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ABSTRACT
Malware has become the centerpiece of most security threats
on the Internet. Malware analysis is an essential technology
that extracts the runtime behavior of malware, and supplies
signatures to detection systems and provides evidence for re-
covery and cleanup. The focal point in the malware analysis
battle is how to detect versus how to hide a malware ana-
lyzer from malware during runtime. State-of-the-art analyz-
ers reside in or emulate part of the guest operating system
and its underlying hardware, making them easy to detect
and evade. In this paper, we propose a transparent and ex-
ternal approach to malware analysis, which is motivated by
the intuition that for a malware analyzer to be transparent,
it must not induce any side-effects that are unconditionally
detectable by malware. Our analyzer, Ether, is based on a
novel application of hardware virtualization extensions such
as Intel VT, and resides completely outside of the target OS
environment. Thus, there are no in-guest software compo-
nents vulnerable to detection, and there are no shortcomings
that arise from incomplete or inaccurate system emulation.
Our experiments are based on our study of obfuscation tech-
niques used to create 25,000 recent malware samples. The
results show that Ether remains transparent and defeats the
obfuscation tools that evade existing approaches.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
vasive software
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Security
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1. INTRODUCTION
Malware–the increasingly common vehicle by which crim-

inal organizations facilitate online crime–has become an ar-
tifact whose use intersects multiple major security threats
(e.g., botnets) faced by information security practitioners.
Given the financially motivated nature of these threats, meth-
ods of recovery now mandate more than just remediation:
knowing what occurred after an asset became compromised
is as valuable as knowing it was compromised. Concisely,
independent of simple detection, there exists a pronounced
need to understand the intentions or runtime behavior of
modern malware.

Recent advances in malware analysis [17, 24, 25, 33] show
promise in understanding modern malware, but before these
and other approaches can be used to determine what a mal-
ware instance does or might do, the runtime behavior of that
instance and/or an unobstructed view of its code must be ob-
tained. However, malware authors are incentivized to com-
plicate attempts at understanding the internal workings of
their creations. Therefore, modern malware contain a myr-
iad of anti-debugging, anti-instrumentation, and anti-VM
techniques to stymie attempts at runtime observation [16,
42]. Similarly, techniques that use a malware instance’s
static code model are challenged by runtime-generated code,
which often requires execution to discover.

In the obfuscation/deobfuscation game played between
attackers and defenders, numerous anti-evasion techniques
have been applied in the creation of robust in-guest API call
tracers and automated deobfuscation tools [34, 38, 43, 47].
More recent frameworks [1, 3, 44] and their discrete com-
ponents [15, 19] attempt to offer or mimic a level of trans-
parency analogous to that of a non-instrumented OS running
on physical hardware. However, given that nearly all of these
approaches reside in or emulate part of the guest OS or its
underlying hardware, little effort is required by a knowledge-
able adversary to detect their existence and evade [26,39].

In this paper we present a transparent, external approach
to malware analysis. Our approach is motivated by the in-
tuition that for a malware analyzer to be transparent, it
must not induce any side-effects that are unconditionally
detectable by its observation target. In formalizing this in-
tuition, we model the structural properties and execution
semantics of modern programs to derive the requirements
for transparent malware analysis. An analyzer that satis-
fies these transparency requirements can obtain an execution
trace of a program identical to that if it were run in an en-
vironment with no analyzer present. Approaches unable to
fulfill these requirements are vulnerable to one or more de-
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tection attacks–categorical, formal abstractions of detection
techniques employed by modern malware.

Creating a transparent malware analyzer required us to
diverge from existing approaches that employ in-guest com-
ponents, API virtualization or partial or full system em-
ulation, because none of these implementations satisfy all
the transparency requirements. Based on novel application
of hardware virtualization extensions such as Intel VT [6],
our analyzer–called Ether–resides completely outside of the
target OS environment– there are no in-guest software com-
ponents vulnerable to detection or attack. Additionally, in
contrast to other external approaches, the hardware-assisted
nature of our approach implicitly avoids many shortcomings
that arise from incomplete or inaccurate system emulation.

To demonstrate the efficacy of our approach we tested
Ether with other academic and commercial approaches. Our
testing included the analysis of specific in-the-wild malware
instances that attempt to detect instrumentation and/or a
virtual environment. In addition, we also surveyed over
25,000 recent malware samples to identify the distribution of
obfuscation tools used in their creation; this knowledge was
then used to create a synthetic sample set that represents
the majority of the original corpus. The results of testing
(presented in Section 5) show that Ether is able to remain
transparent and defeat a large percentage of the obfuscation
tools that evade existing approaches.

Our work represents the following contributions:

• A formal framework for describing program execution
and analyzing the requirements for transparent mal-
ware analysis.

• Implementation of Ether, an external, transparent mal-
ware analyzer that operates using hardware virtualiza-
tion extensions to offer both fine- (single instruction)
and coarse- (system call) granularity tracing. To mo-
tivate the use of our approach by the information se-
curity community, the GPL’ed source code for Ether is
available for download at http://ether.gtisc.gatech.edu.

• Broad-scale evaluation of current approaches using a
proxy set of samples representing the majority of a
recent, large malware corpus. Copies of discrete sam-
ples referenced in this paper and the 25,000 malware
sample corpus used for our survey are available to any
academic or industry professional at an accredited or-
ganization.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work. Section 3 presents our model
for programs and their execution, formal requirements for
transparency, and abstract representations of failures in trans-
parency that lead to detection attacks. Section 4 describes
Ether’s design and implementation, including an in-depth
explanation of how hardware virtualization extensions are
leveraged. Section 5 details the experiment selection pro-
cess and how experimentation was performed, and provides
an analysis of the results. Finally, Section 6 briefly describes
future work and provides some concluding remarks.

2. RELATED WORK
Traditionally, anti-virus scanners have used simple emu-

lation and API virtualization in their scanning engines [42].
More recent malware analysis efforts make heavy use of vir-
tualized and emulated environments for their operation. Ex-
amples include systems derived from the BitBlaze project [3]

(e.g., Polyglot [23] and Panorama [48]), Siren [22] and oth-
ers. Honeypot-based projects also employ virtual environ-
ments for trapping and investigating malware [31,36,46].

Virtualization- or emulation-based approaches can be used
to construct malware processing systems that provide a level
of isolation between the guest and the host operating sys-
tems. In these systems, modifications made to the guest
by an instance of malware can be quickly discarded, en-
suring that each instance runs in the same sterile environ-
ment. Approaches that employ these ideas to obtain scal-
ability include malware analysis services such as Norman
Sandbox [13], CWSandbox [47] and Anubis [1].

Previous frameworks for fine-grained tracing of programs
include VAMPiRE [43], BitBlaze [3] and Cobra [44]. Among
these, VAMPiRE is in-guest, BitBlaze uses whole-system
emulation, while Cobra traces malware at the same privilege
level as itself. None of these frameworks use hardware virtu-
alization extensions for their analysis capabilities or informa-
tion gathering. Automated unpackers–common applications
for fine-grained analysis–include PolyUnpack [40] and Ren-
ovo [32]. Renovo takes an out-of-guest approach, utilizing
whole-system emulation for its unpacking engine. PolyUn-
pack uses an in-guest approach and hence runs at the same
privilege level as the malware it is analyzing.

Frameworks which could be used for system call or Win-
dows API tracing include Detours [29] and DynInst [4]. Sys-
tem call tracing using out-of-guest environments has been
previously implemented in VMScope [30] and TTAnalyze [19],
both of which are based on QEMU [20]. There are many
in-guest approaches used to trace Windows API functions,
which include older tools such as FileMon [5], RegMon [9],
and more recently sandboxing environments such as CWSand-
box and Norman Sandbox. These approaches use a com-
bination of API hooking and/or API virtualization, which
are detectable by malware running at the same privilege
level [27].

3. FORMAL FOUNDATIONS
In this section, we analyze the requirements for building

a dynamic transparent malware analysis system (i.e., one
that cannot be detected and evaded by the malware being
analyzed). These requirements serve as guiding principles
to the design and implementation of Ether (Section 4). We
start with a simple, abstract model for program execution
and present the basic definition and theorem of transparent
malware analysis. We then extend our model to consider
virtual memory, privilege levels, system calls, exception han-
dling, and execution timing that are part of realistic program
execution environments.

3.1 Abstract Model of Program Execution
We model a program’s execution at the machine instruc-

tion level. Since a low level instruction can access memory
and CPU directly, we consider a system state as the collec-
tion of the contents of memory and CPU registers. Let M
be the set of all possible memory states and C be the set
of all possible CPU states. We use I to denote all possible
instructions. Each instruction can be considered a machine
recognizable combination of opcode and operands stored at
at a particular address in memory. The low-level semantics
of an instruction defines how it updates the memory and
CPU state.

We model any program P as a tuple (IP , DP ) of code and
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data. Here, IP ⊆ I is the set of all instructions belonging to
the program, including any dynamically generated instruc-
tions. DP is the set of static data used by the code where
each element can be considered a value stored in a particular
address. Execution of a program’s instruction may require
access to hardware resources, especially for performing I/O.
Such hardware resources are usually managed by the under-
lying operating system, which executes predefined service
routines on behalf of specific application level instructions.
We define the surrounding runtime environment E for the
program P that contains any software or hardware compo-
nents that provide any service necessary for P ’s execution.
In other words, the environment E contains the operating
system, underlying hardware, virtual machine monitors and
external inputs.

We define a transition function δE : I×M×C → I×M×C
to formally represent the semantics of executing an instruc-
tion in E, which is a combination of the machine-level exe-
cution semantics and the semantics defined by components
in the environment. This function defines how an instruc-
tion execution in the environment updates CPU and mem-
ory state and determines the next instruction to be exe-
cuted. Since we only need instructions belonging to IP

in order to obtain an execution trace of P in E, we use
another transition function δE,IP

: IP × M × C → IP ×
M × C, which takes from δE a projection of instructions in
IP . The trace of the program P in E is T (P, E), which is
an ordered set defined as T (P, E) = (i0, i1, i2, ..., il), where
δE,IP

(ik, mk, ck) = (ik+1, mk+1, ck+1) for 0 ≤ k < l.

3.2 Transparent Malware Analysis
Suppose P is a malware program. Consider a dynamic

malware analyzer PA whose goal is to learn about P ’s ac-
tivities (e.g., its execution traces). In order to analyze P ,
PA or at least some of its components need to reside in the
underlying environment E. The malware program P , on the
other hand, will try to detect the presence of PA and change
or hide its actvities to thwart analysis. Thus, we want PA

to be transparent or undetectable by P .
Since PA and P share at least some resource in the run-

time environment (e.g., the CPU), a covert channel can ex-
ist that leaks information about the presence of PA to the
malware P . To prevent such leakage, the principle of non-
interference [21] dictates that the execution of PA shall not
interfere with the execution of P . Intuitively, if noninter-
ference is achieved, P has the same execution (for the same
given input) regardless of PA.

We model an attempt by P to detect the presence of PA in
E as a boolean function dP (E). P must perform its own dP

instructions (included as part of its code IP , i.e., dP ⊂ Ip)
to get/infer information about PA. For example, dp can
include an instruction to query the debugging flag in E.
The results of this check can be used in the malware to alter
its behavior when the analyzer PA is detected. Before PA is
enabled in E, we have dp(E) = 0. Denote the environment
with PA running as A. The transparency goal is to achieve
dP (A) = dP (E) = 0 for any detection method dP . Thus, we
have the following definition:

Definition 1. Assume E is a runtime environment, and
A is E with malware analyzer PA running. PA is transpar-
ent if for any malware P containing any detection logic dP ,
dP (A) = dP (E) = 0.

The above definition provides a starting point for ana-
lyzing the requirements of a transparent malware analyzer.
Since enumerating all possible instruction sequences for the
detection attempt dP is an undecidable problem, we state
the transparency goals in a different and more tractable way.
Without loss of generality, we assume that P will alter its
execution path when it detects PA (i.e., if dP (E) = 1) be-
cause the malware author would try to hide the behavior of
the malware from an analyzer. That is, at the point of detec-
tion k, δE,IP

(ik, mk, ck) = (i′k+1, m
′
k+1, c

′
k+1) if dP (E) = 1,

i.e., P executes i′k+1 instead of the instruction ik+1 that
would have executed without the presence of an analyer.
Ultimately, the goal of a transparent malware analyzer is to
extract the same execution traces from malware as if the an-
alyzer is not present. Thus, we have the following malware
analysis theorem, which inherently guarantees the above def-
inition of transparency:

Theorem 1. If E is a runtime environment and A is the
same environment with the addition of a malware analyzer
PA, then PA is transparent if and only if T (P, E) = T (P,A)
for any malware program P = (IP , DP ).

Proof. In both environments E and A the same exter-
nal inputs are provided to the program P since they are
modeled as part of the environments. The traces of the pro-
gram P in these two environments are defined as T (P, E) =
(iE,0, iE,1, ..., iE,lE ), and T (P,A) = (iA,0, iA,1, ..., iA,lA).

For the“only if”part of the proof, assume that PA is trans-
parent; we will prove by induction that T (P,E) = T (P, A).
The base case is trivial because the program starts execu-
tion at the same instruction i0, so iE,0 = iA,0 = i0. For the
induction hypothesis, assuming iE,t = iA,t and we need to
prove that iE,t+1 = iA,t+1. Since PA is transparent, accord-
ing to Definition 1, we have dp(A) = dp(E) = 0, and P will
not change its execution path. Further, dP (A) = 0 implies
that the data/values in mE,t, cE,t, mA,t, and cA,t that are
visible to P , and hence relevant to the execution of P , must
be the same (otherwise, dP (A) = 1). That is, from P ’s point
of view, the execution semantics in A and E are equivalent.
Therefore, the next instruction in IP executed in A has to
be iE,t+1 as in E (i.e., iA,t+1 = iE,t+1). Using induction, we
have T (P,E) = T (P, A). For the “if” part of the proof, we
assume that T (P, E) = T (P,A) for any malware P , and we
need to prove that the PA is transparent. We prove by con-
tradiction. Assume that PA is not transparent. According
to Definition 1, we have dp(A) = 1. Therefore, without loss
of generality, P will alter its execution in A, which leads to
the contradiction that T (P, E) 6= T (P, A). Therefore, PA is
transparent.

3.3 Requirements for Transparency
We use Definition 1 and Theorem 1 as guidelines to formu-

late the requirements for the design of a transparent malware
analyzer. Our discussion here uses a generalization of sev-
eral common hardware and operating system features such
as privilege levels, virtual memory, and exception handling,
which also covers other protection features provided by hard-
ware virtualization. We first describe these features as parts
of an extension to the basic program execution semantics in-
troduced in Section 3.1, and then discuss the requirements
for transparent malware analysis.

Similar to information flow models in multi-level security
systems [21], the notion of privilege is essential for reasoning

53



about how to hide these changes from P . Suppose that there
are n rings of privilege where 0 is the most privileged (or
“highest”) level and n is the least. Let the highest privilege
level gained by the program P during execution in E be
denoted by ΠE(P ).

In order to represent virtual memory, suppose V denotes
all possible virtual memory states viewed by instructions
executed at a specific privilege level. The entire memory
state M can then be defined as M = V n, where each member
m ∈ M is an n-tuple of memory states, and m[k] ∈ V is
the state of the virtual memory at ring k. Virtual memory
mapping can be expressed by functions µ−

E,r→k, which maps

memory of ring r to ring k and µ+

E,k→r, which maps memory

of ring k to ring r for r > k. By assuming that µ−
E,r→k and

µ+

E,k→r are in m[k], we can express how a higher privilege
ring k code can control how a lower privilege ring r views
its memory.

We use exceptions and exception handling to represent
a broad range of system features such as all privileged in-
structions (e.g. system calls), I/O, memory content or CPU
register protection and access violations, and program and
system faults. An exception occurs when an instruction ex-
ecution requires services or data at a higher privilege level k

than the current level r. A function φE,r→k specifies the first
instruction of the exception handler at ring k that handles
the particular exception occurring at ring r.

The instruction execution semantics δE introduced in Sec-
tion 3.1 can be extended to include two parts. The first is
δ, the low level or basic instruction execution semantics that
do not involve exceptions, and only deals with access to vir-
tual memory and CPU registers (note that we consider I/O
as exceptions). The second is δE,φ, the semantics that deal
with exceptions (e.g., control transfers to and from exception
handlers residing in privileged levels).

In order to achieve transparency (i.e., dP (A) = 0 and
hence T (P, E) = T (P,A)), the memory and CPU states vis-
ible to P need to be identical in both E and A. However, the
presence of PA and its analysis activities introduce changes
to these entities. Using the extended model described above,
we now formulate the requirements for hiding these changes
and achieving transparency.

1. Higher Privilege: We require that the analyzer PA

have higher privilege than the maximum privilege a malware
instance P can gain. If the maximum privilege gained by
P is π = ΠA(P ), then PA should reside in privilege levels
k < π. For any memory state m ∈ M , besides the code
and data of PA, the memory mapping functions µ−

A,π→k and

µ+

A,k→π as well as the exception handler function φA,π→k

should also reside in m[k]. Proper isolation and protection
can be achieved by ensuring µ+

A,k→π does not map any of

these components to virtual memory state of m[π].
2. No non-privileged side effects: This requirement

states that if PA induces side-effects, access to them should
be privileged and through exception handlers at a higher
privilege level(s) than P ’s. This ensures that any access
to the changes in the memory, CPU registers, etc., can be
intercepted using an exception handler that can hide these
side-effects from P . Similarly, since PA can have timing
side-effects, instructions that can access any notion of time
should be privileged as well.

3. Identical Basic Instruction Execution Seman-

tics: Recall that the basic execution semantics do not in-

volve any exception. From the second requirement above,
the basic semantics do not involve any side-effects intro-
duced by PA (which is privileged and requires exception
handling). Thus, the identical basic semantics, plus trans-
parent exception handling (see requirement 4 below), guar-
antee that the same instruction has the same execution (and
will lead to the same next instruction) in both A and E.

4. Transparent Exception Handling: Suppose that
when the tth instruction is executed (in ring π), an exception
occurs and the control is transferred to φA,π→k in ring k < π.
First, consider the case where there was no equivalent ex-
ception handler in environment E for the same instruction
iE,t (i.e., iE,t was a basic instruction in E). In this case,
the handler code must first guarantee the third requirement
above by executing iA,t with the same semantics as for iE,t.
Then, it has to guarantee that execution is returned to iA,t+1

(the same as iE,t+1) at the end of exception handling. In
addition, the changes in mA,t+1 and cA,t+1 by the exception
handler should only be privileged side-effects to fulfill the
second requirement above. Second, if this exception han-
dler replaces an original exception handler φE,π→k in E, it
needs to have identical changes made to mA,t+1 and cA,t+1

as φE,π→k would make to mE,t+1 and cE,t+1 (e.g. results of
system calls remain the same). The cases when the handlers
involve timing measurements are addressed separately, as in
fifth requirement below.

5. Identical Measurement of Time: This require-
ment states that the timing information received by the
tth instruction iA,t in T (P, A) is the same as it were in
T (P, E). It is necessary because P can use timing mea-
surement to detect the presence of PA. For P to have a
continuous false view of time it is required that A main-
tain a privileged logical clock that is adjusted when excep-
tions (which include any access to the clock) are handled.
Although the requirement of having identical measurement
of time is very difficult to fulfill in practice, it can be de-
composed into smaller requirements that may be easier to
satisfy in many cases. Suppose that the time spent in E to
move from tth instruction to (t + 1)th instruction is ∆E,t.
We can define ∆E,t = ∆E,δ,t + ∆E,φ,t where ∆E,δ,t is the
time for basic instruction execution and ∆E,φ,t is the ex-
ception handling time. Similarly, ∆A,t = ∆A,δ,t + ∆A,φ,t.
A needs to ensure ∆A,t = ∆E,t by making some adjust-
ments ∆′

A,t, where ∆E,t = ∆A,t −∆′
A,t. Therefore, we have

∆′
A,t = ∆A,δ,t+∆A,φ,t−∆E,δ,t−∆E,φ,t. If the basic instruc-

tion execution requires the same amount of time in both A
and E, we have ∆′

A,t = ∆A,φ,t − ∆E,φ,t. Thus, when no
exceptions occur for both E and A no adjustment in time
is required. When the an exception occurs for A but not
for E, which is usually due to having privileged side-effects,
∆A,φ,t, the time spent by the exception handler φA, has to
be determined and negated. When both environments have
exceptions, if φA is essentially φE plus some extra activities,
then the extra time (i.e., ∆′

A,t) can be measured and negated
because the activities belonging to φE are executed and can
be timed. However, if φA replaces φE (i.e., implements dif-
ferent activities), then it is very difficult to measure ∆′

A,t

because φE is not executed.

3.4 Fulfilling the Requirements
We will now use the requirements presented in Section 3.3

to analyze the transparency achievable by various malware
analysis approaches. In particular, we describe which trans-
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parency requirements the reduced privilege guest and full
system emulation based approaches cannot satisfy, and dis-
cuss how hardware virtualization extensions in the x86 ar-
chitecture can overcome these limitations.

Previous malware analysis approaches employ user level or
kernel level counterparts residing in the host in which mal-
ware is analyzed; these include VAMPiRE and CWSandbox.
Since malware that use rootkit components can gain kernel
level privileges, these approaches cannot satisfy the first re-
quirement of transparency.

Reduced privilege guest-based virtualization approaches
(e.g., VMware [12] and VirtualPC [11] for x86) can fulfill
the first requirement by emulating a few sensitive instruc-
tions in order to gain higher privilege over the OS kernel in
the virtual machine. Therefore, the second requirement is
partially satisfied by these approaches as they can remove
certain memory and CPU side-effects by providing a virtual
view of memory. However, these approaches are not de-
signed with transparency in mind, and the communication
medium between the guest and host operating systems intro-
duces unprivileged side-effects. Moreover, instructions that
can access time are not privileged, making these side-effects
visible in such systems through time measurement. In con-
trast, full system emulators (e.g. QEMU) emulate the entire
low level instruction execution semantics δ to gain privilege
over the guest OS. They have privilege over all instructions
executed, thereby fulfilling the second requirement.

An analyzer based on hardware virtualization extensions
can likewise satisfy the first and second requirements. The
first requirement is satisfied because the analyzer can reside
in a domain more privileged than the guest. This privi-
lege is enforced in hardware by the analyzer residing in ring
-1, which has higher privilege than rings 0 to 3. In addi-
tion, the contents of the analyzer’s domain are completely
isolated through the use of shadow page tables. Hardware
virtualization extensions not only enable basic memory pro-
tections, but also offer privileged access to sensitive CPU
registers and instructions including instructions that access
time, such as RDTSC. A malware analyzer based on these ex-
tensions can therefore intercept and hide these side-effects
from malware.

Neither reduced privilege guest-based approaches nor full
system emulators can guarantee the third requirement. To
elaborate, emulation-based approaches use low-level instruc-
tion execution semantics function δ′ to simulate the entire
low level execution semantics of δ. For reduced privilege
guest-based approaches, δ′ partially simulates δ. The low
level instruction execution semantics of δ can be easily shown
to be Turing complete. Likewise, δ′ is also Turing complete.
In addition, determining whether δ′ is equivalent to δ re-
quires determining whether all programs exhibit the same
behavior under δ′ and δ.

In automata theory, the above problem would be formally
represented as the problem of determining whether the lan-
guage of two Turing machines (L and L’) are equal; it is
otherwise known as the undecidable problem EQTM [41].
In practice, there have been attacks that detect full system
emulator and reduced privilege guest-based approaches by
exploiting incomplete emulation [27]. There is no way to
guarantee the absence of such attacks. In contrast, hard-
ware virtualization extensions rely on the same hardware
execution semantics δ, thereby guaranteeing that the third
requirement is satisfied.

The fourth requirement is an analyzer design issue and
can be satisfied by all approaches, with careful design.

Finally, although emulators can have privileged access
over instructions that can access the notion of time, it is
difficult to provide a notion of time that is equivalent to
the environment E. To elaborate, in emulators, almost all
instructions have exception handlers managing their execu-
tion, and the identification of ∆E,t is hard without having a
real system execute these instructions in parallel. Moreover,
the determination of ∆A,t requires a cycle-count accurate
execution simulator, which keeps track of the number of cy-
cles required to execute an instruction in a real system.

In contrast, for hardware virtualization extensions-based
approaches, the side effect on time is privileged because the
instructions that access time (e.g., RDTSC) are privileged.
As we describe next in Section 4, hardware virtualization
extensions maintain a separate execution cycle count in the
hypervisor, which allows an analyzer to adjust a cycle value
before it is given to the guest. As such, while there still
exist complex situations that are hard to satisfy, hardware
virtualization extension-based approaches go a long way in
satisfying the fifth requirement.

4. IMPLEMENTATION
In this section we describe Ether’s architecture, the low-

level details of how it performs instruction and system call
tracing, and the efforts necessary to ensure transparency
in accordance with the requirements for transparency. In
addition, we describe implementation challenges and current
architectural limitations that prevent full transparency.

4.1 Environment
To create Ether, we needed an analysis mechanism that

was readily available to researchers and would allow for
transparency. We deemed hardware virtualization exten-
sions as the most appropriate, as they do not interfere with
the original instruction stream IP , the CPU registers C,
the memory state M , the original exception handlers, or
the original CPU transition function δ. In addition to this
transparency, processors with such extensions are inexpen-
sive and widely available.

Among available software that can utilize hardware virtu-
alization extensions, we chose the Xen hypervisor [18] ver-
sion 3.1.0 as the base for implementing Ether. Xen was cho-
sen because it is a mature product, it is open source, and it
has existing communication mechanisms that could be lever-
aged in Ether’s implementation. Finally, our work could
also be incorporated into the numerous research projects
currently supporting Xen.

Among hardware virtualization platforms we selected In-
tel VT due to the available documentation, our familiar-
ity with Intel processors, and the availability of Intel-based
hardware. Finally, as the selection of the target operating
system must well represent the actual install base, we chose
Windows XP (Service Pack 2). Windows XP is the most
common PC operating system in use today and therefore a
preferred target of modern malware.

4.1.1 A brief overview of Xen
The Xen hypervisor is software that runs at the lowest

and most privileged layer of the system. This layer presides
over multiple operating systems (OSes), known as domains,
with one domain having special privileges. The privileged
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domain is referred to as domain 0; it serves as the adminis-
trative center of a Xen system. Domain 0 is the first domain
started and the only domain with direct access to real hard-
ware. The guest OSes, also referred to as domUs, rely on
the hypervisor for privileged operations. The domUs may
be commodity, unmodified operating systems. Ether runs
as a component in the hypervisor layer, and as a userspace
component in domain 0. The analysis target, Windows XP
with Service Pack 2, runs in a domU.

4.1.2 A brief overview of Intel VT hardware Virtual-
ization Extensions

VMEntry

VMExit

...

Ether Ether Ether

VMXON

Hypervisor Guest

VMEntry

(Start)

VMEntry

VMExit

Figure 1: Processor operation for Intel VT. Ether

operates between VMExits and VMEntries.

Intel VT hardware virtualization extensions are a set of in-
structions added to Intel processors to facilitate the virtual-
ization of the x86 instruction set. These instructions enable
two new processor modes, called VMX root mode and VMX
non-root mode. The Xen hypervisor, and hence Ether, runs
in VMX root mode. The domUs or guests, which we refer
to as the analysis targets, run in VMX non-root mode.

Events called VM transitions change operation between
the two modes. There are two different transitions: VMEn-
try and VMExit. A VMExit will transition from VMX non-
root mode to VMX root mode, and a VMEntry will tran-
sition from VMX root mode to VMX non-root mode. Cer-
tain events in VMX non-root mode automatically cause a
VMExit; these include certain exceptions, changes to the
page directory entry pointer, and page faults.

Ether obtains control from the analysis target on VMExits
and performs a VMEntry when it chooses to resume execu-
tion of the analysis target (i.e., the guest). After a VMExit,
but before the next VMEntry, the guest is in a completely
dormant state. An overview of this process is shown in Fig-
ure 1.

4.2 Analyzer Architecture
As shown in Figure 2, the architecture of Ether consists of

a hypervisor component and a userspace component running
in domain 0. Ether’s hypervisor component is responsible
for detecting events in the analysis target. Currently, such
events include system call execution, instruction execution,
memory writes, and context switches.

Ether’s userspace component acts as a controller regulat-
ing which processes and events in the guest should be moni-
tored. This component also contains logic to derive semantic
information from analyzed events, such as translating a sys-
tem call number into system call name or displaying system
call argument content based on argument data type.

The analysis target consists of a Xen domU running Win-

CPU / Hardware

DomU
(Windows 

Guest)

DomU
(Windows 

Guest)

Ether Hypervisor Component

Ether 
Userspace 
Component

 Xen!!!!!!!!  

...
Dom0

Figure 2: Ether’s system architecture.

dows XP Service Pack 2. The only change we made to
the default installation of Windows XP was disabling PAE
and large memory pages. These modifications exist solely
to make memory write detection easier in the initial Ether
implementation and are not a limitation of our approach.

4.3 Using Intel VT for Malware Analysis
To present Ether as a full-featured malware analyzer we

required that it be able to monitor the instructions executed
by a guest process, any memory writes a guest process per-
forms, and any system calls a guest process makes. We chose
these low- and high-level operations due to their usefulness
in malware analysis and their ability to demonstrate the
efficacy of Ether performing both coarse- and fine-grained
tracing. The challenges to successful implementation in-
cluded using a mechanism that was not intended for mal-
ware analysis (i.e., Intel VT) while maintaining the original
level of transparency provided by hardware virtualization
extensions. Given that Intel VT extensions do not provide
explicit support for any of these monitoring activities we
performed an in-depth investigation of Intel VT to create
novel ways that fulfill our monitoring requirements. Below
we first describe how Ether uses VT extensions to analyze
malware and then how it can maintain transparency.

4.3.1 Monitoring Instruction Execution
Instruction execution monitoring relies on Ether’s privi-

lege over the analysis target in handling debug exceptions,
and in guaranteeing a debug exception occurs after the exe-
cution of every instruction. Ether guarantees the occurrence
of a debug exception after every instruction by setting a flag
called the trap flag in the analysis target. Upon handling a
debug exception caused by the forced trap flag, Ether will
once again set the trap flag for the next instruction, thereby
inducing a debug exception after every instruction. Ultimate
control of which exceptions reach the analysis target rests
in Ether, so all induced debug exceptions are hidden from
the analysis target. This control allows Ether to execute the
target process one instruction at a time while preventing it
from detecting Ether’s presence. This form of instruction
stepping via the trap flag was first implemented in VAM-
PiRE, even though its approach is in-guest and hence vul-
nerable to in-guest detection attacks.

4.3.2 Monitoring Memory Writes
Ether monitors memory writes by using shadow page ta-

bles and privilege over the guest in handling page faults.
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Ether induces a page fault at every attempted analysis target
memory write, traps the fault, and prevents it from reaching
the guest. Faults occurring due to normal guest operation
are forwarded to the guest. In this manner all memory write
attempts are transparently intercepted.

Shadow page tables refer to the actual page tables the
hardware uses for address translation, as the guest is never
permitted to do its own translation. The hypervisor is re-
sponsible for synchronizing shadow page tables with the
guest’s page table contents, as well as ensuring the guest
can only map memory explicitly allocated for it.

Ether causes page faults on write attempts by removing
writable permissions from shadow page table entries. When
Ether detects a fault caused by itself, the Ether userspace
component is notified of an attempted memory write, and
the fault is then hidden from the analysis target. Faults
resulting from normal guest operation are passed along. Af-
ter notification, the faulting page is set to writable in the
shadow page table and the faulting instruction is re-executed.
Upon completion of the instruction, all pages are once again
marked read-only in preparation for the next instruction.

4.3.3 Monitoring System Call Execution
Ether’s novel system call execution monitoring exploits

features of the x86 fast system call entry mechanism to in-
form Ether of system calls executed by the analysis target.
The system call interception mechanism uses a special reg-
ister present on all modern x86 processors to cause a page
fault at a chosen address during system call invocation. A
fault at this address will then signal to Ether that a system
call was executed in the analysis target. In addition to trac-
ing system calls executed via the fast call entry mechanism,
Ether can trace system calls made via deprecated methods
as well. Semantic information such as system call arguments
and return value may also be obtained by Ether.

To properly describe Ether’s system call tracing technique,
some background on the fast system call entry mechanism of
x86 processors is required. This method is used for system
calls on all Windows versions starting with XP, and on Linux
kernels starting with 2.6. The fast system call entry mech-
anism uses the SYSENTER instruction to raise privilege and
jump to a pre-defined address in the kernel. This address is
stored in a special register called SYSENTER_EIP_MSR, access
to which is only permitted from kernel mode. Whenever
a userspace application requires system services, it specifies
the service number and parameters in an implementation
dependent manner, and then executes SYSENTER. SYSENTER
changes the privilege mode to kernel mode, the stack pointer
to the kernel mode stack, and the instruction pointer to the
value in SYSENTER_EIP_MSR.

Ether sets the value of the analysis target’s SYSENTER_EIP
_MSR to a chosen value on a page guaranteed to be not
present, and stores the original value in Ether’s memory.
Whenever the analysis target attempts system call execu-
tion, a fetch page fault will occur at the chosen address.
When Ether encounters such a fault in the analysis target,
it indicates a system call was attempted. The userspace
component of Ether is notified of system call execution, and
the instruction pointer of the analysis target is reset to the
expected value of SYSENTER_EIP_MSR. Execution of the anal-
ysis target resumes as if SYSENTER jumped directly to the
expected address, instead of our chosen address.

The arguments, return address, and return value of a sys-

tem call may be gathered from the guest by a series of guest
memory reads. The exact location of the arguments, return
value, and return address is guest operating system depen-
dent.

System calls executed via deprecated methods can also be
monitored by Ether. While all operating system provided
libraries in Windows XP will use the SYSENTER instruction
to execute system calls, support for system call execution
via software interrupt 0x2E is still present in the kernel. To
trace system calls executed by this older method, Ether can
change the interrupt descriptor table entry of interrupt 0x2E
to point to a non-present page. A VMExit caused by a page
fault at that address would indicate system call execution via
INT 2E. Alternatively, AMD’s hardware virtualization solu-
tion provides a direct means to cause VMExits on software
interrupts [14].

4.3.4 Limiting Scope to a Chosen Process
Ether can limit analysis scope to a chosen process in the

analysis target. Processes are identified for monitoring dur-
ing a context switch in the analyzed environment. When a
context switch occurs, Ether gains control and uses virtual
machine introspection [28] to obtain the upcoming process
name from the analysis target. If the process matches a tar-
get specified to Ether, analysis is enabled. In the current
implementation, the target process may either be specified
by name or by the process page directory entry. Enabling
process monitoring exactly when a process is about to run
guarantees Ether does not miss any events executed by the
process.

Ether gains control on every context switch by leveraging
a feature of Intel VT that causes a VMExit every time the
page directory entry pointer is accessed in the guest OS. As
the page directory pointer must be updated every context
switch to change address spaces, it is guaranteed that Ether
will detect all guest context switches.

4.4 Maintaining Analyzer Transparency
Despite making several modifications to the guest, Ether

maintains transparency of the analyzer by ensuring such
changes are undetectable. Other changes made by Ether,
such as those to shadow page tables, are changes outside of
the analysis target and therefore transparent. Transparency
of the analyzer does not imply hiding the presence of a vir-
tualized environment, but hiding the presence of Ether in a
virtualized environment.

4.4.1 Hiding the Trap Flag
Ether is able to conceal that it has the set trap flag in the

guest by intercepting the few instructions that can read this
flag, and altering their behavior to hide the flag’s presence.
The only instruction which can directly read the presence
of the trap flag is PUSHF. Ether intercepts this instruction
and changes its result to provide the environment-expected
state of the flag. Besides PUSHF, the INT instruction reads
the value of the flag indirectly. We monitor this instruction
as well, and fix the flags value pushed on the stack to match
the value expected by the analysis target.

At times the analysis target has set the trap flag and ex-
pects to receive debug exceptions. Ether detects the setting
of the trap flag by the POPF instruction, and when the anal-
ysis target expects the trap flag to be set, Ether forwards
debug exceptions along as appropriate. Any debug excep-

57



tions not caused by the trap flag are automatically forwarded
to the analysis target as they are not caused by Ether.

4.4.2 Page Table Modifications
The page table modifications made by Ether are to shadow

page tables, and not the page tables stored in the guest.
Therefore, the guest is not aware that the shadow page ta-
bles exist, and hence cannot detect their modification or
presence. Ether can determine which faults were caused by
normal guest operation, and which faults it purposely cre-
ated. Any faults caused by normal operation are forwarded
to the guest. Conversely, any faults caused by Ether are
handled by Ether and never passed along.

4.4.3 SYSENTER_EIP_MSR
Ether mediates all access to the SYSENTER_EIP_MSR regis-

ter and can therefore conceal any modifications of the regis-
ter from the analysis target. Complete mediation is achieved
because any access of the register automatically causes a
VMExit. Ether saves any value the analysis target attempts
to write into SYSENTER_EIP_MSR, and uses this value any
time the guest-expected value of this register is required.
Although technically modified, as observed from the analy-
sis target the CPU state C is unchanged.

4.5 Potential Attacks
While theoretically resilient against in-guest detection at-

tacks, current architectural restrictions make some of these
attacks possible, and Ether is also vulnerable to a class of
timing attacks using external timing sources.

4.5.1 Attack Classes
Classic in-guest detection attacks cannot detect Ether due

to it being completely outside of the analysis target. Also,
none of the few modifications Ether makes to the guest envi-
ronment are unconditionally detectable. Ether is, however,
vulnerable to a certain class of timing attacks, and in the
current implementation, memory hierarchy attacks. Detec-
tion methods and our mitigation of them are outlined below.

In-Memory Presence: Traditional detection attacks
which rely on detecting the presence of an analyzer in mem-
ory will always fail against Ether, as it has no in-guest mem-
ory presence.

CPU Registers: Ether hides the few changes it makes
in CPU state from the analysis target so that it is unable to
detect deviation from a native hardware environment.

Memory Protection: Ether modifies only the shadow
page tables, which are inaccessible to the analysis target.
That is, the analysis target is unable to detect changes to
shadow memory permissions. However, in the current imple-
mentation, Ether does indirectly modify the memory hierar-
chy (the cache and the TLB). This is due to an architectural
limitation; further details are provided in Section 4.6.

Privileged Instruction Handling: Ether uses built-
in hardware mechanisms to intercept only certain privileged
instructions and exceptions and as necessary, forwards these
exceptions to the guest. From the viewpoint of the guest,
no handler is ever modified, and privileged instructions have
the same effects as in a native environment.

Instruction Emulation: Ether executes all instructions
on the actual processor. Therefore, Ether does not suffer
from emulation inaccuracies inherent in full system x86 em-
ulators; the transition function δ remains unmodified.

Timing Attacks: As described in Section 3.3, there are
two fundamental issues with avoiding timing attacks: con-
trolling queries about time, and answering those queries with
the expected time value. Ether controls the in-guest view of
the RDTSC instruction, the APIC timer, the 8254 timer chip,
as well as any periodic time-based interrupts and other guest
time queries. Section 3.3 outlines the requirements for a cor-
rect reply to a guest time query. This correct reply, ∆E,t,
is the wall-clock time when Ether is present, ∆A,t, reduced
by ∆′

A,t, the amount of overhead added by Ether’s pres-
ence. ∆′

A,t is equal to the time spent in the analyzer minus
the time spent in the guest exception handler. Since Ether
always calls the native exception handlers, if any, for any
exceptions the guest must process, ∆′

A,φ,t consists of the
time spent switching privilege to Ether, the time spent in
Ether’s handler, and the time to switch to the original guest
handler. The time spent in the handler is easily measured
using the wall-clock and times for privilege changes, and can
be calculated empirically. Therefore, Ether would be able to
adjust the time returned to the guest by the amount of over-
head, and remain untraceable by timing attacks which rely
on host-based time sources.

Additionally, the Intel VT architecture has a special field,
called the TSC_OFFSET, which the processor will automat-
ically add to any queries of the time stamp counter. This
value must be set to the calculated value of ∆′

A,t. Any other
clock sources, all of which are under control of Ether, can
be adjusted accordingly.

As Ether can only mitigate in-guest timing detection at-
tacks, a class of detection attacks utilizing time from ex-
ternal inputs is still possible. However, preventing such at-
tacks would require detecting covert channels over a shared
medium, which is known to be undecidable [45].

Attacks which detect virtualization itself, and not the
presence of Ether, will cease to be relevant in the future.
As virtualization spreads to home computers and enterprise
desktops, detecting virtualization will no longer be indica-
tive of detecting an analysis environment. As a consequence,
any malware which would not run in virtualized environ-
ments would preclude itself from infecting an increasing per-
centage of legitimate targets.

4.6 Architectural Limitations
Intel VT suffers from some architectural limitations which

may allow Ether to be detected under certain circumstances.
Different hardware virtualization extensions exist that do
not suffer from such limitations.

Intel VT suffers from two main flaws which allow the cur-
rent implementation to be detected by observing implicit
changes to the memory hierarchy. The first flaw is that
Intel VT flushes the TLB on every VMExit. A detection
method such as the one proposed by [37] can detect this
implicit change. A hypervisor could run in non-paged mode
with caches off in an effort to avoid using the extended mem-
ory hierarchy at all. Intel VT’s second flaw is that paging
mode must be turned on before entering VMX Root Mode.
AMD’s competing virtualization solution, AMD-V, does not
suffer from either of these limitations. A hypervisor which
did not use paging and ran with caches off would be unde-
tectable by these memory hierarchy detection methods.
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5. EXPERIMENTS AND EVALUATION
In this section, we describe two tools based on Ether:

EtherUnpack and EtherTrace. EtherUnpack traces mem-
ory writes and single instructions (i.e., fine-grained tracing),
while EtherTrace traces system calls (i.e., coarse-grained
tracing). We use these tools to evaluate Ether and compare
it against current approaches.

5.1 Fine-Grained Tracing: Unpacking
To measure the effectiveness of fine-grained tracing on real

malware, we used Ether to create a generic, automated un-
packer called EtherUnpack. Before presenting the results
of experiments using EtherUnpack, we describe why an un-
packer is a ideal test for Ether’s resiliency against current
malware threats when performing fine-grained tracing.

5.1.1 Methodology
Packing is a term used to describe the obfuscation and

encryption of program code to thwart static analysis. The
result of packing is that signature-based approaches fail to
identify packed malware as malicious. Opposite to packers,
unpackers are programs which attempt to obtain the original
code hidden by the packer.

To prevent unpacking, many current packers also attempt
to thwart dynamic analysis by using anti-debugging and
anti-VM techniques. Therefore, an Ether-based unpacker
serves as an excellent testbed for the framework, since pack-
ers will attempt to expose any lack of transparency exhibited
by Ether’s approach or implementation. In addition, given
the fine-grained nature of automated unpacking, packers are
likely to have the greatest chance of exposing Ether’s poten-
tial weaknesses.

5.1.2 Packer Use in Current Malware
To evaluate EtherUnpack against current packed malware,

we obtained a recent malware corpus. Samples were col-
lected between January and March 2008 from honeypots,
mail filters, proxy monitors, web crawling, file sharing net-
works, and other sources. To classify the samples, we sur-
veyed them using PEiD [7], a signature-based packer detec-
tor, and a PEiD signature database from SANS ISC [8]. The
resulting set consisted of 25,118 malware instances, unique
according to MD5 value. The distribution of packers used to
obfuscate packed malware in the corpus appears in Figure 3.

Of note, the Other section in Figure 3 represents a multi-
tude of packers, where each comprises less than one percent
of the total collection.

5.1.3 Effectiveness
As used in Renovo, we define unpack-execution to occur

when a process executes memory it previously wrote. De-
tection is performed by monitoring memory writes and ex-
ecuted instructions. Whenever a program’s execution goes
to an area of memory previously written, EtherUnpack flags
that area as dynamically generated code and extracts it.
Note that some samples contain multiple packing layers,
which may require Ether to perform additional, subsequent
unpacking even after it first detected dynamically generated
code.

The samples used for unpacking in the above comparison
were the exact same set evaluated in Renovo. EtherUn-
pack was able to recover hidden code from all tested sam-
ples, which also represent the vast majority of packers from

Figure 3: Distribution of obfuscation of tools used

to transform malware.

our obfuscation tool survey. In contrast, PolyUnpack failed
on many of the samples due to being detected by various
in-guest detection techniques (e.g, detecting that an API
had been hooked). Renovo could not unpack the Obsidium
and Armadillo samples due to incorrect processor emulation,
while its reason for failing to unpack Themida with VM is
unclear.

To determine whether EtherUnpack successfully processed
packed samples, we compared the unpacked layers to original
program code. Specifically, we checked the unpacked layers
for an identifying string. The string consists of 32 bytes
starting at a fixed offset in the original program code. This
offset was not chosen at random. We selected code that was
guaranteed to always be executed, but that did not contain
any Windows API calls. Certain packers will replace calls
to Windows API functions with new code having identical
functionality – the original code will never be executed by
the obfuscated program. Before testing, we verified that the
search string does not appear in the packed test binaries.

To compare EtherUnpack against current approaches, we
tested it alongside two other automated unpacking tools.
These were PolyUnpack, a generic in-guest unpacking tool
and Renovo, an external unpacker based on the BitBlaze
Binary Analysis Platform. The results of our testing are
shown in Table 1.

5.1.4 Performance
Ether’s fine-grained tracing, on which EtherUnpack is

based, is not meant to be used for real-time analysis. While
tracing an application one instruction at a time makes Ether
extremely accurate, such tracing induces a significant per-
formance penalty. Ether’s fine-grained tracing is most useful
as a forensic tool.

5.1.5 Emulator Resistant Malware
Malware authors, aware that emulated environments are

used to analyze their creations, have begun incorporating
anti-VM techniques into malware to evade emulated envi-
ronments. Examples include Armadillo [2] and Themida [10],
which are highly emulation and virtualization resistant. Sub-
sequent to experimentation with EtherTrace, we performed
a cursory examination of our malware corpus to identify ad-
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Packing Tool EtherUnpack Renovo PolyUnpack

Armadillo yes no no
Aspack yes yes no
Asprotect yes yes yes
FSG yes yes yes
MEW yes yes yes
Molebox yes yes no
Morphine yes yes yes
Obsidium yes no no
PECompact yes yes no
Themida yes yes no
Themida VM yes no no
UPX yes yes yes
UPX S yes yes yes
WinUPack yes yes no
yoda’s Prot. yes yes no

Table 1: Effectiveness of generic unpackers.

ditional samples which would not run in QEMU. We selected
QEMU because many novel, external malware analysis tools
(e.g., Anubis, Renovo, and Panorama) are based on QEMU
or one of its derivatives.

All of our testing was done on QEMU version 0.9.1, the
latest stable release as of this writing. In testing, we found
least three different categories of samples that failed to exe-
cute properly in QEMU. In addition, an analysis of emula-
tion detection techniques present in these emulator-resistant
samples reveals all exploit incorrect CPU emulation.

The first category contained any sample packed with the
tElock tool; we identified 442 such samples in our corpus.
These samples comprise well known malware, such as RBot,
SDBot and the Spy.Banker trojan. Binary analysis showed
that tElock uses an undocumented opcode, F1, which causes
interrupt vector 1 to be issued by the processor on normal
hardware. However, in QEMU, this instruction had the ef-
fect of freezing the entire guest OS, rendering the guest un-
usable even when tElock is executed from guest userspace.

The second category was represented by a new, in-the-
wild sample provided to us by CERT-LEXSI. As outlined
in [35], the CERT-LEXSI sample exploits the difference
between real hardware and emulated hardware values of re-
served FPU Control Word bits. Lastly, we found a version of
PCPrivacyTool (a fake anti-spyware program) that failed to
operate correctly. The PCPrivacyTool sample encountered
an invalid memory access while executing the LDDQU instruc-
tion in QEMU; the same instruction executes without issue
on a real CPU.

Other currently non-utilized methods exist to reliably de-
tect QEMU. To demonstrate, we created a synthetic QEMU
detection method that relies on improper emulation. Our
detector uses the multi REP prefix detection method outlined
in [26]. The detection relies on placing 15 REP prefixes be-
fore a single-byte instruction. This configuration makes the
total instruction length 16 bytes – illegal on x86 where the
maximum instruction length is 15 bytes. On real hardware,
an illegal instruction exception is generated by the CPU.
QEMU does not generate such an exception. Even though
public release of this detection occurred in late 2006, the
issue has remained unresolved and the method still reliably
detects QEMU. The source code for our QEMU detector
appears in Appendix A.

In conclusion, EtherUnpack was able to reveal hidden code

Packing Tool EtherTrace Anubis Norman

None yes yes yes
Armadillo yes no no
UPX yes yes yes
Upack yes yes yes
Themida yes yes yes
PECompact yes yes yes
ASPack yes yes yes
FSG yes yes yes
ASProtect yes no yes
WinUpack yes yes yes
tElock yes no yes
PKLITE32 yes yes yes
yoda’s Prot. yes yes no
NsPack yes yes yes
MEW yes yes yes
nPack yes yes yes
RLPack yes yes yes
RCryptor yes yes yes

Table 2: Effectiveness of sandboxing environments.

from tElock, the CERT-LEXSI sample, Armadillo, Obsid-
ium, and Themida because it does not rely on correct CPU
emulation, and instead utilizes native hardware for instruc-
tion execution. Ether was also able to trace the PCPri-
vacyTool and our synthetic QEMU detection sample with-
out issue. Since it is inherently impossible to ensure the
equivalence of an emulated processor to a real processor,
more emulation inconsistencies are likely present in QEMU.
Therefore, as an alternative to QEMU, we propose the use
of hardware virtualization-based approaches such as Ether.

5.2 Coarse-Grained Tracing: System Calls
In contrast to automated unpacking, system call tracing

represents a more coarse-grained type of tracing, wherein
discrete system calls represent easily identifiable actions such
as file and registry access, process and thread creation, and
network activity. System call behavior is useful to malware
analysis because it can be used to identify malware startup
mechanisms, command and control channels, and access to
or theft of sensitive information. To evaluate Ether’s ability
to perform coarse-grained tracing, we created EtherTrace,
a tool for tracing Windows native API functions, which are
the Windows equivalent of Unix system calls.

5.2.1 Effectiveness
To assess the completeness of EtherTrace’s functionality

we created a synthetic sample that performs a set of file and
registry operations. These operations were chosen because
of their direct mapping to the Windows native API; that
is, they could be used to easily confirm EtherTrace’s ability
to perform successful tracing. To determine how EtherTrace
would perform against modern malware, we packed our syn-
thetic sample with the 15 most popular obfuscation tools
identified from our malware survey. We compared Ether-
Trace against Anubis and Norman Sandbox; the results ap-
pear in Table 2.

To confirm that EtherTrace successfully traced a given
sample, we ran the sample in the guest and inspected the
trace logs that were generated. For testing Anubis and Nor-
man Sandbox, we uploaded the samples to their web sub-
mission forms and examined the output. In examining the
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Benchmark Untraced Traced Change

HTMLRender 0.97 pg/s 0.62 pg/s 35.95%
FileDecrypt 64.87 MB/s 64.09 MB/s 1.19%
HDD 11.34 MB/s 8.14 MB/s 28.29%
TextEdit 68.83 pg/s 19.37 pg/s 71.86%
Image 14.86 MPix/s 14.69 MPix/s 1.12%
FileCompress 2.7 MB/s 2.66 MB/s 1.67%
FileEncrypt 16.07 MB/s 15.53 MB/s 3.39%
VirusScan 11.14 MB/s 11.09 MB/s 0.41%
MemLatency 7.75 MAcc/s 3.12 MAcc/s 59.8%
RARTime 40.87 s 45.29 s 10.81%

Table 3: Performance of EtherTrace on application

benchmarks.

results, all samples performed either all or none of the ex-
pected file and registry operations.

The results indicate once again that Armadillo, which
is quite popular in current malware, provides strong anti-
analysis protections and detected both Anubis and Norman
Sandbox. Besides Armadillo, Anubis failed to trace tElock,
which crashed after reporting failure of an internal CRC
check. Reasons why Anubis failed to trace ASProtect or
why Norman Sandbox failed to trace yoda’s Protector are
unclear. In contrast to both Anubis and Norman, Ether-
Trace successfully traced all samples.

5.2.2 Performance
As a final experiment, we measured the performance of

EtherTrace’s system call tracing where return values are not
needed. This type of tracing can serve as input to a wide
variety of applications, ranging from host based intrusion
detection systems to file and registry access monitors. To
perform our tests, we selected two tools: PCMark ’05, an
industry standard benchmarking application and WinRAR
3.71. Using PCMark ’05, we performed a standard series of
tests provided by the application. To test using WinRAR,
we compressed every file in the Program Files directory of
a default Windows XP installation; we selected this bench-
mark due to its mix of system calls, I/O, and CPU Utiliza-
tion. The results of testing appear in Table 3.

Tracing, as expected, adds extra latency to system calls.
Benchmarks which are sensitive to latency, such as web
browsing, incur a higher performance penalty. However, the
majority of this latency is due to notification of the Ether
userspace component; a full in-hypervisor implementation
would have much lower latencies. In addition, even in the
current implementation, system calls which require I/O ac-
cess are relatively unaffected by the extra latency.

6. CONCLUSION
In this paper we have presented Ether, a transparent and

external malware analyzer that is based on hardware virtu-
alization extensions such as Intel VT. Ether does not induce
any unconditionally detectable side-effects by completely re-
siding outside of the target OS environment. As a result,
malware cannot detect the presence of Ether. In our experi-
ments, we evaluated Ether and several other state-of-the-art
analyzers on the obfuscation techniques used to obfuscate
25,000 recent malware samples. The results show that Ether
remains transparent and defeats the obfuscation tools that
evade the existing approaches.

In future work, we will focus on improving resistance to
timing attacks and memory hierarchy detection attacks.
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APPENDIX

A. QEMU DETECTION CODE

#include <stdlib.h>
#include <stdio.h>

#include <windows.h>

int seh handler(
struct EXCEPTION RECORD ∗exception record,
void ∗established frame,
struct CONTEXT ∗context recorcd,
void ∗dispatcher context)

{
printf("Not QEMU!\n");
exit(0);

}

int main(int argc, char ∗argv[])
{

uint32 t handler = (uint32 t)seh handler;

printf("Attempting detection\n");

asm("movl %0, %%eax\n\t"
"pushl %%eax\n\t"::
"r" (handler): "%eax");

asm("pushl %fs:0\n\t"
"movl %esp, %fs:0\n\t");

asm(".byte 0xf3,0xf3,0xf3,0xf3,0xf3,0xf3,"

"0xf3,0xf3,0xf3,0xf3,0xf3,0xf3,"

"0xf3,0xf3,0xf3,0x90");

asm("movl %esp, %eax");
asm("movl %eax, %fs:0");
asm("addl $8, %esp");

printf("QEMU Detected!\n");
return EXIT SUCCESS;

}
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