? We find experimentally by varying both

the model’s parameters and the expectational-learning mechanism, that the

complex regime and the qualitative phenomena associated with it are robust.

These are not an artifact of some deficiency in the model.”

Arthur et al. (1997, p. 35)

However, a closer investigation of the genetic algorithm (GA) that up-
dates the trading rules of agents reveals that the SFI mutation operator
causes a systematic upward bias in the level of set bits in the condition parts
of trading rules, thus suggesting increased levels of fundamental and technical
trading for faster learning speeds. Yet, when eliminating this technical influ-
ence on the bit-level by an updated mutation operator, the Marimon-Sargent
hypothesis is finally supported for most learning speeds. Agents now always
discover the correct homogeneous rational expectation equilibrium (hree) of
non-bit usage, no matter which GA-invocation interval is used. Furthermore,
the simulated time series are generally closer to the hree-benchmark than in
the original SFI-ASM. Only at much faster learning rates than in the orig-
inal model can the claim of emergent complex price series behavior still be
upheld.

In order to be self-contained, Section 2 will first introduce the basic struc-
ture of the original SFI-ASM with its main results. At the end of this section,
the SFI mutation operator will be analyzed and its effects on the bit level
will be illustrated. Section 3 develops an updated mutation operator. Fi-
nally, the results of the original and updated version of the SFI-ASM will be
compared.
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2 The Original SFI-ASM

2.1 The Basic Structure

The SFI-ASM is inhabited by N traders who are all initially endowed with
one unit of risky stock and 20, 000 units of cash. During each period, traders
have to decide how much to invest in risky stock and how much to keep in
cash assets which yields a risk-free rate of return rf .

The stock pays a stochastic dividend per period which is generated by a
stationary AR(1)-process

dt+1 = d̄+ ρ(dt − d̄) + εt+1, (1)

with εt ∼ N(0, σ2
ε ). Traders are homogeneous with respect to their utility

function which is a myopic, constant absolute risk-aversion expected utility
function

U(Wt+1) = −e
−λWt+1 , (2)

with λ being the degree of risk-aversion and Wt+1 being an agent’s expected
wealth level in the next period. Under the assumption of a normal distribu-
tion of returns, agents maximize their expected utility subject to the budget
constraint

Wi,t+1 = xi,t(pt+1 + dt+1) + (1 + rf )(Wi,t − ptxi,t), (3)

where xi,t is the amount of stock an agent i holds in period t. The optimal
amount of stock x̂i,t that an agent desires to hold is then determined as

x̂i,t =
Ei,t[pt+1 + dt+1]− pt(1 + rf )

λσ2
t,p+d

, (4)

where Ei,t[pt+1 +dt+1] is the expectation in t about the next period’s realiza-
tion of the stock’s price and dividend, and σ2

t,p+d is the empirically observed
variance of the combined price plus dividend time series. A specialist col-
lects all effective demands, as well as its partial derivatives with respect to
the price, and tries to balance the effective demands to the fixed supply of
shares by setting a market clearing price in an iterative process. If complete
market clearing is not reached after a specified number of trials, one side of
the market will be rationed.
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While traders are homogeneous with respect to their utility functions and
degrees of risk aversion, they have heterogeneous expectations about future
prices and dividends Ei,t[pt+1 + dt+1]. It could be interpreted that they differ
in the way they process an identical information set. Forecasts are derived
via trading rules from which each agent possesses an individual set of 100
rules. A rule consists of a condition part, a forecast part (predictor), its
fitness value, and its forecast accuracy. A forecast is derived according to

if (condition fulfilled), then (use predictor to derive forecast).

The condition parts are checked against a Boolean market descriptor Dt

which holds current and past price and dividend information. For example,
a particular market state could be that the price of the stock is greater than
n-times its fundamental value, while at the same time, the 25-period moving
average of the stock price is greater than the current price. When a particular
predefined condition is met, the corresponding descriptor bit is set to 1, and
otherwise to 0.

The condition part, on the other hand, is coded as a ternary string hold-
ing either 1 or 0, depending on whether the corresponding bit in the market
descriptor has to be matched or not, or holding # if the rule ignores that
particular descriptor bit.3 Rules with numerous #-signs are quite general,
hence, they will be activated more often than more specific rules. The bits of
a trading rule may be characterized as either technical or fundamental. Tech-
nical bits check only price or trading volume information, while fundamental
bits relate the price of a stock to its fundamental value by using dividend
information. For example, dividends and prices are checked to determine
whether they have increased or decreased, and whether they are above or
below certain moving averages. Most importantly, prices are checked against
a stock’s fundamental value by comparing for each ratio in the brackets to
determine whether

price x interest rate/dividend >

{
1

2
,
3

4
,
7

8
, 1,

9

8
,
5

4
,
3

2

}
(5)

is fulfilled.

3Technically, the units in the ternary strings should be called trits. A trit is the smallest
unit that can hold three values. However, as is usually done in the literature, the author
will refer to them as bits.
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From the set of 100 individual trading rules that each agent possesses,
normally more than one match the specified condition. All rules that fulfill
this condition are marked as active, yet agents still have to choose one for
their forecast production. This is done via the roulette wheel mechanism
which favors rules with good fitness scores over those with low fitness values.
Finally, a forecast is generated by the linear equation

Et,i[pt+1 + dt+1] = ai,j(pt + dt) + bi,j , (6)

with aj and bj being real valued parameters constituting the predictor part
of a chosen trading rule j. Only when no rules match the market descriptor,
parameters a and b are determined as a fitness weighted average of all aj and
bj with j = 1 . . . 100.

One period later, the accuracy of all activated rules is checked by comparing
their predictions E[pt+1 + dt+1] with the actual realization of (pt+1 + dt+1).
A rule’s forecast accuracy is determined as

ν2
t,i,j =

(
1−

1

θ

)
ν2
t−1,i,j +

1

θ

[
(pt + dt)− [ai,j(pt−1 + dt−1) + bi,j]

]2
. (7)

This forecast accuracy is measured as a weighted average of previous and
current squared forecasting errors. The parameter θ determines the size of
the time window that agents consider when estimating a rule’s accuracy. As
LeBaron et al. have pointed out, the value of θ is a crucial design question
since it strongly affects the speed of accuracy adjustment and the resultant
learning in the artificial stock market. If θ = 1, the rules would be judged
only on the last period’s performance and forecast accuracy would be strongly
prone to noise. At the other extreme, however, as θ goes to∞, agents would
take all past information into account, implicitly assuming they live in a
static world. As in LeBaron et al., a value of 75 is chosen for θ.

The forecast accuracy ν2
t,j is used as a rule’s variance estimate σ2

t,(p+d),

which is used in equation (4). Furthermore, it is the main determinant of a
rule’s fitness

ft,j = C −
(
ν2
t,j + bitCost× specificity

)
, (8)

with specificity being the number of conditions in a rule that are not
ignored, bitCost being an associated cost for each bit set, and C being a
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positive constant to ensure positive fitness.4 Attaching positive cost for every
non-ignored bit could be interpreted as the cost of acquiring and evaluating
new information. Penalizing rule specificity is also tantamount to a complex-
ity aversion since it favors simple rules over more specific ones. Furthermore,
LeBaron et al. claim that this should ensure that each checked condition
contains useful information in the trading rule.

2.2 Learning and Rule Evolution

So far, agents have been equipped with a static rule set. Feedback learn-
ing in the stock market has taken place by identifying and using the rules
that performed better than others, while the learning speed and quality were
strongly dependent on the parameter θ. However, if agents started with a
rule set that contained only bad rules, in the absence of any other learning
mechanism, they would not be able to find better ones. Thus, the GA pro-
vides a way to alter the rule sets by replacing the badly performing rules
with new, possibly better ones.5 By exploring the possible search space in
a random, yet not directionless fashion, the GA creates the basis for further
exploratory learning of the agents that occurs on a longer time scale than
the accuracy estimation.

For each agent, the GA is, on average, invoked every K periods and
replaces the 20 worst rules of the rule set. In doing so, the GA uses the genetic
operators of mutation and crossover. Mutation is an important part of any
evolutionary algorithm which helps maintain a diverse population and avoids
premature convergence of the search algorithm. It could be interpreted as
learning by experiment or by unintentional mistakes.6 For predictor mutation
Π, which is performed with a probability of 0.7 in the model, one parent is
chosen by using tournament selection in which two candidates are randomly
drawn from the rule set and the fitter one is selected to be the parent. A
genetically identical offspring is created from the parent, and with a small bit
mutation probability π of 0.03, each bit in the condition part of the offspring
is flipped at random. The real valued parameters of the predictor are changed

4Variable names as they appear in the source code of the model are typed in courier.

5Two useful introductions to genetic algorithms, which were originally developed by
Holland (1975), are provided in Goldberg (1989) and Mitchell (1996).

6See, for instance, Riechmann (2001, p. 1021), or Dawid (1999, p. 68).
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by adding random numbers to them.7 The offspring’s forecast accuracy is
set at the median accuracy of all rules.

Contrary to mutation, crossover is a sexual genetic operator that requires
two parents. Even though there are various different crossover operators
available, the original SFI-model exclusively uses uniform crossover for the
condition parts. Here, an offspring’s bit is chosen with equal probability
from the corresponding bit positions of either one or the other parent. Note
that the fraction of bits set in the offspring is an unweighted average of the
two parents’ bit fraction. Thus, there is no systematic influence on average
specificity through the working of the crossover operator.

As for the real valued parameters, LeBaron et al. point out that there
is little experience in the GA community regarding how to perform the
crossover. Their approach is to construct the new parameter values by de-
termining a weighted average of the two parent’s values, with 1/σ2

j,p+d as the
weight for each parent. The weights are normalized to sum up to 1.

2.3 The Homogeneous Rational Expectations Regime

The normal model behavior for heterogeneous agents can be assessed by
comparing it with the homogeneous rational expectation equilibrium. Since
we know that all agents hold one unit of the risky stock in this benchmark
scenario, the known structure of its dividend process allows us to solve for
their hree-forecast parameters

a = ρ (9)

and
b = (1− ρ)

(
(1 + f)d̄+ g

)
, (10)

with
f =

ρ

1 + rf − ρ
(11)

and

g =
(1 + f)(1− ρ)d̄− λσ2

p+d

rf
. (12)

7With probability 0.2 they are uniformly changed to a value within the permissible
ranges of the parameter which is [0.7, 1.2] for the a parameter and [−10.0, 19.0] for the
b parameter. With probability 0.2 the current parameter value is uniformly distributed
within ± 5% of its current value, and for the remaining cases it is left unchanged.
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The variance for the combined price plus dividend time series is

σ2
p+d = (1 + f)2σ2

ε . (13)

All information provided by the condition parts of the classifier system is
unnecessary in the hree-case since agents only need to know the last period’s
price and dividend to derive their identical forecast for next period’s price
and dividend. Thus, the hree-solution should be characterized by complete
negligence of technical and fundamental trading bits.

2.4 Experimental Results with the SFI-ASM

Depending on the GA-invocation interval, LeBaron et al. reported two dif-
ferent regimes. The so-called rational expectations regime emerged when
agents had a slow learning rate, i.e., the GA was only seldom invoked, on
average every 1,000 periods. Bit usage remained low and the agent’s fore-
cast parameters converged to their hree-values, thus indicating that agents
became more and more homogeneous.

The so-called rich psychological or complex regime arose when agents
had a fast exploration rate, i.e., when the GA was often invoked, on aver-
age every 250 periods. Here, the continuously co-evolving agents remained
heterogeneous with respect to their bit usage and forecast parameters. In
fact, the emergence of technical trading bits was often considered to be the
most striking difference between the two regimes and was interpreted as an
emergent property of the market. Furthermore, the price series exhibited
unstable behavior such as bubbles and crashes, as well as other statistical
properties like fat tails in the return distribution that can also be observed in
real financial markets. Trading volume exhibited GARCH-behavior and was
auto-correlated while having a positive cross-correlation with volatility and
squared returns. Price volatility and risk premiums were significantly higher
compared to the slow learning case. Since none of these nonlinear effects
can be attributed to the underlying dividend process, they are an emergent
property of the market process, i.e., the interactions of many heterogeneous
agents. Hence, the SFI-model also supports the “interacting agent hypothe-
sis” as proposed by Lux (1998) and Lux and Marchesi (1999).
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2.5 The Problem: A Faulty Mutation Operator

However, any interpretation of the simulation results that is linked to rule
specificity and emergent technical trading has to be treated with caution in
view of the mutation operator that has been used in the SFI-ASM. Unlike
crossover, this mutation operator is not neutral to the initial level of bits set
and usually introduces an upward bias in the resulting bit level.

In order to demonstrate this bit-increasing effect, we must examine the
bit transition probabilities given in LeBaron et al. (1999, p. 1498). Once
0- or 1-bits are chosen for mutation with probability π, they are never left
unchanged and are converted into the don’t care sign # with a probability
of two thirds. After mutation, an initial don’t care bit will be either 1, 0, or
# with an equal probability of one third. LeBaron et al. assert that these
transition probabilities would, on average, maintain the specificity, i.e., the
fraction of #’s in a rule.

However, by applying a Markov chain analysis, we find that in the long
run the fraction of non-# bits converges to one half. The transition proba-
bilities given above can be expressed by the following transition matrix:

P =




0 1/3 2/3
1/3 0 2/3
1/3 1/3 1/3


 . (14)

If we denote the vector of probabilities of the three possible states in
period t as pt = {pt0, p

t
1, p

t
#}, in equilibrium pt = ptP = pt+1 must hold. By

repeatedly invoking the mutation operator, the vector of probabilities will
converge to its equilibrium distribution of p∗ =

{
1
4
, 1

4
, 1

2

}
, i.e., on average, a

quarter of all bits will be zero, another quarter will be one, and the remaining
fraction of one half will be the don’t care sign #.

Because the model usually functions well below the bit-level of one half,
the mutation operator introduces an upward tendency in the bit distribu-
tion.8 This is illustrated in figure (1) by varying the probability Π with

8The fact that the theoretical equilibrium level of 0.5 is usually far from being attained
is due to a variety of other model parameters. First of all, even for a mutation probability
of Π = 1, i.e., when there is no crossover in the model, every bit in the parent string will be
changed with only a probability of π = 0.03. Secondly, the bitCost parameter penalizes
every non-# bit, thus, the GA preferably selects rules with below average specificity for
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which predictors are mutated in the model.9 Note that throughout this pa-
per, all simulation parameters have been set at the same values as those in
LeBaron et al. (1999, p. 1492).
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Fig. 1: Total fraction of bits set as a function of mutation probability Π in
the original SFI-ASM. Data were obtained from a cross section of 5 separate
runs at different random seeds.

Consequently, when increasing the learning speed, the mutation opera-
tor is more often invoked per time period and its upward bias results in a
higher equilibrium bit level. The higher number of trading bits for faster
GA-invocation intervals led the researchers from the Santa Fe Institute to

mutation and crossover. Finally, by looking at equation (5), we realize that the GA
might produce illogical rules. A typical remedy is to work with a larger rule set and to
invoke a generalization procedure for any rule that has not been matched for the last
maxNonActive periods. This procedure lowers rule specificity by converting set bits to #
with a probability of genFrac.

9A similar graph can be obtained by altering the bit mutation probability π.
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infer that there is emergent technical trading in their artificial stock market.
Because of the cost they have attached to every non-# bit, they conjec-
tured that emerging trading bits must have, on average, some fitness-based
advantages by producing more accurate forecasts.

However, there are several indications that this is a premature interpre-
tation. First, their logic implies that the SFI-model could be forced into a
non-bit (or at least a low-bit) usage solution if bit costs are sufficiently high.
This, however, is never the case. Even for very high bit costs, only a minimal
downward shift is noticeable in the equilibrium bit distribution for all muta-
tion probabilities. Secondly, given the steady injection of new bits through
the mutation operator, it is not surprising that one cannot find some kind of
threshold level for the learning speed at which the model “jumps” between
two distinct regimes. Instead, equidistant increases in the GA-invocation
interval lead to similar increases in the equilibrium bit level. Furthermore,
no significant differences in the level of fundamental and technical trading
bits can be detected for various learning speeds or mutation rates. Last, but
not least, one cannot assert that agents actually use technical trading bits
simply because they exist. In fact, when counting an agent’s rule usage, one
realizes that general rules are much more often selected for use than more
specific ones.

3 A Corrected Version of the SFI-ASM

3.1 Suggested Correction

The theoretical and experimental analysis above suggests that the emergence
of technical trading bits may be an artifact caused by a misspecified muta-
tion operator. Furthermore, the emergence of trading bits is not necessarily
tantamount to emergent technical trading which requires that agents actu-
ally act upon these bits. In order to derive valid conclusions about the bit
usage in the model, one should take care in designing bit-neutral operators
and procedures. Thus, a strongly desired property of an alternative mutation
operator would be that it leaves, on average, the fraction of set bits unal-
tered. While the bit-decreasing effect of the bit cost parameter is desirable
as it is a fitness-based influence, the bit-increasing effect of the SFI mutation
operator is undesirable since it is completely technical and economically not
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interpretable.

The suggested alternative bit-neutral mutation operator works with dy-
namically adjusted bit transition probabilities. In order to infer whether
technical and fundamental bit usage differs in the stock market, this muta-
tion operator works separately for fundamental and technical trading bits.
Therefore, it is necessary to distinguish between the initial fraction of fun-
damental bits set Ffund., and the initial fraction of technical bits set Ftechn..
The transition matrix for the fundamental bits is then given by

Pfund. =




0 Ffund. 1− Ffund.
Ffund. 0 1− Ffund.
1
2
Ffund.

1
2
Ffund. 1− Ffund.


 . (15)

and, similarly, for the technical bits by

Ptechn. =




0 Ftechn. 1− Ftechn.
Ftechn. 0 1− Ftechn.
1
2
Ftechn.

1
2
Ftechn. 1− Ftechn.


 , (16)

It is easy to verify that these transition matrices ensure that F t
techn. = F t+1

techn.

and F t
fund. = F t+1

fund., i.e., the fractions of set bits remain, on average, unal-
tered.

Having eliminated the upward bias of the SFI mutation operator, surviv-
ing trading bits should only emerge through competition and fitness consid-
erations, implying that they indeed contain useful information.

3.2 Experimental Results

3.2.1 Agents Forecast Properties

An analysis of the real valued forecasting parameters as well as the mean
variance of all rules does not exhibit any statistically significant differences
from the original SFI model as reported by LeBaron et al. (1999, p. 1508–
1509). This behavior was to be expected since the change in the mutation
operator only affects the condition parts and not the forecast parameters.
Thus, the differences for these parameters in the slow and fast learning regime
must be caused by reasons other than a more or less extensive use of condition
bits.

12



However, the bit usage between the original SFI-ASM and the updated
model turns out to be strikingly different. Contrary to the original model,
the updated model does not exhibit technical trading for all GA-intervals. In
particular, one can see from figure (2) that most agents completely abandon
technical and fundamental bit usage in the long run and do not check any
conditions at all.10
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Fig. 2: Fraction of NESFI-Agents who discovered the correct hree non-bit us-
age solution (Zero-Bit Agents), recorded for different GA invocation intervals
and averaged over 10 simulation runs.

Hence, replacing the original mutation operator with an updated operator
that has the desirable property of being bit-neutral finally supports the first

10Some long run testing yielded that all agents will discover the correct non-bit usage
solution. However, a few agents exhibit difficulties in doing so by being temporarily locked
in a suboptimal solution, i.e., one or two specific trading bits in all their rules are set to
either zero or one. Uniform crossover will always replicate this. Only mutation and
generalization are able to change several of these bits in the pool of trading rules such that
they can finally supersede the non-# bits. It is obvious that this may take a long time to
happen.
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part of the Marimon-Sargent hypothesis. All agents realize that, under the
given dividend process, all they need for their forecast production is the last
period’s price and dividend information, which is compatible with the linear
rational expectation equilibrium. Even though this result is caused by just
one relatively small change in the design of the artificial stock market, it is
so radically different from the original model that I will henceforth refer to
the corrected version as the NESFI-ASM (Norman Ehrentreich’s SFI-ASM).
Various tests have been performed with the NESFI-ASM so that the corrected
results can be considered reliable.

First, in order to check the proper working of the classifier system, the
model behavior was tested for classifier mode and non-classifier mode. For
the latter, agents had no access to condition bits at all. In both cases, they
were confronted with a periodic square wave dividend stream. Even though
the simulated price series tracked the crude risk neutral price astoundingly
well in the non-classifier mode, the tracking behavior in the classifier mode
was better for most GA intervals. Agents started to use some fundamental
as well as technical bits while neglecting others, and were thus able to predict
prices more accurately. Consequently, the classifier agents also acquired more
wealth than the non-classifier agents. Hence, it is shown that the classifier
system works very efficiently. When confronted with periodic dividend data,
it detects these patterns, yet when working with stochastic data, it also dis-
covers the “right” solution of non-bit usage. Even though the mean-reverting
dividend process is able to produce short term trends toward its mean, these
are by no means regular. Thus, in the long run, the stochastic nature of the
dividend process dominates any (random) short term trends and pattern.

Second, one could argue that bit cost had been too high such that small
efficiency gains from using condition bits had been overcompensated by their
associated cost. However, for no bit cost at all, one notices that the fraction
of fundamental or technical bits will either reach zero for some agents, or one
for other agents. The overall fraction of used bits in the economy then stays
constant. In order to explain this behavior, we have to realize that there are
two corner solutions for which an initial bit distribution is exactly replicated.
Because of the transition matrices (16) and (15), the bit distributions for the
technical or fundamental bits get trapped once they reach either reached zero
or one. The simultaneous existence of both corner solutions in the economy
suggests that the GA has neither a built-in attractor towards which the
equilibrium bit distribution is torn, nor that there are any fitness related
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gains or losses due to bit usage. In this case the bit usage of an agent
follows a random walk, and, sooner or later, the fundamental or technical bit
distributions for all agents will reach one of the two corner solutions.

Finally, a comparison of wealth levels of SFI-agents and NESFI-agents
shows that, on average, both types of agents accumulate the same levels of
wealth. Even in later periods of the market, i.e., when most NESFI-agents
have abandoned bit usage, none of the two groups does better than the other.
This is another indication that the classifier system in the artificial stock
market does not provide any advantage or useful information that agents
could exploit. Wilpert (2003, p. 128), too, concludes that giving up the
condition parts of the trading rules does not have drastic effects on the model
behavior. Thus, he also questions the usual interpretation of bit usage and
emphasizes that its importance should not be overestimated.

3.2.2 Time Series Properties

A typical neoclassical rational equilibrium solution would not only be charac-
terized by a total neglect of any additional information contained in condition
bits, it would also satisfy the second part of the Marimon-Sargent hypothesis
by exhibiting “nice” price series properties. One should keep in mind that
the proposed change to the GA only affects the condition part and not the
real-valued forecast parameters of a trading rule. Thus, one would expect
the two models to produce similar time series, i.e., “well behaved” ones for
the slow learning case and more complicated ones for faster GA-invocation
intervals.

This hypothesis was tested by running the same statistical tests on the
time series and comparing the results with those published in LeBaron et al.
(1999, p. 1501). All model parameters were set to the same values reported
there. The hree-case serves as a benchmark in which the dividend and market
price should be a linear function of their first order lags. Therefore, they are
regressed on a lag and a constant

pt+1 + dt+1 = a(pt + dt) + b+ εt, (17)

and the estimated residual time series ε̂t is analyzed whether it satisfies being
i.i.d. and N(0,4) distributed. The results are summarized in table (1).

First of all, one notices that the NESFI-ASM produces time series that
are usually closer to the hree-benchmark than those of the SFI-ASM. The
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Description GA 1000 GA 250 GA 20 GA 1
NESFI SFI NESFI SFI

Std. Dev. 2.084 2.135 2.141 2.147 2.229 3.397
(.009) (.008) (.013) (.017) (.013) (.034)

Excess kurtosis 0.004 0.072 0.001 0.320 0.050 9.046
(.009) (.012) (.001) (.020) (.011) (1.56)

ρ1 0.011 0.036 0.014 0.007 0.029 0.491
(.002) (.002) (.002) (.004) (.001) (.006)

ARCH(1) 2.610 3.159 2.754 36.98 5.722 1871.9
[0.20] [0.44] [0.40] [1.00] [0.48] [1.00]

ρ2
1 0.013 0.017 0.015 0.064 0.020 0.425

(.002) (.002) (.004) (.004) (.003) (.017)
BDS 1.06 1.28 1.10 3.11 1.44 38.63

[0.20] [0.24] [0.24] [0.84] [0.28] [1.00]
Excess return 1.52% 2.89% 1.59% 3.06% 1.51% 25.34%

(.02%) (.03%) (.03%) (.05%) (.03%) (3.41%)
Trading volume 0.244 0.355 0.271 0.706 0.876 1.359

(.008) (.021) (.007) (.047) (.009) (.015)

Table 1: Comparison of the NESFI and SFI-version of the model. Means
over 25 runs. Numbers in parentheses are standard errors estimated using
the 25 runs. Numbers in brackets are the fraction of tests rejecting the no-
ARCH or iid-hypothesis for the ARCH and BDS tests, respectively, at the
95% confidence level.

standard deviations in the residuals are generally smaller, thus indicating
less price variability. Excess kurtosis is almost negligible for both the fast
and slow learning cases, which contradicts the empirical fact of fat-tailed re-
turn distributions. Yet, when further enhancing the learning speed, both the
increase in standard deviation and excess kurtosis suggest that the NESFI-
model shifts into a more complex regime for faster learning rates than the
original SFI-model.11 The autocorrelation in the residuals, as shown in the

11While LeBaron et al. (1999) have reported the results only for the GA-intervals of
1,000 and 250, two additional learning speeds are included in table (1). The statistical
tests were performed for even more GA-intervals, in particular, for 100, 50 ,25, 20, 10, 5,
2, and 1.
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third row, demonstrates that there is little linear structure remaining except
for the extreme case of updating the rule set in every period. As LeBaron
et al. indicate, any artificial stock market should exhibit negligible autocor-
relations since they are very low for real markets. The large autocorrelation
coefficient for GA=1 indicates that the economic structure of the model might
break down at this speed, i.e., equation (17) becomes misspecified.12

The next row reports the means of the test statistics for the ARCH test
proposed by Engle (1982). There is considerably less ARCH dependence in
the residuals for the NESFI-version. It is interesting to note that even for
very small GA invocation intervals, some test runs are not able to reject
the no-ARCH hypothesis. Only for a GA invocation in every period can
extreme ARCH-behavior for all test runs be observed.13 In row five, the first
order autocorrelation of the squared residuals is another test for volatility
persistence. Again, it increases for faster learning speeds but is generally
lower than for the SFI-case.

The BDS test in row six is a test for nonlinear dependence developed by
Brock et al. (1996). Its test statistic is asymptotically standard normally
distributed under the null hypothesis of independence.14 One can notice an
increasing amount of nonlinearities for faster exploration rates, yet again, it is
substantially lower for the NESFI-version. Since this test usually rejects the
hypothesis of independence for most financial time series, the NESFI-results
indicate that financial markets operate at a learning speed that is too fast.
Trading volume, which should be zero in the hree-case, increases significantly
for faster learning speeds. This points to a greater degree of heterogeneity
between the agents.

Overall, the original conclusion that the learning speed affects the price
series behavior can still be confirmed after the proposed change. However, it

12The autocorrelation coefficient for a GA-interval of 2 with a value of 0.06 (standard
deviation 0.0035) is considerably lower than for an invocation interval of one. This supports
the hypothesis that there is a structural break in the model when using the fastest possible
learning speed.

13Even for an invocation interval of two, the no-ARCH hypothesis cannot be rejected
for 16% of the test runs.

14There are two free parameters for this test. The distance r is measured as a fraction
of the standard deviation and has been set to a value of 0.5, while for the embedding
dimension m, a value of two is chosen.
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is also apparent that for identical GA-invocation intervals, the NESFI-results
are generally closer to the hree-benchmark.

An explanation for more efficient price series behavior in the NESFI-ASM
could be the larger pool of activated trading rules from which agents can now
choose. In the SFI-version, the increase in the bit level caused substantially
fewer rules to be activated. If, on average, only a few general rules per
agent were activated, agents repeatedly acted upon them regardless of their
predictive power. If the forecast parameters of these rules diverge from the
hree-values, less efficient time series were likely to occur.15 In other words,
the larger the pool of activated trading rules to choose from, the larger the
probability of choosing a good one.

Compatible with these results are the findings by Wilpert (2003, p. 128).
He reports less kurtosis in the residuals and less trading volume when agents
have no access to their classifier system in the first place. In the NESFI-ASM
agents endogenously arrived at neglecting the classifier system and converged
to the hree-solution.

4 Summary and Conclusion

In this paper it is shown that the feature of emerging technical trading bits in
the Santa Fe Institute artificial stock market model was mainly caused by a
faulty mutation operator which introduced an upward bias in the level of set
trading bits. For faster GA-invocation intervals, the mutation operator was
invoked more often, thereby increasing the equilibrium level of trading bits.
Thus, emergent technical trading bits are an artifact of model design rather
than a surprising result of interacting heterogeneous agents in the model.

When accounting for this problem by using a bit neutral mutation op-
erator, agents completely abandon bit usage in the long run for all learning
speeds. Thus, the Marimon-Sargent hypothesis stating that adaptive clas-
sifier agents in an artificial stock market will converge to the hree-solution

15This problem could have been fixed in the SFI-version by imposing a minimum number
of activated rules per agent from which to choose. If fewer rules are activated, agents would
resort to the Select Average mechanism, i.e., using forecast parameters that are a fitness-
weighted average of all rules. In the SFI-version, this minimum number was effectively
fixed to one activated rule per agent.
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is supported with respect to bit usage. Agents realize that any temporary
patterns they detect in the time series are random and not worth acting upon
in the long run. Any additional information provided by the condition parts
of the classifier system is neglected by the agents.

The situation is less obvious when analyzing the simulated price series of
the corrected NESFI-ASM. At first sight, the second part of the Marimon-
Sargent hypothesis also seems to be supported, since for identical learning
rates, its price series exhibit fewer deviations from the hree-benchmark than
those of the original SFI-ASM. Yet, when further increasing the learning
speed, the model still shifts into a more complex regime with fat tails for the
return distribution and higher trading volume. Hence, one could argue that
the creators of the SFI-ASM were almost right, but for the wrong reason.
Learning speeds much faster than initially thought can indeed trigger a more
complex regime, but the latter must be caused by other reasons than an
increase in technical trading bits.

Finally, this paper may also serve as an illustration of a more general
problem in the field of agent-based simulation. Agent-based modelers usu-
ally face many design options. While it is possible to have several correct
ways to tackle a particular problem, there are countless wrong or inappropri-
ate approaches. This paper illustrates that special care is needed for even the
most unsuspecting details of their model implementation. If a cause for a sur-
prising model behavior cannot easily be found, agent-based modelers might
be tempted to interpret this as emergent behavior while it may indeed be a
result of an ill-designed model part. In order to allow for other researchers to
replicate their research and to identify possible problems, it should become
commonplace in the agent-based community to carefully document all design
decisions as well as to provide their source code. Only because of this good
practice, the author was able to discover the hidden problem in the original
SFI-ASM.
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