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Phutball Endgames are Hard

Erik D. Demaine∗ Martin L. Demaine∗ David Eppstein†

Abstract

We show that, in John Conway’s board game Phutball (or Philosopher’s Football), it is NP-
complete to determine whether the current player has a move that immediately wins the game.
In contrast, the similar problems of determining whether there is an immediately winning move
in checkers, or a move that kings a man, are both solvable in polynomial time.

1 Introduction

John Conway’s game Phutball [1–3, 13], also known as Philosopher’s Football, starts with a single
black stone (theball) placed at the center intersection of a rectangular grid such as a Go board.
Two players sit on opposite sides of the board and take turns.On each turn, a player may either
place a single white stone (aman) on any vacant intersection, or perform a sequence ofjumps. To
jump, the ball must be adjacent to one or more men. It is moved in a straight line (orthogonal or
diagonal) to the first vacant intersection beyond the men, and the men so jumped are immediately
removed (Figure 1). If a jump is performed, the same player may continue jumping as long as the
ball continues to be adjacent to at least one man, or may end the turn at any point. Jumps are not
obligatory: one can choose to place a man instead of jumping.The game is over when a jump
sequence ends on or over the edge of the board closest to the opponent (the opponent’sgoal line)
at which point the player who performed the jumps wins. It is legal for a jump sequence to step
onto but not over one’s own goal line. One of the interesting properties of Phutball is that any move
could be played by either player, the only partiality in the game being the rule for determining the
winner.

It is theoretically possible for a Phutball game to return toa previous position, so it may be
necessary to add a loop-avoidance rule such as the one in Chess (three repetitions allow a player to
claim a draw) or Go (certain repeated positions are disallowed). However, repetitions do not seem
to come up much in actual practice.

It is common in other board games1 that the problems of determining the outcome of the game
(with optimal play), or testing whether a given move preserves the correct outcome, are PSPACE-
complete [5], or even EXPTIME-complete for loopy games suchas Chess [8] and Go [11]. How-
ever, no such result is known for Phutball. Here we prove a different kind of complexity result:
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1More precisely, since most games have a finite prescribed board size, these complexity results apply to generalizations
in which arbitrarily large boards are allowed, and in which the complexity is measured in terms of the board size.
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Figure 1: A jump in Phutball. Left: The situation prior to thejump. Right: The situation after
jumping two men. The same player may then jump the remaining man.

the problem of determining whether a player has a move that immediately wins the game (a mate
in one, in chess terminology) is NP-complete. Such a result seems quite unusual, since in most
games there are only a small number of legal moves, which could all be tested in polynomial time.
The only similar result we are aware of is that, in Twixt, it isNP-complete to determine whether a
player’s points can be connected to form a winning chain [10]. However, the Twixt result seems to
be less applicable to actual game play, since it depends on a player making a confusing tangle of
his own points, which does not tend to occur in practice. The competition between both players in
Phutball to form a favorable arrangement of men seems to leadmuch more naturally to complicated
situations not unlike the ones occurring in our NP-completeness proof.

2 The NP-Completeness Proof

Testing for a winning jump sequence is clearly in NP, since a jump sequence can only be as long
as the number of men on the board. As is standard for NP-completeness proofs, we prove that the
problem is hard for NP by reducing a known NP-complete problem to it. For our known problem
we choose 3-SAT: satisfiability of Boolean formulae in conjunctive normal form, with at most three
variables per clause. We must show how to translate a 3-SAT instance into a Phutball position, in
polynomial time, in such a way that the given formula is solvable precisely if there exists a winning
path in the Phutball position.

The overall structure of our translation is depicted in Figure 2, and a small complete example
is shown in Figure 6. We form a Phutball position in which the possible jump sequences zigzag
horizontally along pairs of lines, where each pair represents one of the variables in the given 3-SAT
instance. The path then zigzags vertically up and down alongtriples of lines, where each triple
represents one of the clauses in the 3-SAT instance. Thus, the potential winning paths are formed
by choosing one of the two horizontal lines in each pair (corresponding to selecting a truth value for
each variable) together with one of the three vertical linesin each triple (corresponding to selecting
which of the three variables has a truth value that satisfies the clause). By convention, we associate
paths through the upper of a pair of horizontal lines with assignments that set the corresponding
variable to true, and paths through the lower of the pair withassignments that set the variable to
false. The horizontal and vertical lines interact at certain marked crossings in a way that forces any
path to correspond to a satisfying truth assignment.

We now detail each of the components of this structure.

Fan-in and fan-out. At the ends of each pair or triple of lines, we need a configuration of men that
allows paths along any member of the set of lines to converge,and then to diverge again at
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Figure 2: Overall plan of the NP-completeness reduction: a path zigzags through horizontal pairs
of lines (representing variables) and vertical triples of lines (representing clauses). Certain variable-
clause crossings are marked, representing an interaction between that variable and clause.

the next pair or triple. Figure 3 depicts such a configurationfor the triples of vertical lines;
the configuration for the horizontal lines is similar. Note that, if a jump sequence enters the
configuration from the left, it can only exit through one of the three lines at the bottom. If
a jump sequence enters via one of the three vertical lines, itcan exit horizontally or on one
of the other vertical lines. However, the possibility of using more than one line from a group
does not cause a problem: a jump sequence that uses the secondof two horizontal lines must
get stuck at the other end of the line, and a jump sequence thatuses two of three vertical lines
must use all three lines and can be simplified to a sequence using only one of the three lines.

Non-interacting line crossing. Figure 4 depicts a configuration of men that allows two lines to
cross without interacting. A jump sequence entering along the horizontal or vertical line can
and must exit along the same line, whether or not the other line has already been jumped.

Interaction. Figure 5 depicts a configuration of men forming an interaction between two lines. In
the initial configuration, a jump sequence may follow eitherthe horizontal or the vertical line.
However, once the horizontal line has been jumped, it will nolonger be possible to jump the
vertical line.

Theorem 1 Testing whether a Phutball position allows a winning jump sequence is NP-complete.

Proof: As described above, we reduce 3-SAT to the given problem by forming a configuration
of men with two horizontal lines of men for each variable, andthree vertical lines for each clause.
We connect these lines by the fan-in and fan-out gadget depicted in Figure 3. If variablei occurs
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Figure 3: Configuration of men to allow a choice between threevertical lines. Similar configurations
are used at the other end of each triple of lines, and at each end of pairs of horizontal lines.

Figure 4: Left: configuration of men to allow horizontal and vertical lines to cross without interact-
ing. Right: after the horizontal jump has been taken, the short gap in the vertical line still allows it
to be traversed via a pair of jumps.

Figure 5: Left: configuration of men to allow horizontal and vertical lines to interact. Right: after
the horizontal jump has been taken, the long gap in the vertical line prevents passage.
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as thejth term of clausek, we place an interaction gadget (Figure 5) at the point wherethe bottom
horizontal line in theith pair of horizontal lines crosses thejth vertical line in thekth triple of
vertical lines. If instead the negation of variablei occurs in clausek, we place an interaction gadget
similarly, but on the top horizontal line in the pair. At all other crossings of horizontal and vertical
lines we place the crossing gadget depicted in Figure 4. Finally, we form a path of men from the
final fan-in gadget (the arrow in Figure 2) to the goal line of the Phutball board.

The lines from any two adjacent interaction gadgets must be separated by four or more units,
but other crossing types allow a three-unit separation. By choosing the order of the variables in each
clause, we can make sure that the first variable differs from the last variable of the previous clause,
avoiding any adjacencies between interaction gadgets. Thus, we can space all lines three units apart.
If the 3-SAT instance hasn variables andm clauses, the resulting Phutball board requires 6n+O(1)
rows and 9m + O(1) columns, polynomial in the input size.

Finally, we must verify that the 3-SAT instance is solvable precisely if the Phutball instance has
a winning jump sequence. Suppose first that the 3-SAT instance has a satisfying truth assignment;
then we can form a jump sequence that uses the top horizontal line for every true variable, and
the bottom line for every false variable. If a clause is satisfied by thejth of its three variables, we
choose thejth of the three vertical lines for that clause. This forms a valid jump sequence: by the
assumption that the given truth assignment satisfies the formula, the jump sequence uses at most
one of every two lines in every interaction gadget. Conversely, suppose we have a winning jump
sequence in the Phutball instance; then as discussed above it must use one of every two horizontal
lines and one or three of every triple of vertical lines. We form a truth assignment by setting a
variable to true if its upper line is used and false if its lower line is used. This must be a satisfying
truth assignment: the vertical line used in each clause gadget must not have had its interaction
gadget crossed horizontally, and so must correspond to a satisfying variable for the clause.

Figure 6 shows the complete reduction for a simple 3-SAT instance. We note that the Phutball
instances created by this reduction only allow orthogonal jumps, so the rule in Phutball allowing
diagonal jumps is not essential for our result.

3 Phutball and Checkers

Phutball is similar in many ways to Checkers. As in Phutball,Checkers players sit at opposite ends
of a rectangular board, move pieces by sequences of jumps, remove jumped pieces, and attempt
to move a piece onto the side of the board nearest the opponent. As in Phutball, the possibility
of multiple jumps allows a Checkers player to have an exponential number of available moves.
Checkers is PSPACE-complete [7] or EXPTIME-complete [12],depending on the termination rules,
but these results rely on the difficulty of game tree search rather than the large number of moves
available at any position. Does Checkers have the same sort of single-move NP-completeness as
Phutball?

It is convenient to view Checkers as being played on a nonstandard diamond-shaped grid of
square cells, with pieces that move horizontally and vertically, rather than the usual pattern of diag-
onal moves on a checkerboard (Figure 7). This view does not involve changing the rules of checkers
nor even the geometric positions of the pieces, only the markings of the board on which they rest.
Then, any jump preserves the parity of both thex- andy-coordinates of the jumping piece, so at
most one fourth of the board’s cells can be reached by jumps ofa given piece (Figure 8, left).

For any given piecep, form a bipartite graphGp by connecting the vacant positions thatp can
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Figure 6: Complete translation of 3-SAT instance(a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c).
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Figure 7: The checkerboard can equivalently be viewed as a diamond-shaped grid of orthogonally
adjacent square cells.

Figure 8: Left: only cells of the same parity can be reached byjumps. Right: graphGp formed by
connecting jumpable pieces with cells that can be reached byjumps from the upper black king.

reach by jumping with the adjacent pieces of the opposite color thatp can jump. Ifp is a king,
this graph should be undirected, but otherwise it should be directed according to the requirement
that the piece not move backwards. Note that each jumpable piece has degree two in this graph, so
the possible sequences of jumps are simply the graph paths that begin at the given piece and end
at a vacant square. Figure 8, right, depicts an example; notethat opposing pieces that can not be
jumped (because they are on cells of the wrong parity, or because an adjacent cell is occupied) are
not included inGp. Using this structure, it is not hard to show that Checkers moves are not complex:

Theorem 2 For any Checkers position (on an arbitrary-size board), one can test in polynomial time
whether a checker can become a king, or whether there is a move which wins the game by jumping
all the opponent’s pieces.

Proof: Piecep can king precisely if there is a directed path inGp from p to one of the squares
along the opponent’s side of the board. A winning move existsprecisely if there exists a piecep for
which Gp includes all opposing pieces and contains an Euler path starting atp; that is, precisely if
Gp is connected and has at most one odd-degree vertex other thanthe initial location ofp.

The second claim in this theorem, testing for a one-move win,is also proved in [7]. That paper
also show that the analogous problem for a generalization ofcheckers to arbitrary graphs is NP-
complete.
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4 Discussion

We have shown that, in Phutball, the exponential number of jump sequences possible in a single
move, together with the ways in which parts of a jump sequencecan interfere with each other,
leads to the high computational complexity of finding a winning move. In Checkers, there may be
exponentially many jump sequences, but jumps can be performed independently of each other, so
finding winning moves is easy. What about other games?

In particular, Fanorona [4, 6] seems a natural candidate forstudy. In this game, capturing is
performed in a different way, by moving a piece in one step towards or away from a contiguous line
of the opponent’s pieces. Board squares alternate between strong (allowing diagonal moves) and
weak (allowing only orthogonal moves), and a piece making a sequence of captures must change
direction at each step. Like Checkers (and unlike Phutball)the game is won by capturing all the
opponent’s pieces rather than by reaching some designated goal. Is finding a winning move in
Fanorona hard? If so, a natural candidate for a reduction is the problem of finding Hamiltonian
paths in grid graphs [9].

The complexity of determining the outcome of a general Phutball position remains open. We
have not even proven that this problem is NP-hard, since evenif no winning move exists in the
positions we construct, the player to move may win in more than one move.
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