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We characterize those vector-valued stochastic processes (with a finite index set and defined on  an 
arbitrary stochasic base) which can become a martingale under an equivalent change of measure. 

This question is important in a widely studied problem which arises in the theory of finite period 
securities markets with one riskless bond and a finite number of risky stocks. In this setting, our 
characterization gives a criterion for recognizing when a securities market model allows for no 
arbitrage opportunities ("free lunches"). Intuitively, this can be interpreted as saying "if one cannot win 
betting on a process, then it must be a martingale under an equivalent measure," and provides a 
converse to the classical notion that "one cannot win betting on a martingale." 

1. INTRODUCTION 

Classical martingale systems theorems (Halmos [9] and Doob [7]) formalize the 
intuitive idea behind martingales, namely that "one can't win betting on a 
martingale". More precisely, using Burkholder's martingale transforms (Buskholder 
[3]), we have the following. Let X = (X,: t = O,1, . . . , T) be an Rd-valued martingale 
(1 5 d < m) on some stochastic base (R, F, P) and let V =  (V,:t = l ,2 , .  . . , T) denote 
an Rd-valued F-predictable stochastic process ("betting strategy"). Then the 
martingale transform V o X = (( V o X),: t = O,1,. . . , T) of V with respect to X is 
defined by 
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186 R. C. DALANG ET AL. 

where (VoX), represents the "accumulated gain up to time t" when following the 
strategy V (V; X, is the Euclidean scalar product of the vectors V, and X,). If Vo X 
is integrable then classical martingale systems results show that VoX is again a 
martingale with respect to P and F. Thus there are no "smart" betting strategies 
which can change the character of the fair game X in favor of the gambler. Put 
differently, if X and V are as above then the following condition holds: 

for t = l ,2, .  . . , T and for F-predictable I/, 
(1.1) 

V,.(X,-X,-,)zO P-a.s.* V;(X,-X,-,)=O P-a.s. 

Observe that (1.1) still holds if P is replaced by an equivalent probability measure 
Q on (R, F) (i.e. P and Q have the same null sets), but that the martingale property 
of Vo X (under P) will in general be destroyed when P is replaced by Q. 

In this paper, we show that condition (1.1) is not only sufficient but also 
necessary for a process X to be a martingale under an equivalent probability 
measure Q on (R, F); such a Q is called an equivalent martingale measure for (F, X). 
The results in this paper can thus be viewed as a converse to the classical 
martingale systems theorem and can be interpreted as saying: "if one can't win 
betting on a process then it must be a martingale under an equivalent change of 
measure". Our approach is based on a pathwise analysis of condition (1.1) and 
extends two recent developments in this area: (i) a similar but more elementary 
sample path investigation of (1.1) when there are only finitely many states of 
nature (see Taqqu and Willinger [13]), and (ii) an analysis of the same change of 
measure problem in the case of a single-period random process X (see Willinger 
and Taqqu [15]). Willinger and Taqqu [15) have also solved the problem of 
existence of a unique equivalent martingale measure. Whereas the uniqueness 
problem can be solved using only elementary probability tools, our extension relies 
on some abstract measurable selection theorems. Our results also include the 
special case d=  1 studied by Back and Pliska [2]. Their proof, however, does not 
generalize to higher dimensions. 

Characterizing stochastic processes which can be transformed into martingales 
by means of an equivalent change of measure is of particular interest in the 
analysis of stochastic models of securities markets (see, for example, Harrison and 
Kreps [lo], Harrison and Pliska [ll], Duffie and Huang [8], Taqqu and 
Willinger 1131, Back and Pliska [2] and Willinger and Taqqu [15]). Indeed, 
Harrison and Kreps [lo] and Harrison and Pliska [11] first demonstrated a 
fundamental relationship between the question of existence of equivalent mart- 
ingale measures for the securities price process (modeling the prices of one riskless 
bond and 1 s d <  w: risky stocks over time) and the economic notion of "no 
arbitrage". Their results were generalized by Duffle and Huang [8]. In view of our 
earlier comments, this relationship is natural since an arbitrage opportunity 
represents a riskless plan for making profits without initial investments (a "free 
lunch"). All these references use the notion of agent's preferences, rely on a global 
functional-analytic argument, and require some additional assumptions on the 
price process, such as integrability. 
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EQUIVALENT MARTINGALE MEASURES 187 

In this securities market setting, our results (in particular, Theorem 2.6) extend 
those of Harrison and Pliska [11] and Taqqu and Willinger [13] who consider 
finite-period, frictionless securities market models when there are only finitely 
many states of nature. Here we allow an arbitrary probability space, make no 
integrability assumption on the price process, and show how one can recognize 
that a given securities market model satisfies the economically meaningful 
assumption of "no arbitrage". In the one-dimensional case (i.e., one risky stock 
and one riskless bond), this problem was studied by Back and Pliska [2]. 
Although their method of proof does not generalize to higher dimensions, these 
authors conjectured that the same result holds for finite-period, vector-valued 
securities price processes. This conjecture is proved in our Theorem 2.6. Also note 
that Back and Pliska work with a more restrictive class of "feasible" trading 
strategies than we do (we impose no "positive wealth constraints", see Section 3.1); 
in the present finite-period setting, it is easy to see that this restriction is not 
essential. 

A pathwise analysis along the lines suggested in this paper of the no-arbitrage 
assumption for continuous-time price processes, where trading in stock and bonds 
can take place continuously in time, remains an open problem. See, however, 
Harrison and Pliska [ l l ]  and Back and Pliska [2] for examples of what can go 
wrong when trading continuously. 

The paper is structured as follows. In Section 2 we prove that condition (1.1) is 
necessary and sufficient for the existence of an equivalent martingale measure Q 
for X and briefly mention the known results concerning uniqueness of such a Q. In 
Section 3 we apply our results in the context of stochastic modelling of finite- 
period, frictionless securities markets and show how the existence of an equivalent 
martingale measure for the securities price process is related to the economically 
meaningful "no arbitrage" assumption. 

2. NECESSARY AND SUFFICIENT CONDITIONS FOR THE 
EXISTENCE O F  AN EQUIVALENT MARTINGALE MEASURE 

The purpose of this section is to give necessary and sufficient conditions under 
which a discrete-time, Rd-valued process with finite time horizon has an equivalent 
martingale measure. We first show that condition (1.1) is sufficient for the existence 
of an equivalent martingale measure for a "one-step" process X=(X, ,X,) .  This 
special case contains most of the technical difficulties and the problem of a finite- 
period process X = (X,: t = O,l, .  . . , T) follows as a corollary of the results for the 
"one-step" process. Our proofs are essentially self-contained, using only standard 
results from convex analysis, and some general results concerning measurable 
selection. In particular, the proofs do not rely on results of the finite-probability 
space setting (see Taqqu and Willinger [13]), nor on the one-dimensional result of 
Back and Pliska [2]. Both are special cases of our proof, but a reader only 
interested in these settings should consult these references. (Note that Back and 
Pliska [2] assume integrability of the process, an apparently unnatural condition 
since it is not preserved under a change of equivalent measure; see, however, 
Remark 3.4). 
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188 R. C. DALANG ET AL. 

We would like to point out that most of the technical difficulties in our proof 
come from the fact that with d >  1, an explicit construction as in Back and Pliska 
[2] is no longer feasible. However, if in addition the process were assumed to be 
bounded, a discrete approximation argument as in Willinger and Taqqu ([15], 
Theorem 2.3.1), together with appropriate use of measurable selection would be 
possible. 

2.1 The One-step Case 

Let ( R , 3 ,  P) be a (complete) probability space. If P is a probability measure on 
(R, 3) then P and P are equitialent (on 3) provided for all F € 9 ,  P(F)  = O  if and 
only if P(F)=o. Note that if 9 is a sub-a-algebra of 9 ,  then P and P may be 
equivalent on 9 but not on 9. When P and are equivalent, d i 3 / d ~  denotes the 
Radon-Nikodym derivative of P with respect to P. In this case, dP/dp>O,P-as. 
If P and P are equivalent on 9 and Y is P-integrable, recall that 

where I ? ( . )  denotes expectation with respect to P. 
The set Rd with its Euclidean norm I / .  1 1  will be equipped with its usual topology 

and its Borel a-algebra J?(Rd). We will add to Rd an element co, and set 
Rd = Rd u (m J .  If the open neighborhoods of cc are the complements of compact 
sets then Rd is compact and metrisable. We equip Rd with this topology. 

Given two elements X , ~ E  Rd, X .  y will denote their Euclidean scalar product. 
Each r E Rd defines a hyperplane H" = {x E Rd: a .  x = 0). We also define H", - = 
(x E R ~ :  x . Y 2 0), H: = {.w E Rd: x > 0). H: and H a r e  defined analogously. 

The following theorem gives a slightly sharpei result than Theorem 2.3.1. of 
Willinger and Taqqu [15]; indeed, it is not difficult to see that the two statements 
would be equivalent if the function g below were only required to be measurable 
instead of continuous. 

THEOREM 2.1 Let v be an arbitrary probability measure on Rd. Then the following 
tlvo conditions are equit'alent. 

a) For all z E R ~ ,  v(H;) - = 1 implies v(HX) = 1. 

h )  There is rr continuous function g:R"[O, 11, such that g(x) > 0, Vx E Rd, and 

J jjx((g(x)v(dx) 5 1 and J xg(x)v(dx) =O. 
R d  R d  

Proof We do not need the implication (b)-(a), so its easy proof is omitted (it 
is similar to the first few lines of the proof of Theorem 2.4). In order to show that 
(a) implies (b), observe that it is sufficient to prove (b) with {,d((x((g(x)v(dx)s 1 
replaced by SRd llxllg(x)v(dx) < m. (Indeed, if the integral happens to be greater 
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EQUIVALENT MARTINGALE MEASURES 189 

than 1, simply divide g by the value of the integral and this does not affect the 
other properties of g). To this end we consider two cases. 

i) v has bounded support. 

Consider the two convex sets C,={O) and C2={~Rdxg(x)v(dx)lg:~d-(0, l],g 
continuous} and suppose condition (b) does not hold (note: the condition that v 
has bounded support is necessary to ensure that the integrals in the definition of 
C2 are well-defined). Then C, n C, =@, and so there exists a hyperplane Ha in Rd 
which properly separates C, and C, (recall that Ha properly separates C, and C, 
provided C, c H;, - but C, $ Ha; see Rockafellar ([12], Section 11)). Thus we can 
assume 

n . (id rg(x)s(dx)) 2 0, for all positive and continuous g. 

Let (gn)nzo denote a sequence of bounded and continuous functions gn:Rd+(O, 11 
such that 

lim gn(y) = 1{, .,, ,,, for all y E Rd. 
n + m  

By the dominated convergence theorem (which can be applied since v has bounded 
support), 

that is, a .  x 2 0 ,  for v-almost all x E Rd, and so v ( H 3  = 1. However, if v(Ha) were 
equal to 1, then we would have n . x  = O  v - a.s., so C, would be contained in Ha. 
This would contradict the fact that Ha properly separates C, and C,. Thus, 
v(Ha) < 1 and (a) fails. 

ii) v is an arbitrary probability measure on Rd. 

Define a one-to-one transformation $: R~+B(O, 1) (the open unit ball centered at 
the origin) by $(x)=x/(l  +llxli), and let C be the image of v under $. Then S 
defines a probability measure on Rd with bounded support. Also note that 
condition (a) holds for v if and only if it holds for C. Thus, if (a) holds for v, 
(i) guarantees the existence of a continuous function ,f:Rd+(O,l] with 
jRd @(x) C(dx) = 0. It is then easy to verify that the function g:Rd+[O, 11 defined by 

satisfies condition (b) of the theorem. 
Let 3 be a sub cr-algebra of 9. Recall (see, for example Ash [I]) that the 
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190 R. C. DALANG ET AL 

Rd-valued random variable Y has a regular conditional probability distribution 
given Y, that is, there exists a function p:SZ x &'(Rd)-+R such that 

a) w-+p(w, B) is 9-measurable, vB€B(Rd);  

b) for P-almost all w E R, B+p(w, B) is a probability measure on (Rd, 3?(Rd)); 

c) p ( . ,  B ) = P ( Y E B ~ ~ )  a . s . , v ~ c B ( R ~ ) .  

In order to prove Lemma 2.3 below, we need the following technical results. 
They are stated here for later reference and can be proved using standard 
measurability arguments such as the monotone class theorem (see Dellacherie and 
Meyer ([5], Theorem 1.19)) and properties of the conditional expectation operator 
for random variables with or without finite expectations (see Ash ([I], Chap. 6.4 
and 6.5)). 

a) Let (S, .CP) be a measurable space. Suppose F: R x Rd x S 4 R  is 9 x B(Rd) x 
9-measurable and non-negative. Then the map F*:R x S+R + u { + co) defined by 

F*(o, s) = F(w, x, s)p(w, dx) 
R d  

b) Suppose h :R-+S is 9-measurable. Set U(o)=F(w, Y(o),h(o)) and V(w)= 
F * ( o ,  h(o)). Then V is P-integrable if and only if U is, and in this case V= ~ ( ~ 1 3 )  
U.S. 

c) For K c SZ x Rd, set K" = {x E Rd: (w, x) E K ). Now suppose K E Y x 9J(Rd). Then 
the map w-+p(w, K") is 3-measurable and 

LEMMA 2.3 Let Y be an arbitrary Rd-valued random variable. Then the following 
conditions are equivalent: 

For all 9-measurable Rd-valued random variables Z, 

For almost all w E R, for all a E Rd, p(w, H i )  = 1 => p(w, Ha) = 1. (2.3) 

Proof of' Lernma 2.3 (2.3)*(2.2). Let Z be an Rd-valued 9-measurable random 
variable such that Z .  Y Z O  P-a.s. Note that 
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EQUIVALENT MARTINGALE MEASURES 

Using Lemma 2.2(c) we see that 

1 = P {Z . Y 1 0 )  = j p(w, HZ,'"') dP(w), 
R 

and so p(w, H:("')= 1 for ~ E R \ N ,  where N is a P-null set. By (2.3), for almost all 
w ER\N,  p(o,  HZ("))= 1. Thus by Lemma 2.2(c) 

This proves (2.2). 
(2.2)-(2.3). Set 

u = {(a,  a) E R  x Rd:p(o, H:) = 1 and p(w, Ha) < 1). 

Then U E 9 x 28(Rd). 
Let pr:R x Rd+R be the canonical projection: pr(w,x)=o.  To prove (2.3), we 

must show that pr(U) has P-probability zero (since (R,Y,  P) is complete, pr(U) is 
9-measurable: cf. Dellacherie and Meyer ( [ 5 ] ,  Theorem 111. 44-45)). 

Suppose P(pr(U))>O. We shall show that this leads to a contradiction. Using 
measurable selection (cf, for example, the theorem mentioned above) we see that 
there is a $-measurable Rd-valued random variable 2 such that 

Set Z (o )  = Z ( o )  if (w,Z(w)) E U,Z(w) = O  otherwise. Now we shall show that 
P{Z . Y 2 0) = 1 but P{Z . Y = 0) < 1, contradicting (2.2). Indeed, we have 

P {Z . Y 2 0 )  = j p(w, HZ,'"') dP(a)  
n 

but 
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192 R. C. DALANG ET AL. 

T H E O R E M  2.4 Let 9cYf be two (complete) sub-g-algebras of 9, and let Y be an 
urhitrarj, #-measurable random rariable. Then (2.2) is equivalent to the following: 
there exists an &'-measurable real random variable D such that D>O as. ,  
E ( ( /  Y I I  D)  < + cc and E ( Y D ~  Y) = 0. In addition, when (2.2) holds, it is always possible 
to choose D such that D 5 1 a s .  

In order to prove this theorem we use the following technical lemma; its easy 
proof is left to the reader. 

L E M M A  2.5 Let C [ R d ]  be the space of continuous real functions on Rd,  with the 
norm l J R J J x  =supxERd lg(x)1, and let . /A(C[Rd]) he its Bore1 o-algebra. Then the 
follo\ving properties hold. 

a)  j g ~  C [ R ~ ] : O < ~ ( X )  5 1, V X E R ~ ~  E , 'A(c[R~]) .  

b)  The map ( x ,  g)  +g(x) is d ( R d )  x #(C[Rd])-measurable. 

c) Suppose F:R  x R% C[R"+Rd is G x 8 ( R d )  x 9(C[Rd])-measurable.  Set 

Then F* is 9 x d(C[Rd])-measurable. 

d )  Suppose h : R - + C [ R d ]  is 9-measurable. Set U ( w )  = F ( o ,  Y (to), h(w)) ,  V ( o )  = 
F*(w, h ( o ) ) ,  o ( w )  = 1 1  ~ ( o ,  Y ( w ) ,  h(tu))ll, P(w)  = F*(w, h ( o ) ) .  I f '  & is P-integrable, 
then U und V are P-integrable and v = E ( U  I!g) P - a s .  

ProufofTlworcm 2.4 Suppose there exists a random variable D with the 
properties stated in the theorem: we show that this implies (2.2). Indeed, let Z be a 
Y-measurable, Rd-valued random variable such that Z . Y 2 0 P - as .  We must 
show that P(Z .Y>O)=O.  Now if P{Z.Y>O}>O,  we would have 
P ( Z . ( D Y ) > O }  >0, and thus 

a contradiction. 
Now suppose (2.2) holds, or equivalently, by Lemma 2.3, that (2.3) holds. We 

shall prove the existence of a random variable D with the desired properties. 
Set F ( o .  x,g) = ug(x ) ,  F(w,  x,g) = jjxll Ig(x)l. Using Lemma 2.5, we see that the set 

H = { ( ( J ) , ~ ) E R x  c [ R ~ ] : o < K ( . K ) ~ ~ , V X E R ~ ,  and 
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EQUIVALENT MARTINGALE MEASURES 193 

is in 3 x a(c [Rd]) .  Since (2.3) holds, we use Theorem 2.1 to see that for P-almost 
all ~ E R ,  there is a g , ~  C[Rd] such that (w,g,) E H. This means that the 
projection of H on R has P-probability one. 

Now since Rd is compact and metrisable, C[Rd] is a separable and complete 
space, and thus we can apply a measurable selection theorem (see, for example, 
Dellacherie and Meyer ([5], Theorem 111, 44-45)) to get a %-measurable map 
G:R+C[Rd] such that (o ,  G(o)) E H for P-almost all U E R .  We write G(o,x) 
instead of G(w)(x). The map (o,x)+G(o,x) is 3 xB(Rd)-measurable, since it is 
the composition of the two measurable maps (w,x)+(x, G(o)) and (x,g)+g(x) (see 
Lemma 2.5(b)). 

Set D(o)  = G(o, Y(w)):D is %-measurable (again since it is the composition of 
two 2-measurable maps), and O < D s  1 a s .  In order to finish the proof, we use 
Lemma 2.5(d) with U(o)  = F(w, Y(o), G(w)) = Y(w)D(w) and V(w) = F*(w, G(w)). 
Indeed, since 

= j ((x((G(w, x) p(o, dx) 5 1 P - a s ,  
R d 

and 

= j xG(w, x)p(o, dx) = O  P-a.s., 
R d 

Lemma 2.5(d) applies and yields E(YD/$) = O  P -  as .  

2.2 Discrete time, finite horizon 

Let (a, 9 ,  P)  be a complete probability space, F = ( 9 k :  k  = 0,. . . , n) a filtration, that 
is, each 9, is a complete sub-o-algebra of 9 and 9, c Fk + ,, , k  = 0, .  . . , n - 1. Let 
X = (X,: k  =0, . . . , n) be an Rd-valued stochastic process which is adapted to 
( 9 , :  k  = 0,. . . , n), that is X ,  is 9,-measurable, k = 0,. . . , n. 

Recall that is called an equivalent martingale measure for X if J I x , I I  is 
p-integrable ( k  = 0,1,. . . , n), E(x,+, 19,) = X ,  as .  ( k  = 0,1,. . . , n - I), and P and P 
are equivalent. A consequence of Theorem 2.4 is a necessary and sufficient 
condition for the existence of an equivalent martingale measure for X. 

THEOREM 2.6 The following two conditions are equivalent. 

For k  = 1,. . . , n, for all 9, - ,-measurable variables Z, 
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R. C. DALANG ET AL 

There exists an equivalent martingale measure for X .  (2.5) 

Proof The implication (2.5)+(2.4) is an immediate consequence of Theorem 
2.4. Before proving the converse implication, recall that standard properties of 
conditional expectation for real random variables, such as E(D,D, ( 3 )  = 
D, E(D, 1 3) when Dl  is $-measurable, or E(E(DI~)I.x) = ~ ( ~ 1 2 )  when 9c X ,  
are valid when E(D,D,), E(D,) and E(D) exist, but are not necessarily finite (see 
Ash ([I], Theorems 6.5.12 and 6.5.10)); in particular, they always hold when Dl ,  D, 
and D are non-negative. 

Now suppose (2.4) holds, and set 8,. , =Fn, X n +  I = X,, DM+ , = 1, Yn+, =O. Fix 
k 5 n and suppose by backwards induction that we have defined D, + , , . . . , D, + , 
and Yk+ ,,..., Y,+,  in such a way that for k + l = < l s n + l  

Dl is 9,-measurable and 0 <Dl  5 1 P - a s ,  (2.6) 

and for k +  151512 

and 

E(~IY,IID,)< +cc and E(Y,D,IF,-,)=O P-a.s. (2.8) 

Using Theorem 2.4, we then construct an 6,-measurable random variable D, with 
0 < D, 5 1 P - as. ,  in such a way that if Yk is defined by (2.7) with 1 = k, then (2.8) 
holds with 1 = k .  Indeed, since O<D,_I 1 P-a.s., we have 0 < E(Dk+,  . . . D,+, 1.9,) 2 
1 P-as . ,  and so by (2.4), Y, satisfies (2.2). Since Yk is Fk-measurable, Theorem 
2.4 with 9 = 5, _, and P =5, implies the existence of an 9,-measurable random 
variable D, such that (2.8) holds with 1 = k. 

By backwards induction, we thus have defined random variables Dl , .  . . , D,+ , 
and Y,, . . . , Y,+ , such that (2.7) and (2.8) hold for 1 5 15 n + 1. Finally, we set 
Do= 1,(1  +I/x,//), and D = D  ,... D,.,. Observe that O < D 5 1  P-a.s. Let P be the 
probability measure which is equivalent to P and whose Radon-Nikodym 
derivative d P i d ~  equals D/E(D). We shall show that P is a martingale measure 
for X. 

Indeed, 

and 
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EQUIVALENT MARTINGALE MEASURES 

<+a 

by (2.Q 1 15 n. T ~ U S J / X , I I  is P-integrable, 0 2 1 $ n. 
Finally, to check E(x , IP , - , )=x~- , ,  it is sufficient by (2.1) to show that 

E((x,-xi- ,) D/E(D)IF,-,) =o. Now 

Remark 2.7 1) In the case of a discrete-time stochastic process X =(X,: k EN) 
with infinite time horizon, condition (2.4) of Theorem 2.6 does not necessarily 
guarantee the existence of an equivalent martingale measure I? for X. This is 
illustrated by the following simple example which is well-known in a variety of 
contexts. Suppose X, = Y, +. . . + Y, where for some 0 < p  < 1, p # 112, (Y,: k E N) is a 
sequence of i.i.d. random variables with P { Y, = 1) = p, P {  Y, = - 1) = 1 - p. Set 
Fk = (I(Y,,. . . , Yk), k EN.  Now suppose there exists an equivalent martingale mea- 
sure P for X. Then by definition, , ! ? ( ~ , ( ~ , _ , ) = 0 a . s .  Since Y, only takes the two 
values f 1, this implies in particular that P(Y, = + 1 19,- ,) = 112 as., that is, under 
P, the Yk's are independent with mean zero. Now observe that by the strong law 
of large numbers, X,/k converges to 2p - 1, P - a.s., whereas under P, xk/k 
converges to 0 ,p-as .  contradicting the assumption that P and P are equivalent. 
Thus, though X satisfies condition (2.4), there exists no equivalent martingale 
measure for X. 

2) In contrast to the existence problem, Willinger and Taqqu [I51 show that the 
uniqueness problem of an equivalent martingale measure I? for X can be dealt 
with using elementary probability techniques. In particular, they proved that is 
unique if and only if condition (2.9) below holds. 

For k =0, 1, . . . , n - 1, there exists a finite minimal partition P, of i2 with 
F k = a ( P k )  (up to P-null sets) and such that for all A E P ~ ,  

dim(span({X, + , (o) - Xk(w): w E A))) = cardinality (A' E 9, + ,: A' E A) - 1 (2.9) 
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R. C. DALANG ET AL. 

where without loss of generality, we assume P{A) > O  for all A €8,. 

Whereas Theorem 2.6 imposes no restrictions on the underlying filtration F and is 
exclusively concerned with the proper "geometry" of X, condition (2.9) explicitly 
depicts the fundamental role of the fine structure of F. In fact, (2.9) not only 
implies that if P is unique then F is necessarily minimal (i.e., 
F=F'=(F::~=O, I , . .  . , n )  with B,X=o(X,,X ,,.. .,X,), O s k s n )  but it also 
imposes stringent constraints of the form (2.9) on the relationship between X and 
F. It is this lack of a tight control on X and F that requires the use of measurable 
selections in the general case (see Theorem 2.4). 

3. THE ANALYSIS O F  FINITE-PERIOD STOCHASTIC SECURITIES 
MARKETS 

In this section we illustrate the main results of Section 2 in the context of a 
stochastic model for the buying and selling of securities in discrete and finite time. 
The model was introduced by Harrison and Pliska [ l l ]  and further discussed in 
the setting of finite probability spaces by Taqqu and Willinger [13]. Here we show 
that condition (2.4) of Theorem 2.6 arises naturally from and is equivalent to the 
economically meaningful assumption of "no arbitrage".   ore over, uniqueness of 
an equivalent martingale measure for the underlying securities price process is 
related to the so-called "completeness"-property of the market which enables one 
to uniquely price any financial instrument in the market. 

3.1 The Stochastic Model 

For a fixed time horizon T <  x (terminal date of all economic activities), consider 
an R d +  '-valued (1 =<d < m) stochastic process S =(St: t =0, I , .  . . , T) defined on 
some complete probability space ( R , P , P ) .  Each component-process Sk=  
(SF: t =0,1,. . . , T), 0 5  k s d ,  is assumed to be strictly positive so that S:(o) can be 
intepreted as the price of security k at time t if w E R  represents the true state of 
nature. The 0th security is called the bond and without loss of generality (see 
Harrison and Kreps [lo]), we set SP= 1 for all t ;  that is, we assume that the stock 
prices have been discounted by the price of the riskless bond. S is also assumed to 
be adapted to a given filtration F = (9,: t = 0,1,. . . , T )  and for convenience, we 
take S T = 9 .  F describes how information is revealed to the investors when 
securities are traded over time; starting with an initial knowledge To about the 
true state of nature, investors learn without forgetting 
(gt c 3, + , , t = O,l, .  . . , T- 1) until they have complete information by time T 
(9,=5). 

The buying and selling of securities over time must be done according to certain 
trading strategies. A trading strategy is an F-predictable, Rd+'-valued stochastic 
process $ = ($,: t = 1,2,. . . , T) with components $O, $', . . . , $d. &(w) represents the 
number of shares of stock k held by an investor between times t - 1 and t ,  namely 
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EQUIVALENT MARTINGALE MEASURES 197 

during the time period [t- 1,t) if ~ E R  occurs. Thus, the vector 4, denotes the 
investor's portfolio at time t and the components of 4, may assume positive as well 
as negative values. When investors readjust their portfolio 4, at time t ,  that is, buy 
and sell securities so as to form a new portfolio #,+,, they must do so without any 
knowledge of the future since 4 is required to be F-predictable (i.e., 4,+, is 
Ft-measurable). The value-process V(4) =(V,($): t = O , l , .  . . , T) associated with a 
trading strategy 4 is defined by 

4 ;S t=14 :S :  otherwise, 
k-0 

Thus, V,(4) represents the value of the portfolio 4, at time t and before any 
changes are made at that time. A trading strategy 4 is called self-financing if all 
changes in the value of 4, are due to net gains realized on investments; that is, if 

We denote by 0 the set of all self-financing trading strategies. 
Finally, we state the following assumptions commonly found in the economics 

literature: (i) there are no transaction costs, (ii) all securities are perfectly divisable, 
(iii) the securities do not pay dividends in [0, TI, and (iv) short sales of all 
securities are allowed without any restrictions. Subsequently, the stochastic model 
corresponding to the stochastic base (R,F,P),  the price process S, and the set 0 of 
allowable trading strategies, and satisfying conditions (i)<iv) will be denoted by 
(T, F, S) and called a (finite-period, frictionless) securites market, where 
T = (0, I , .  . . , T )  denotes the set of all trading dates. 

Remark 3.1 We do not impose any kind of wealth constraint as, for example, 
in Harrison and Pliska [ l l ]  or Back and Pliska [2], but allow for unbounded 
short sales. In discrete time, restrictions on short sales have little effect on 
subsequent results and are not needed from a mathematical point of view (see also 
the comment in Back and Pliska ([2], p. 3)). 

3.2 The "No-Arbitrage-Assumption" and the Martingale-Property 

An abitrage opportunity ("free lunch") represents a riskless plan for making profit 
without any investment. Prohibiting arbitrage opportunities is, therefore, economi- 
cally reasonable and is necessary for any kind of economic equilibrium to exist. 
More formally, we have 

DEFINITION 3.2 An arbitrage opportunity is a self-financing trading strategy 4 ~ 0  
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198 R. C. DALANG ET AL. 

such that V 0 ( 4 )  = O  and V T ( 4 )  2 0  with probability one, and V T ( 4 )  >O with positive 
probability. The market model ( T ,  F, S) is said to contain no arbitrage opportunities 
if for all 4 E @ with V o ( 4 )  = 0  and V T ( 4 )  2 0  P - a x ,  we have V T ( 4 )  = 0 P - a s .  

Although an arbitrage opportunity as described above is defined "globally" (that 
is, it involves the trading dates 0  and T only), "no arbitrage" also holds "locally", 
namely at any trading date t = 1,2,. . . , T, as we will see below. In addition to 
illustrating this pathwise nature of the "no-arbitrageM-property, Theorem 3.3 below 
relates "no arbitrage" to condition (2.4) of Theorem 2.6 and hence to the 
martingale property of the price process S  under a new equivalent probability 
measure P. Let P denote the set of all equivalent martingale measures for S and 
let S=(S,: t=O, 1,. .., T )  be the Rd-valued, F-adapted process obtained from S by 
deleting the 0th component-process SP r 1 (i.e., S  = (1 ,g) ) .  

THEOREM 3.3 The following three conditions are equivalent. 

The market model (T ,  F ,  S )  contains no arbitrage opportunities. (3.1) 

For all t E {1 ,2 , .  . . , T j  and all Rd-valued 9,- ,-measurable random variables cc, 

P # a; that is, there exists an equivalent martingale measure 17 for S .  (3.3) 

Proof 1 )  The proof of (3.1)=>(3.2) is similar to that of Taqqu and Willinger 
( [13] ,  Lemma 3.2) except that the probability space is no longer finite. Assume 
that there exists t E ( 0 ,  1,.  . . , T -  1 )  and cc=(ccl, a2,.  . . ,ad) EF, such that 
r .  ( g ,  + , - 9,) 2 0 P - u.s. and a .  ( S t + ,  -St)  > 0  with positive probability. Set W = 
{wER:  P ( a . ( g , + ,  -$,) >o(s,) (a) >O] and note that, by assumption, P(W) >O. 
We will construct a trading strategy 4 E @ with V O ( 4 )  = 0 and V T ( 4 )  2 0  P - as. ,  
and such that V T ( 4 ) > 0  with positive probability; that is, 4 defines an arbitrage 
opportunity, contradicting the assumption that the market model ( T , F , S )  is 
"arbitrage-free". 

In order to construct 4 with the desired properties, define 4, at every point in 
time and for each u el2 as follows: 

for s s t :  4 , (w)  = O  for all ~ E Q ,  

for s = t + l :  on W, set &+,(a)= 1 - a if i = 0. 
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EQUIVALENT MARTINGALE MEASURES 

and on Wc, set 4, + (o )  = 0, 

for ~ + ~ < S < T : $ : ( U ) =  V,+,($)(w) i f k = O a n d o ~ W  
otherwise. 

Clearly, 4 is F-predictable. To see that 4 is self-financing, we check the relation 
4, S, = 4,+, . S, which clearly holds for s < t and s > t. For s = t, we have 4,(w) = 0 
for all o E R; for o E W, 

Since $,+l.S,=O on Wc,4,+, .S,=$, .S,  holds for all ~ E R .  
Next observe that Vo(+) = 0 P - as .  and V,(4) 2 0 P - a.s. In fact, for all s > t + 1, 

~ , + ~ ( 4 ) ( w ) = a ( w ) ~ ( ~ , + , ( w ) - ~ , ( w ) ) ~ 0  i f w ~  W, 
0 otherwise, 

and hence, 

Moreover, by the definition of W, 

which shows that 4 is an arbitrage opportunity. 

2) The equivalence (3.2)+(3.3) holds by Theorem 2.6. 

3) Finally, in order to prove (3.3)*(3.1), let P E P  and let 4 E @  be such that 
Vo(4)  = 0 and VT(4) 2 0  P - a.s. Then VT(4) = 0 P - a.s. because repeated appli- 
cations of (i) the properties of conditional expectations mentioned at the beginning 
of the proof of Theorem 2.6 (recall that S is positive), (ii) the martingale property 
of S under t?, and (iii) the self-financing property of 4 ED, enable us to write 

Remarks 3.4 1) To our knowledge, Theorem 3.3 is the first result which 
provides a criterion (condition (3.2)) for determining whether or not a market 
model with several securities contains arbitrage opportunities. Indeed, previous 
results mention the equivalence of (3.1) and (3.3) under various restrictive 
assumptions on the price process, such as integrability: see Harrison and Kreps 
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200 R. C. DALANG ET AL. 

([lo], Theorem 2) and Duffie and Huang ([a], Theorem 5.1 and Proposition 6.4). 
In these last references, the authors also consider the continuous-time case. For 
one-dimensional price processes, a criterion analogous to (3.2) was obtained by 
Back and Pliska [2] who assume P-integrability of the price process, an 
assumption crucial to their proof. On the one hand, such a requirement seems 
somewhat unnatural since (i) it is, in general, not preserved under an equivalent 
change of measure, and (ii) for the formulation of an arbitrage opportunity (see 
Definition 3.2), integrability of S under P is irrelevant. On the other hand one can 
always assume the existence of an equivalent probability measure P' on ( R , B )  
with bounded Radon-Nikodym derivative dP1/dP such that S is integrable under 
P' (see Dellacherie and Meyer ([6], Theorem VII.57)). Thus, assuming integrability 
of S under P becomes a modeling issue and is not necessary from a mathematical 
point of view. 

2) Theorem 3.3 not only provides a probabilistic characterization (condition 
(3.3)) but also a geometric characterization (condition (3.2)) of "no arbitrage". 
Indeed, condition (3.2) states implicitly that along almost all sample paths of $ (or 
S), the support of the conditional distribution of the increment St+, -st given 4, 
cannot be concentrated on only one "side" of any 9,-measurable hyperplane in R d  
(or R d +  l ) .  

3) The question of uniqueness of an equivalent martingale measure P for S (see 
Remark 2.7.2) also has an economic interpretation. Namely, let X denote a non- 
negative, 9-measurable random variable (contingent claim) and interpret X as 
representing a contract that pays X(w) dollars if, at time T, w € R  denotes the true 
state of nature. We would like to know what prices at time zero are "reasonable" 
for X if the market model (T, F, S) contains no arbitrage opportunities. Clearly, if 
X is artainuble; that is, there exists qi 6 0 such that X = VT($) P - as., then "no 
arbitrage" implies that the (time zero) price n(X) is given by n(X)= V,($). But 
which claims are attainable? The market model (T,F,S)  is called complete if all 
contingent claims are attainable. Taqqu and Willinger [13] showed the equiva- 
lence between the economically desirable completeness-property of the market 
model (T, F, S), the uniqueness of P, and condition (2.9). 

Freddy Delbaen suggested to one of us the use of continuous densities in relation with Measurable 
Selection. 
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