
Predicting Parameters in Deep Learning

Misha Denil1 Babak Shakibi1 Laurent Dinh2

Marc’Aurelio Ranzato3 Nando de Freitas1
1University of British Columbia, Canada

2École Centrale de Paris
3Google Inc., USA

{mdenil,bshakibi,nando}@cs.ubc.ca
laurent.dinh@centraliens.net

ranzato@google.com

Abstract

We demonstrate that there is significant redundancy in the parameterization of
several deep learning models. Given only a few weight values for each feature it
is possible to accurately predict the remaining values. Moreover, we show that not
only can the parameter values be predicted, but many of them need not be learned
at all. We train several different architectures by learning only a small number of
weights and predicting the rest. In the best case we are able to predict more than
95% of the weights of a network without any drop in accuracy.

1 Introduction

Recent work on scaling deep networks has led to the construction of the largest artificial neural
networks to date. It is now possible to train networks with tens of millions [14] or even over a
billion parameters [8, 17, 4].

The largest networks (i.e. those of Dean et al. [8]) are trained using asynchronous SGD. In this
framework many copies of the model parameters are distributed over many machines and updated
independently. An additional synchronization mechanism coordinates between the machines to en-
sure that different copies of the same set of parameters do not drift far from each other.

A major drawback of this technique is that training is very inefficient in how it makes use of parallel
resources [1]. In the largest networks of Dean et al. [8], where the gains from distribution are largest,
distributing the model over 81 machines reduces the training time per mini-batch by a factor of 12,
and increasing to 128 machines achieves a speedup factor of roughly 14. While these speedups are
very significant, there is a clear trend of diminishing returns as the overhead of coordinating between
the machines grows. Other approaches to distributed learning of neural networks involve training in
batch mode [9], but these methods have not been scaled nearly as far as their online counterparts.

It seems clear that distributed architectures will always be required for extremely large networks;
however, as efficiency decreases with greater distribution, it also makes sense to study techniques
for learning larger networks on a single machine. If we can reduce the number of parameters which
must be learned and communicated over the network of fixed size, then we can reduce the number
of machines required to train it, and hence also reduce the overhead of coordination in a distributed
framework.

In this work we study techniques for reducing the number of free parameters in neural networks
by exploiting the fact that the weights in learned networks tend to be structured. The technique we
present is extremely general, and can be applied to a broad range of models. Our technique is also
completely orthogonal to the choice of activation function as well as other learning optimizations; it
can work alongside other recent advances in neural network training such as dropout [13], rectified
units [21] and maxout [10] without modification.

1

ar
X

iv
:1

30
6.

05
43

v1
 [

cs
.L

G
]

 3
 J

un
 2

01
3

Figure 1: The first column in each block shows four learned features (parameters of a deep model).
The second column shows a few parameters chosen at random from the original set in the first col-
umn. The third column shows that this random set can be used to predict the remaining parameters.
From left to right the blocks are: (1) a convnet trained on STL-10 (2) an MLP trained on MNIST,
(3) a convnet trained on CIFAR-10, (4) Reconstruction ICA trained on Hyvärinen’s natural image
dataset (5) Reconstruction ICA trained on STL-10.

The intuition motivating the techniques in this paper is the well known observation that the first layer
features of a neural network trained on natural image patches tend to be globally smooth with local
edge features, similar to local Gabor features [7, 14]. Given this structure, representing the value
of each pixel in the feature separately is redundant, since it is highly likely that the value of a pixel
will be equal to a weighted average of its neighbours. Taking advantage of this type of structure
means we do not need to store weights for every input in each feature. This intuition is illustrated in
Figures 1 and 2.

The remainder of this paper is dedicated to elaborating on this observation. We describe a general
purpose technique for reducing the number of free parameters in neural networks. The core of the
technique is based on representing the weight matrix as a low rank product of two smaller matrices.
By factoring the weight matrix we are able to directly control the size of the parameterization by
controlling the rank of the weight matrix.

Figure 2: RICA with different amounts
of parameter prediction. In the left-
most column 100% of the parameters
are learned with L-BFGS. In the right-
most column, only 10% of the parame-
ters learned, while the remaining values
are predicted at each iteration. The in-
termediate columns interpolate between
these extremes in increments of 10%.

Naı̈ve application of this technique is straightforward but
tends to reduce performance of the networks. We show
that by carefully constructing one of the factors, while
learning only the other factor, we can train networks with
vastly fewer parameters which achieve the same perfor-
mance as full networks with the same structure.

The key to constructing a good first factor is exploiting
smoothness in the structure of the inputs. When we have
prior knowledge of the smoothness structure we expect to
see (e.g. in natural images), we can impose this structure
directly through the choice of factor. When no such prior
knowledge is available we show that it is still possible to
make a good data driven choice.

We demonstrate experimentally that our parameter pre-
diction technique is extremely effective. In the best cases
we are able to predict more than 95% of the parameters
of a network without any drop in predictive accuracy.

Throughout this paper we make a distinction between dy-
namic and static parameters. Dynamic parameters are updated frequently during learning, poten-
tially after each observation or mini-batch. This is in contrast to static parameters, whose values are
computed once and not altered. Although the values of these parameters may depend on the data and
may be expensive to compute, the computation need only be done once during the entire learning
process.

The reason for this distinction is that static parameters are much easier to handle in a distributed
system, even if their values must be shared between machines. Since the values of static parame-
ters do not change, access to them does not need to be synchronized. Copies of these parameters
can be safely distributed across machines without any of the synchronization overhead incurred by
distributing dynamic parameters.

2

2 Low rank weight matrices

Deep networks are composed of several layers of transformations of the form h = g(vW), where
v is an nv-dimensional input, h is an nh-dimensional output, and W is an nv × nh matrix of
parameters. A column of W contains the weights connecting each unit in the visible layer to a
single unit in the hidden layer. We can to reduce the number of free parameters by representing W
as the product of two matrices W = UV, where U has size nv × nα and V has size nα × nh.
By making nα much smaller than nv and nh we achieve a substantial reduction in the number of
parameters.

In principle, learning the factored weight matrices is straightforward. We simply replace W with
UV in the objective function and compute derivatives with respect to U and V instead of W. In
practice this naı̈ve approach does not preform as well as learning a full rank weight matrix directly.

Moreover, the factored representation has redundancy. If Q is any invertible matrix of size nα× nα
we have W = UV = (UQ)(Q−1V) = ŨṼ. One way to remove this redundancy is to fix the
value of U and learn only V. The question remains what is a reasonable choice for U if it is not to
be learned? The following section provides an answer to this question.

3 Feature prediction

We can exploit the expectation of smoothness in the features of a deep network to represent the
features in a much lower dimensional space. We select a sparse subset of the connections for which
we actually store values, and smoothly predicting the remaining entries.

More precisely, we can view the weights connected to a single hidden unit as a function w :W → R
mapping weight space to real numbers. In the case of p × p image patches, W is the coordinates
of each pixel, but other structures for W are possible. Smoothness of the features corresponds to
smoothness of these functions with respect to the topology ofW . Since we expect these functions to
be smooth we can represent them explicitly at a small number of points in their domain, and predict
the remaining values using a smooth regression estimate.

We choose to implement the feature prediction using kernel ridge regression. This is an appropriate
choice here since the smoothness we want to impose can be controlled via the choice of kernel, and
it makes the prediction process analytically tractable so it can be carried out quickly and efficiently.

3.1 Prediction by kernel ridge regression

Kernel ridge regression is a way to extend standard linear regression to learn non-linear functions
by using kernels; see for example [24]. Let wα denote the observed values of the weight vector
w on a restricted subset of its domain α ⊂ W . We introduce a kernel matrix Kα, with entries
(Kα)ij = k(i, j), to model the covariance between locations i, j ∈ α. The parameters at these
locations are (wα)i and (wα)j . The kernel enables us to make smooth predictions of the parameter
vector over the entire domainW using the standard kernel ridge predictor:

w = kT
α(Kα + λI)−1wα ,

where kα is a matrix whose elements are given by (kα)ij = k(i, j) for i ∈ α and j ∈ W , and λ is
a ridge regularization coefficient. In the language of the previous section we have U = kT

α(Kα +
λI)−1 and V = wα. We refer to U as an (α-)expander matrix because of the role it plays in the
prediction process.

3.2 A concrete example

In this section we describe the feature prediction process as it applies to features derived from image
patches, since the intuition is strongest in this case. We defer a discussion of how to select a kernel
for deep layers as well as for non-image data in the visible layer to a later section. In those settings
the prediction process is formally identical, but the intuition is less clear.

If v is a vectorized image patch corresponding to the visible layer of a standard neural network
then the hidden activity induced by this patch is given by h = g(vW), where g is the network
nonlinearity and W = [w1, . . . ,wnh] is a weight matrix whose columns each correspond to features
which are to be matched to the visible layer.

3

We consider a single column of the weight matrix, w, whose elements are indexed by i ∈ W . In
the case of an image patch these indices are multidimensional i = (ix, iy, ic), indicating the spatial
location and colour channel of the index i. We select locations α ⊂ W at which to represent the
filter explicitly and use wα to denote the vector of weights at these locations.

There are a wide variety of options for how α can be selected. We have found that choosing α
uniformly at random from W (but tied across channels) works well; however, it is possible that
performance could be improved by carefully designing a process for selecting α.

We can use values for wα to predict the full feature as w = kT
α(Kα + λI)−1wα. Notice that we

can predict the entire feature matrix in parallel using W = kT
α(Kα + λI)−1Wα where Wα =

[(w1)α, . . . , (wnh
)α].

For image patches, where we expect smoothness in pixel space, an appropriate kernel is the squared
exponential kernel

k(i, j) = exp

(
− (ix − jx)2 + (iy − jy)2

2σ2

)
where σ is a length scale parameter which controls the degree of smoothness.

3.3 Interpretation as pooling

So far we have motivated our technique as a method for predicting features in a neural network;
however, the same approach can also be interpreted as a linear pooling process.

Recall that the hidden activations in a standard neural network before applying the nonlinearity
are given by g−1(h) = vW. Our motivation has proceeded along the lines of replacing W with
kT
α(Kα + λI)−1Wα and discussing the relationship between W and its predicted counterpart.

Alternatively we can write g−1(h) = vαWα where vα = vkT
α(Kα + λI)−1 is a linear transfor-

mation of the data. Under this interpretation we can think of a predicted layer as being composed
to two layers internally. The first is a linear layer which applies a fixed pooling operator given by
kT
α(Kα + λI)−1, and the second is an ordinary fully connected layer with |α| visible units.

3.4 Columnar architecture

The prediction process we have described so far assumes that α and the kernel k are the same for
all features; however, this can be too restrictive. Continuing with the intuition that filters should be
smooth local edge detectors we might want to choose α to give high resolution in a local area of pixel
space while using a sparser representation in the remainder of the space. Naturally, in this case we
would want to choose several different α’s, each of which concentrates high resolution information
in different regions.

It is straightforward to extend feature prediction to this setting. Suppose we have several different
pairs of index sets and kernels (α1, k1), . . . , (αJ , kJ). For each αj we can form the αj-expander
and predicted feature matrix Wj = kT

αj
(Kαj

+ λI)−1Wαj
where kαj

and Kαj
are formed using

the indices αj and the kernel kj . The full predicted feature matrix is formed by concatenating each
of these matrices blockwise W = [W1, . . . ,WJ]. Each block of the full predicted feature matrix
can be treated completely independently. Blocks Wi and Wj share no parameters—even their
corresponding α-expanders are different.

Each (α, k) pair can be thought of as defining a column of representation inside the layer. The input
to each column is shared, but the representations computed in each column are independent. The
output of the layer is obtained by concatenating the output of each column. This is represented
graphically in Figure 3.

Introducing additional columns into the network increases the number of static parameters but the
number of dynamic parameters remains fixed. The increase in static parameters comes from the
fact that each column has its own α-expander matrix. The reason that there is not a corresponding
increase in the number of dynamic parameters is that for a fixed size hidden layer the hidden units
are divided between the columns. The number of dynamic parameters depends only on the number
of hidden units and the size of each α.

4

v

vkT
αi
(Kαi

+ λI)−1 vkT
αi
(Kαi

+ λI)−1wαi

g(vkT
αi
(Kαi

+ λI)−1wαi
)kT

α2
(Kα2

+ λI)−1

wα1

wα2

wα3

g(·)

g(·)

g(·)

v

v ∗ kT
αi
(Kαi

+ λI)−1 v ∗ kT
αi
(Kαi

+ λI)−1wαi

wα1

wα2

wα3

g(v ∗ kT
αi
(Kαi

+ λI)−1wαi

Figure 3: Left: Columnar architecture in a fully connected network, with the path through one
column highlighted. Each column corresponds to a different (αj , kj) pair. Right: Columnar archi-
tecture in a convolutional network. In this setting the wα’s take linear combinations of the feature
maps obtained by convolving the input with the expander. We make the same abuse of notation here
as in the main text—the vectorized filter banks must be reshaped before the convolution takes place.

In a convolutional network the interpretation is similar. In this setting we have g−1(h) = v ∗W∗,
where W∗ is an appropriately sized filter bank. Using W to denote the result of vectorizing the
filters of W∗ (as is done in non-convolutional models) we can again write W = kT

α(Kα+λI)−1wα,
and using a slight abuse of notation1 we can write g−1(h) = v ∗ kT

α(Kα + λI)−1wα. As above,
we re-order the operations to obtain g−1(h) = vαwα resulting in a structure similar to a layer in an
ordinary MLP. This structure is illustrated in Figure 3.

Note that v is first convolved with kT
α(Kα + λI)−1 to produce vα. That is, preprocessing in each

column comes from a convolution with a fixed set of filters, defined by the α-expander. Next, we
form linear combinations of these fixed convolutions, with coefficients given by wα. This particular
order of operations may result in computational improvements if the number of hidden channels is
larger than nα

3.5 Constructing expander matrices

We now turn our attention to selecting an appropriate expander matrix for different layers of the
network. The appropriate choice of expander inevitably depends on the structure of the weight
space.

When the weight space has a topological structure where we expect smoothness, for example when
the weights correspond to pixels in an image patch, we can choose a kernel such as the squared
exponential kernel to enforce the type of smoothness we expect. This type of structure is present in
the first layer of an MLP when building models of image patches, and in convolutional networks it
is present in higher layers as well, since the convolutional feature maps have a spatial structure.

In other cases, such as in the hidden layers of an MLP, we have no such structure. The hidden units
of an MLP are permutation invariant: the units can be rearranged in arbitrary order without changing
the model. In this setting we cannot rely on spatial smoothness, so a different approach is called for.

When there is no topological structure to exploit, we propose two methods to construct a data driven
kernel for ridge regression. The first is to use the covariance of the inputs as a kernel directly. For
example, in a hidden layer h we construct the kernel function k(i, j) as

k(i, j) =
1

N − 1

N∑
n=1

(hi(vn)− h̄i)(hj(vn)− h̄j)

where n indexes the training data and h̄i is the value of hi(v) averaged over the data. The sec-
ond option is to use the squared covariance, obtained by squaring the inputs before computing the
covariance.

1The vectorized filter bank W = kT
α(Kα+λI)−1wα must be reshaped before the convolution takes place.

5

0.03 0.27 0.51 0.76 1.0
Proportion of parameters learned

0.02

0.03

0.04

0.04

0.05

E
rr

or

Compare Completion Methods
nokernel
LowRank
RandCon-RandCon
RandFixU-RandFixU
SE-Emp
SE-Emp2

0.03 0.27 0.51 0.76 1.0
Proportion of parameters learned

0.02

0.03

0.04

0.04

0.05

E
rr

or

Squared exponential - Empirical^2
nokernel
1 column
5 column
10 column

Figure 4: Left: A comparison of the performance using different expander construction methods
to predict the weights in the first two layers of the MLP network. The legend shows the expander
construction method in layer1–layer2 (see main text for details). Right: The effect of changing
the number of columns. With 10 columns we are able to predict more than 95% of the dynamic
parameters from the first two layers of the network without any substantial drop in accuracy.

Since the correlations in hidden activities depend on the weights in lower layers we cannot initialize
kernels in deep layers in this way without training the previous layers. We handle this by pre-training
each layer as an autoencoder. We construct the kernel using the empirical covariance of the hidden
units over the data using the pre-trained weights. Once each layer has been pre-trained in this way
we fine-tune the entire network with backpropagation, but in this phase the kernel parameters are
fixed.

We also experiment with other choices for the expander, such as random projections (using a matrix
with iid Gaussian entries) and random connections (using a matrix composed of random columns of
the identity).

4 Experiments

4.1 Multilayer perceptron

We perform some initial experiments using MLPs [23] in order to demonstrate the effectiveness of
our technique. We train several MLP models on MNIST using different strategies for constructing
the expander matrix, different numbers of columns and different degrees of reduction in the number
of dynamic parameters used in each feature. We chose to explore these permutations on MNIST
since it is small enough to allow us to have broad coverage.

The networks in this experiment all have two hidden layers with a 784–500–500–10 architecture
and use a sigmoid activation function. The final layer is a softmax classifier. In all cases we preform
parameter prediction in the first and second layers only; the final softmax layer is never predicted.
This layer contains approximately 1% of the total network parameters, so a substantial savings is
possible even if features in this layer are not predicted.

Figure 4 (left) shows performance using several different strategies for constructing the expander
matrix, each using 10 columns in the first and second layers. We divide the hidden units in each
layer equally between columns (so each column connects to 50 units in the layer above).

The different expander construction techniques are as follows: nokernel is an ordinary model with
no feature prediction (shown as a horizontal line). LowRank is when both U and V are optimized.
RandCon is random connections (the expander matrix is random columns from the identity). Rand-
FixU is random projections using a matrix of iid Gaussian entries. SE is ridge regression with the
squared exponential kernel with length scale 1.0. Emp is ridge regression with the covariance kernel.
Emp2 is ridge regression with the squared covariance kernel. The SE–Emp and SE-Emp2 architec-
tures preform substantially better than the alternatives, especially with few dynamic parameters.

For consistency we pre-trained all of the models, except for the LowRank, as autoencoders. We
did not pretrain the LowRank model because we found the autoencoder pretraining to be extremely
unstable for this model.

Figure 4 (right) shows the result of varying the number of columns in the first two layers using the
SE–Emp2 architecture. When each feature has many dynamic parameters the gain from multiple
columns is small, but for large reductions the benefit is clear.

6

4.2 Convolutional network

Figure 5 shows the performance of a convnet [18] on CIFAR-10. The first convolutional layer filters
the 32 × 32 × 3 input image using 48 filters of size 8 × 8 × 3. The second convolutional layer
applies 64 filters of size 8 × 8 × 48 to the output of the first layer. The third convolutional layer
further transforms the output of the second layer by applying 64 filters of size 5 × 5 × 64. The
output of the third layer is input to a fully connected layer with 500 hidden units and finally into a
softmax layer with 10 outputs. Again we do not reduce the parameters in the final softmax layer.
The convolutional layers each have one column and the fully connected layer has five columns.

Convolutional layers have a natural topological structure to exploit, so we use an expander matrix
constructed with the squared exponential kernel in each convolutional layer. The input to the fully
connected layer at the top of the network comes from a convolutional layer so we use ridge regression
with the squared exponential kernel to predict parameters in this layer as well.

4.3 Reconstruction ICA

1.00.50.25 0.75
Proportion of parameters learned

0.08

0.16

0.24

0.32

0.4

E
rr

or

Convnet CIFAR-10

convnet

Figure 5: Performance of a convnet on
CIFAR-10. Predicting 75% of the pa-
rameters has a negligible effect on pre-
dictive accuracy.

Reconstruction ICA [16] is a method for learning over-
complete ICA models which is similar to a linear autoen-
coder network. We demonstrate that we can effectively
predict parameters in RICA on both CIFAR-10 and STL-
10. In order to use RICA as a classifier we follow the
procedure of Coates et al. [7].

Figure 6 (left) shows the results of parameter prediction
with RICA on CIFAR-10 and STL-10. RICA is a single
layer architecture, and we predict parameters with an α-
expander constructed using the squared exponential ker-
nel with a length scale of 1.0. The nokernel line shows
the performance of RICA with no feature prediction on
the same task. In both cases we are able to predict more
than half of the dynamic parameters without a substantial
drop in accuracy.

Figure 6 (right) compares the performance of two RICA
models with the same number of dynamic parameters. One of the models is ordinary RICA with
no parameter prediction and the other has 50% of the parameters in each feature predicted using an
expander matrix constructed using the squared exponential kernel with a length scale of 1.0; since
50% of the parameters in each feature are predicted, the second model has twice as many features
with the same number of dynamic parameters.

5 Related work and future directions

Several other methods for limiting the number of parameters in a neural network have been explored
in the literature. An early approach is the technique of “Optimal Brain Damage” [19] which uses
approximate second derivative information to remove parameters from an already trained network.
This technique does not apply in our setting, since we aim to limit the number of parameters before
training, rather than after.

0.08 0.28 0.49 0.69 0.9
Proportion of parameters learned

0.24

0.31

0.37

0.44

0.5

E
rr

or

CIFAR-10

nokernel
RICA

0.08 0.28 0.49 0.69 0.9
Proportion of parameters learned

0.42

0.44

0.46

0.48

0.5

E
rr

or

STL-10

nokernel
RICA

1800 15750 29700 43650 57600
Number of dynamic parameters

0.24

0.31

0.37

0.44

0.5

E
rr

or

CIFAR-10

RICA
RICA-50%

5000 23750 42500 61250 80000
Number of dynamic parameters

0.42

0.44

0.46

0.48

0.5

E
rr

or

STL-10

RICA
RICA-50%

Figure 6: Left: Comparison of the performance of RICA with and without parameter prediction on
CIFAR-10 and STL-10. Right: Comparison of RICA, and RICA with 50% parameter prediction
using the same number of dynamic parameters (i.e. RICA-50% has twice as many features). There
is a substantial gain in accuracy with the same number of dynamic parameters using our technique.
Error bars for STL-10 show 90% confidence intervals from the the recommended testing protocol.

7

The most common approach to limiting the number of parameters is to use locally connected fea-
tures [7]. The size of the parameterization of locally connected networks can be further reduced
by using tiled convolutional networks [11] in which groups of feature weights which tile the input
space are tied. Convolutional neural networks [14] are even more restrictive and force a feature to
have tied weights for all receptive fields.

The techniques described in this paper are orthogonal to the parameter reduction achieved by tying
weights in a tiled or convolutional pattern. Tying weights effectively reduces the number of feature
maps by constraining features at different locations to share parameters. Our approach reduces the
number of parameters required to represent each feature and it is straightforward to incorporate into
a tiled or convolutional network.

Cireşan et al. [3] control the number of parameters by removing connections between layers in a
convolutional network at random. They achieve state-of-the-art results using these randomly con-
nected layers as part of their network. Our technique subsumes the idea of random connections, as
described in Section 3.5.

The idea of regularizing networks through prior knowledge of smoothness is not new, but it is a
delicate process. Lang and Hinton [15] tried imposing explicit smoothness constraints through reg-
ularization but found it to universally reduce performance. Naı̈vely factoring the weight matrix and
learning both factors tends to reduce performance as well. Although the idea is simple conceptu-
ally, execution is difficult. Gülçehre et al. [12] have demonstrated that prior knowledge is extremely
important during learning, which highlights the importance of introducing it effectively.

Recent work has shown that state of the art results on several benchmark tasks in computer vision
can be achieved by training neural networks with several columns of representation [2, 14]. The use
of different preprocessing for different columns of representation is of particular relevance [2]. Our
approach has an interpretation similar to this as described in Section 3.4. Unlike the work of [2], we
do not consider deep columns in this paper; however, collimation is an attractive way for increasing
parallelism within a network, as the columns operate completely independently. There is no reason
we could not incorporate deeper columns into our networks, and this would make for a potentially
interesting avenue of future work.

Our approach is superficially similar to the factored RBM [22, 20, 25], whose parameters form a
3-tensor. Since the total number of parameters in this model is prohibitively large, the tensor is
represented as an outer product of three matrices. Major differences between our technique and the
factored RBM include the fact that the factored RBM is a specific model, whereas our technique can
be applied more broadly—even to factored RBMs. In addition, in a factored RBM all factors are
learned, whereas in our approach the expander matrix is fixed judiciously.

In this paper we always choose the set α of indices uniformly at random. There are a wide variety
of other options which could be considered here. For example, localized dense sampling would
enable us to obtain locally high resolution features, with different columns of the network focusing
on different regions of the input. Other works have focused on learning receptive fields directly [6],
and would be interesting to incorporate with our technique.

In a similar vein, more careful attention to the selection of kernel functions is appropriate. We
have considered some simple examples and shown that they preform well, but our study is hardly
exhaustive. Using different types of kernels to encode different types of prior knowledge on the
weight space, or even learning the kernel functions directly as part of the optimization procedure as
in [26] are possibilities that deserve exploration.

When no natural topology on the weight space is available we infer a topology for the expander
matrix from empirical statistics; however, it may be possible to instead construct the expander matrix
to induce a desired topology on the weight space directly. This has parallels to other work on
inducing topology in representations [11] as well as work on learning pooling structures in deep
networks [5].

6 Conclusion
We have shown how to achieve significant reductions in the number of dynamic parameters in deep
models. The idea is orthogonal but complementary to recent advances in deep learning, such as
dropout, rectified units and maxout. It creates many avenues for future work, such as improving
large scale industrial implementations of deep networks, but also brings into question whether we
have the right parameterizations in deep learning.

8

References

[1] Y. Bengio. Deep learning of representations: Looking forward. Technical Report arXiv:1305.0445,
Université de Montréal, 2013.

[2] D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification.
In IEEE Computer Vision and Pattern Recognition, pages 3642–3649, 2012.

[3] D. Cireşan, U. Meier, and J. Masci. High-performance neural networks for visual object classification.
arXiv:1102.0183, 2011.

[4] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and A. Ng. Deep learning with cots hpc systems. In
International Conference on Machine Learning, 2013.

[5] A. Coates, A. Karpathy, and A. Ng. Emergence of object-selective features in unsupervised feature
learning. In Advances in Neural Information Processing Systems, pages 2690–2698, 2012.

[6] A. Coates and A. Y. Ng. Selecting receptive fields in deep networks. In Advances in Neural Information
Processing Systems, pages 2528–2536, 2011.

[7] A. Coates, A. Y. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning.
In Artificial Intelligence and Statistics, 2011.

[8] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, and A. Ng. Large scale distributed deep networks. In Advances in Neural Information Processing
Systems, pages 1232–1240, 2012.

[9] L. Deng, D. Yu, and J. Platt. Scalable stacking and learning for building deep architectures. In Interna-
tional Conference on Acoustics, Speech, and Signal Processing, pages 2133–2136, 2012.

[10] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. In Interna-
tional Conference on Machine Learning, 2013.

[11] K. Gregor and Y. LeCun. Emergence of complex-like cells in a temporal product network with local
receptive fields. arXiv preprint arXiv:1006.0448, 2010.

[12] C. Gülçehre and Y. Bengio. Knowledge matters: Importance of prior information for optimization. In
International Conference on Learning Representations, 2013.

[13] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Improving neural net-
works by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580, 2012.

[14] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Systems, pages 1106–1114, 2012.

[15] K. Lang and G. Hinton. Dimensionality reduction and prior knowledge in e-set recognition. In Advances
in Neural Information Processing Systems, 1990.

[16] Q. V. Le, A. Karpenko, J. Ngiam, and A. Y. Ng. ICA with reconstruction cost for efficient overcomplete
feature learning. Advances in Neural Information Processing Systems, 24:1017–1025, 2011.

[17] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean, and A. Ng. Building high-
level features using large scale unsupervised learning. In International Conference on Machine Learning,
2012.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[19] Y. LeCun, J. S. Denker, S. Solla, R. E. Howard, and L. D. Jackel. Optimal brain damage. In Advances in
Neural Information Processing Systems, pages 598–605, 1990.

[20] R. Memisevic and G. E. Hinton. Learning to represent spatial transformations with factored higher-order
boltzmann machines. Neural Computation, 22(6):1473–1492, 2010.

[21] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proc. 27th
International Conference on Machine Learning, pages 807–814. Omnipress Madison, WI, 2010.

[22] M. Ranzato, A. Krizhevsky, and G. E. Hinton. Factored 3-way restricted Boltzmann machines for mod-
eling natural images. In Artificial Intelligence and Statistics, 2010.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors.
Nature, 323(6088):533–536, 1986.

[24] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press,
New York, NY, USA, 2004.

[25] K. Swersky, M. Ranzato, D. Buchman, B. Marlin, and N. Freitas. On autoencoders and score matching
for energy based models. In International Conference on Machine Learning, pages 1201–1208, 2011.

[26] P. Vincent and Y. Bengio. A neural support vector network architecture with adaptive kernels. In Inter-
national Joint Conference on Neural Networks, pages 187–192, 2000.

9

	1 Introduction
	2 Low rank weight matrices
	3 Feature prediction
	3.1 Prediction by kernel ridge regression
	3.2 A concrete example
	3.3 Interpretation as pooling
	3.4 Columnar architecture
	3.5 Constructing expander matrices

	4 Experiments
	4.1 Multilayer perceptron
	4.2 Convolutional network
	4.3 Reconstruction ICA

	5 Related work and future directions
	6 Conclusion

