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Abstract

We introduce a method that relies exclusively on Monte Carlo simulation in order to compute
numerically optimal portfolio values for utility maximization problems. Our method is quite gen-
eral and only requires complete markets and knowledge of the dynamics of the security processes.
It can be applied regardless of the number of factors and of whether the agent derives utility
from intertemporal consumption, terminal wealth or both. We also perform some comparative
statics analysis. Our comparative statics show that risk aversion has by far the greatest in8uence
on the value of the optimal portfolio. ? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The derivation of the optimal portfolio of a rational investor is a central problem in
asset pricing. Although the interest of closed-form solutions that would allow to derive
equilibrium implications is obvious, the increase in computational power along with
the lack of closed-form solutions for many interesting cases have triggered an interest
in numerical methods as a possible answer to the problem. In this paper, we suggest
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a method purely based on Monte Carlo simulation that allows to solve the problem in
complete markets.

Merton (1971) introduced a methodology to attack the problem of a rational in-
vestor with time additive preferences that chooses how to allocate her wealth between
consumption and the existing securities. In his setting, computation of the optimal
consumption and investment strategies requires the solution of a partial diJerential
equation (PDE). However, that PDE only has a closed-form solution in a handful of
cases. Karatzas et al. (1987) and Cox and Huang (1989) introduced martingale meth-
ods to solve the problem of an utility optimizing investor. Martingale methods allow
to consider more general settings than dynamic programming methods and in general
allow to compute the optimal consumption policy of the investor. But optimal port-
folios, in general, cannot be computed in closed form when martingale methods are
used.

A large number of papers have recently undertaken the problem of computation of
optimal portfolios. Campbell and Viceira (1999) and Barberis (2000) use numerical
approximations to Dnd optimal portfolios in a discrete time setting. In continuous time,
Kim and Omberg (1996) solve the PDE in closed-form for a speciDc parametrization
of the model. Liu (1998) Dnds a closed-form solution for a general class of parame-
terizations for an agent whose utility depends only on terminal wealth (TW). Wachter
(1999) solves also a speciDc case but one that allows for intertemporal consumption
(IC). Brennan et al. (1997) and Xia (1999) solve numerically the PDE also for speciDc
(but more general) parameterizations of the utility function. Finally, Detemple et al.
(1999) compute the Malliavin derivatives of the processes and then use Monte Carlo
simulation in order to retrieve the optimal portfolio. In this paper we introduce a pure
Monte Carlo simulation approach, very easy to implement and that can be applied
whenever two conditions are met (this two conditions are also required by the method
introduced in Detemple et al. (1999):

• Markets are complete, that is, the number of non-redundant stocks and the number
of Brownian motion processes that explain the uncertainty of the economy are equal.

• We know the dynamics of all the processes involved (the expanded opportunity set
is Markovian).

The method we introduce here can be applied to any type of time additive utility
function and any parametrization of the security processes, regardless of whether the
agent derives utility from Dnal wealth, IC or both, and regardless of the number of
Brownian motion processes that explain the uncertainty of the economy. The advantage
of Monte Carlo simulation is that it is very easy to implement and converges reasonably
fast. Monte Carlo simulation has been increasingly popular for pricing derivatives since
its introduction in Dnance by Boyle (1977). However, it had not been considered as a
tool to solve optimal portfolios until the work of Detemple et al. (1999).

Our method uses the fact that the optimal portfolio of the investor is part of the
instantaneous standard deviation of the optimal wealth process (in a contemporaneous
paper, Lioui and Poncet (2001) use that fact in order to derive optimal portfolios
in a stochastic interest rate setting). The latter can be computed by Dnding second
moments (the expected value of the squared change in the wealth level), and, therefore,
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Monte Carlo methods can be applied. It should be remarked that our method is not
necessarily the most eNcient one, but the combination of its simplicity and 8exibility
should prove attractive as a general tool, and future research could potentially further
improve its properties. Moreover, since this is a numerical method, it does not provide
an explicit dependence of the optimal portfolio on the current state; instead, it computes
numerically the today’s value of the optimal portfolio from the today’s values of the
state variables. Hence, this computation would have to be repeated from one day to
the next.

The structure of the paper is as follows. In Section 2 we describe the setting and give
an intuition for the method. In Section 3 we apply the general idea to the computation of
the optimal portfolio. In Section 4 we do some exercises and perform some comparative
statics. In Section 5 we explain the extension of the method to the multifactor case.
We close the paper with some conclusions.

2. General method

2.1. Securities

Here, we describe the Dnancial assets the investor can choose among. In order to
illustrate the method we will deDne some speciDc, although fairly general dynamics.
As it will be clear later the method is not restricted to the set of prices deDned here.
In order to simplify the notation, we consider real prices, expressed in terms of the
unique consumption good. There are two types of securities. First, there are n stocks
whose price satisDes the following dynamics:

dSi
t

Si
t

= �i
t dt + (�i

t)
� dWt; (1)

where W is a vector of n independent standard Brownian motion processes. Realiza-
tions of these n Brownian motion processes deDne the path followed by the economy.
Additionaly, �i and �i represent the drift and volatility of the stock process i and are
possibly stochastic (we discuss their dynamics later). The second type of security is
a risk-free security, called “bank account”, whose price B evolves according to the
following dynamics:

dBt = Btrt dt; (2)

where r is possibly stochastic interest rate.
Uncertainty in this economy is given by realizations of the n-dimensional Brownian

motion process. We assume that the number of stocks and the number of Brownian
motion processes is the same. Besides, we assume that the matrix � formed by stacking
the n �i vectors is non-singular at every point in time t: this is equivalent to assuming
that our markets are complete. In order to simplify the notation, we will assume that
n = 1 and therefore, � = �. In the last section of the paper we consider the case of
n = 2 (and n ¿ 2 would be analogous).
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We now consider the dynamics of the diJerent parameters of the model. We Drst
deDne the market price of risk  as

 =
� − r

�
: (3)

As we mentioned above, we consider the possibility of �; r and � stochastic. The
only restriction that we impose is that all the parameters, plus those of any existing
state variables depend on the n-dimensional Brownian motion process that describes the
uncertainty in this economy. In other words, we only require the expanded opportunity
set to be Markovian. In our examples we will restrict ourselves to the following
dynamics. With respect to the interest rate, we assume

drt = (ar + br(rt)lr + cr(t)pr ) dt + (dr + fr(rt)qr + gr(t)vr ) dWt; (4)

where ar , br , cr , dr , fr , gr , lr , pr , qr and vr are constant. With respect to , we
assume that it satisDes

dt = (a + c(t)p) dt + (d + g(t)v) dWt; (5)

where a, c, d, g, p and v are constant. A subset of the previous dynamics are
the “aNne” models studied in DuNe et al. (2000).

2.2. General idea

We now explain the general idea of the method we will use to compute the optimal
portfolio of the individual. In the previous economic setting, consider the expression

Ct = E
[∫ T

t
f(rs; s; Ws) ds

∣∣∣∣Ft

]
; (6)

where the information up to moment t, represented by Ft , is the path of the Brownian
motion process up to t. It is well known that the expression on the right-hand side of
Eq. (6) satisDes a stochastic diJerential equation of the type

dCt = �t dt + �t dWt; (7)

where � and � are again possibly stochastic and path dependent (this is due to the mar-
tingale representation theorem; see Karatzas and Shreve, 1992, for example). Although
in general a closed-form expression for � does not exist, the computation of that pa-
rameter is the key in many problems in Dnance, like hedging of contingent claims, or
(the problem we consider in this paper) the optimal portfolio of an utility maximizing
investor. In this paper we suggest to use Monte Carlo simulation in order to compute
the process � (and, therefore, the optimal portfolio of the individual). The method we
introduce here can be applied whenever Monte Carlo simulation is possible and two
requirements are satisDed: complete markets and markovian expanded opportunity set
(regardless of the number of parameters). Monte Carlo simulation has the advantage
that it is very easy to implement and converges fairly quickly.

Monte Carlo simulation was introduced in Dnance for the pricing of derivatives by
Boyle (1977). Boyle et al. (1997) oJer a detailed survey of the application of Monte
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Carlo simulation to the pricing of derivatives. In fact, the use of numerical methods in
Dnance has been restricted until very recently to the pricing and hedging of derivatives.
Only recently numerical methods have started to be used as a way to solve the problem
of Dnding the optimal portfolios. We mention in discrete time, Campbell and Viceira
(1999) and Barberis (2000). In continuous time, Brennan et al. (1997) and Xia (1999)
use numerical methods to solve the PDEs that result from the dynamic approach.
Detemple et al. (1999) use Monte Carlo simulation combined with the computation of
the Malliavin derivatives. In this paper we introduce a method based exclusively on
Monte Carlo simulation.

When Monte Carlo simulation is applied to Dnancial problems, an expression of the
type of (1) is discretized in the following way:

St+St − St = St(�tSt + �tzt); (8)

where z is a pseudo-random number drawn from a hypothetical normal distribution
with zero mean and standard deviation

√
t (for more on generating pseudo-random

numbers see Press et al., 1992). The time horizon T is divided in n intervals of size
St and by generating n values of z we will have a discretized version of a possible
path of S.

Consider the problem of estimating numerically the value Ct of Eq. (6): a large
numbers of paths of W will be simulated and used in the dynamics of all the relevant
processes in the form explained above; in order to compute the expected value of (6)
the average of all of the paths will be taken. Here we suggest to use a similar technique
in order to derive �, the volatility term of expression (7). From (6), the volatility �
is 2

�t = lim
St→0

(
E
[
(Ct+St − Ct − �tSt)2

St

∣∣∣∣Ft

])1=2

= lim
St→0

(
E
[
(Ct+St − Ct)2

St

∣∣∣∣Ft

])1=2
: (9)

We can ignore the eJect of the drift � because it multiplies St, that converges to 0 and
does it faster than in the denominator because the numerator is squared. Alternatively,
we can compute � as

�t = lim
St→0

E
[
(Ct+St − Ct)(Wt+St − Wt)

St

∣∣∣∣Ft

]

= lim
St→0

E
[
(Ct+St − Ct)(Zt)

St

∣∣∣∣Ft

]
; (10)

where Zt :=Wt+St −Wt is a normally distributed random variable with mean zero and
variance St. Informally, in (9) we compute the instantaneous standard deviation of
the stochastic process while in (10) we compute the instantaneous covariance between

2 This is a heuristic derivation. For a formal treatment of the “quadratic variation” see Karatzas and Shreve
(1992).
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C and the Brownian motion process W (which, clearly, is also �). As we will see,
however, the expression in (10) is more convenient when there is more than one
Brownian motion process (the “multifactor” case that we will consider in the last
section of the paper).

At moment t we know the value Ct , but in order to compute numerically the ex-
pression in (10) we need to generate a number of values of Ct+St . We do not know
the dynamics of C (that is in fact the problem we are trying to solve). However, from
(6) we know that Ct+St is the expected value of some function of the parameters of
the model (that depend on the path of the Brownian motion process) whose dynamics
we know. This is the fact that we will exploit and will allow us to compute optimal
portfolios. We explain the exact procedure in the next section.

3. Computation of the optimal portfolio

We consider the problem of a rational, utility maximizing, investor. The utility of
this investor is the result of a bequest target, IC or both. There is a single consumption
good that we will use as numeraire. Individuals receive an initial endowment in units of
the consumption good that they can either consume or invest in the Dnancial markets.

In order to simplify the presentation, we will focus on the power utility case, i.e.,
on the following two problems:

U (XT ) = max
$

E
[
e−%(T−t) X &

T

&

∣∣∣∣Ft

]
; (11)

U (c) = max
($;c)

E
[∫ T

t
e−%(s−t) c&

s

&
ds
∣∣∣∣Ft

]
; (12)

where $ represents the trading strategy (to be described below), c is the consumption
rate, X is the wealth level of the investor, and % is the subjective discount rate (that in
order to simplify the notation we will assume constant, and in fact zero in the examples,
but this is not necessary for our method). The initial, exogenous wealth level of the
investor is X0. For simplicity, we only consider constant relative risk aversion (CRRA)
utilities, with & as the parameter that characterizes the degree of risk aversion. However,
the same method can be applied to other, time additive utility functions.

The investor can allocate her wealth either in consumption c or in any of the se-
curities described above. We denote by $ the amount of wealth invested in the stock.
The wealth process X of the investor satisDes,

dXt = ($t�t + (Xt − $t)rt − ct) dt + $t�t dWt: (13)

The previous problem was Drst considered in continuous time by Merton (1971), us-
ing dynamic programming. Subsequently, Karatzas et al. (1987) and Cox and Huang
(1989) introduced martingale methods that allow to solve the problem using Lagrange
multipliers (as a static problem). We brie8y recall the approach of those two papers.
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Using the notation introduced in (3), we can write (13) as

dXt = (rtXt − ct) dt + $t(�t dWt + t dt)

= (rtXt − ct) dt + $t�t dW̃ t ; (14)

where W̃ is a Brownian motion process with respect to Q, the “equivalent risk-neutral
probability”. We deDne the process

(t = exp
(
−1

2

∫ t

0
2

s ds −
∫ t

0
s dWs

)
: (15)

The present value of this process represents the continuous time Arrow–Debreu prices.
The problem of the investor is equivalent to the maximization of the expression in
Eq. (11) (with t = 0) subject to

EQ[e−
∫ T
0 rs dsXT ] = E[(T e−

∫ T
0 rs dsXT ] = X0 (16)

or, respectively, to the maximization of the expression in Eq. (12) subject to

EQ
[∫ T

0
e−

∫ s
0 ru ducs ds

]
= E

[∫ T

0
(se−

∫ s
0 ru ducs ds

]
= X0; (17)

where ( is given by Eq. (15). The dynamic problem has now become a static problem.
Using standard optimization techniques we Dnd that the respective optimal Dnal wealth
and optimal consumption strategies are given by

X ∗
T =

(
ye
∫ T
0 (%−rs) ds(T

)1=(&−1)
; (18)

c∗t =
(
ye
∫ t
0 (%−rs) ds(t

)1=(&−1)
; (19)

where y is the Lagrange multiplier, the scaling constant that guarantees that the budget
constraints (16) and (17) are satisDed. This number y is easily found using standard
numerical techniques. We now know the optimal wealth and consumption levels, but
not the optimal portfolio $∗, the main interest of this paper. We proceed to develop a
method for computing $∗.

It is by now standard that in the complete markets speciDcation that we consider here
any given wealth process X can be expressed as an expectation of the type described
in Eq. (6). More explicitly, the value of a wealth process at every point in time is
the expected discounted value of future consumption and=or TW under the equivalent
“risk-neutral” probability measure that depends on  (this is in fact the result used to
derive the budget constraints of (16) and (17)).

Xt = EQ
[
e−

∫ T
t rs dsXT |Ft

]
=

1
(t

E
[
(T e−

∫ T
t rs dsXT |Ft

]
(20)

in the case of utility from Dnal wealth, and

Xt = EQ
[∫ T

t
e−

∫ s
t ru ducs ds|Ft

]
=

1
(t

E
[∫ T

t
e−

∫ s
t ru du(scs ds|Ft

]
(21)
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in the case of utility from IC, with ( given by Eq. (15). But the right-hand sides of
(20) and (21) are expressions of the type of (6) and, therefore, satisfy

d(EQ[(T e−
∫ T
t XT |Ft]) = �t dt + �t dWt (22)

for (20) and similarly for (21). But, comparing (13) and (22) we conclude that the
corresponding portfolio is given by

$t = (�t)−1�t : (23)

Therefore, by retrieving numerically � using the method explained in the previous
section, we can derive the portfolio strategy.

More explicitly, from (10)

�t = lim
St→0

E
[
(Xt+St − Xt)(Wt+St − Wt)

St

∣∣∣∣Ft

]

= lim
St→0

E
[
(Xt+St − Xt)(Zt)

St

∣∣∣∣Ft

]
; (24)

where Zt = Wt+St −Wt . Therefore, the speciDc procedure to Dnd the optimal portfolio
$∗

t , is as follows. Denote, for u ¿ t

Ht;u := e−
∫ u
t rs ds(u=(t : (25)

We have from (20)

X ∗
t+St = E[Ht+St;T X ∗

T |Ft+St]

= E
[
Ht+St;T (ye

∫ T
0 (%−rs) ds(T )1=(&−1)|Ft+St

]
(26)

for the the case of utility from Dnal wealth, where we have used (18), and, from (21),

X ∗
t+St = E

[∫ T

t+St
Ht+St; sc∗s ds

∣∣∣∣Ft+St

]

= E
[∫ T

t+St
Ht+St; s

(
ye
∫ s
0 (%−ru) du(s

)1=(&−1)
ds
∣∣∣∣Ft+St

]
(27)

in the case of utility from IC, where we have used (19). The right-hand side of (26)
and (27) will not have in general a closed-form solution (exceptions are the logarithmic
utility case &=1 and aNne models considered in DuNe et al. (1999) and Liu (1998)).
However, we can use Monte Carlo simulation to compute that right-hand side. At
moment t we know initial conditions Xt , rt , and t . Next, we simulate a number K
of paths of the Brownian Motion process W . Each path is discretized into n steps
of size St = (T − t)=n. For step k of path i we generate a “pseudo-random” number
with distribution N(0;St), denoted zi

k . We now take the step one “pseudo-normal”
numbers, denoted zi

1: Using Monte Carlo simulation we can compute the value of X ∗
t+St

at moment t +St for an upgrade of the underlying Dnancial parameters that uses zi
1 as

the shock experienced at moment t. We denote that value by X ∗
t+St(z

i
1). To be speciDc,

we compute X ∗
t+St(z

i
1) by Monte Carlo computation of E[Ht+St;T X ∗

T |Ft+St] as follows:
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For the initial condition of the process ( we can take (t =1, and we get the time t+St
value from

(t+St(zi
1)− (t =−(ttzi

1:

We simulate M paths of ( starting with (t+St(zi
1). Similarly for other processes that

have to be simulated. This gives us M values of the Dnal wealth

X ∗
T =

(
ye
∫ T
0 (%−rs) ds(T

)1=(&−1)
;

denoted by X ∗; j
T (zi

1), j=1; : : : ; M , and similarly, M values of Ht+St;T , denoted Ht+St;T

(zi
1). Then the estimate for X ∗

t+St(z
i
1) is

X̂
∗
t+St(z

i
1) =

1
M

M∑
j=1

Ht+St;T (zi
1)X

∗; j
T (zi

1):

Therefore, we have a (approximate) value of X ∗ at moment t + St, conditional on a
shock zi

1 happening at moment t, and we Dnd it for all i = 1; : : : ; K . We now compute
the estimate

�̂t =

(
1
K

K∑
i=1

(X̂
∗
t+St(z

i
1)− X ∗

t ) · zi
1

St

)
: (28)

In summary, the method consists of two steps:

• We are at moment t and know the initial values Xt , rt , t , (t . Then, for a given
realization of the Brownian motion process zi

1 we upgrade the values of all the
underlying stochastic variables, (; r; �; : : : ; and compute the wealth value at moment
t + St contingent on that realization of the Brownian motion process at moment t,
and we denote it by Xt+St(zi

1).
• Then we compute the portfolio $∗

t = �−1
t �t using the estimate in (28).

Clearly, this procedure is independent of the type of utility function, whether the in-
vestor derives utility only from TW, from IC or from both, and of the dynamics of
the stochastic processes involved (as long as those dynamics are known).

Remark. The speed of computation can be signiDcantly improved by noting the fol-
lowing: We have

Xt+St = E[Ht+St;T XT |Ft+St]

and by the law of iterated conditional expectations; (24) can be written as

�t = lim
St→0

E
[
(Ht+St;T XT − Xt)(Zt)

St

∣∣∣∣Ft

]
: (29)

Consequently, instead of computing two expected values, one conditional on infor-
mation up to time t, and the other conditional on information up to time t + St, we
only have to do the former. In other words, we can set M =1. However, our numerical
experiments show that it might be more eNcient to compute both expected values by
Monte Carlo. This is because Var(E[X |Y ])6Var(X ). The optimal ratio between the
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numbers K and M of paths simulated to compute the two expectations, seems to be an
open problem. We set K = 10; 000 and M = 50 in the numerical experiments reported
below.

3.1. Error bounds

We will dwell brie8y on the precision of the approximation that results from the
algorithm suggested in this paper. The algorithm consists of two steps and each of the
two steps will induce an error. However, since the two steps are sequential (and not
simultaneous) the error will be a sum (and not a product) of the errors of each of the
steps. The Drst of the two steps, the estimate of Xt+St as given by the representation
in (26) is a plain vanilla Monte Carlo simulation procedure. When we use an Euler
discretization scheme, it is well known that the size of the error is of the order 1=

√
K+

1=n, where K is the number of paths generated and n the number of discretization points
(that is, n=T=St). DuNe and Glynn (1995) consider the problem of optimal allocation
of computational time available and show that, under Euler discretization, it is optimal
to take n proportional to

√
K .

The second of the two steps is the error in the limiting procedure of (24). The size
of this problem is similar to that of hedging a position in options and, in such a case
(see Glynn, 1989) the size of the error is of magnitude 1=K1=4 (when n =

√
K). This

error is larger than the one derived of the Drst step and, therefore, the error that will
determine the precision of the results. The size of the error is, in any case, manage-
able. In the next section we analyze some results for diJerent values of the parameters
of the model. All the exercises were performed on standard desktop PCs. We used
C as the programming language. The computational times ranged from around 5 min
(T = 1 year), half an hour (T = 5), to 1 h (T = 10), with K = 10; 000, M = 50. The
standard deviation of the error for these parameters is around 0:002. The method of
Detemple et al. (1999) is likely to be faster in general, but it involves stronger con-
ditions on the model and the computation of Malliavin derivatives of the underlying
processes.

4. Analysis of results

The basic model we study is a simpliDcation of the general model presented in
Section 2. With respect to the interest rate, we consider the Cox et al. (1985) dynamics,
that is

drt = 1r( Yr − rt) dt − �r
√

rt dWt: (30)

For the equity premium  we Drst consider a simple mean-reverting process with
constant volatity

dt = 1( Y − t) dt + � dWt: (31)
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Table 1
EJect of horizon and risk aversion. Yr = 0:06; Y = 0:0871; r0 = 0:06; 0 = 0:1; �0 = 0:2; 1r = 0:0824;
1 = 0:6950; �r = 0:0364; � = 0:21

T = 1 T = 5 T = 10

& IC TW IC TW IC TW

0.5 1.042 1.095 1.221 1.236 1.272 1.279
0 0.5 0.5 0.5 0.5 0.5 0.5
−1 0.244 0.252 0.270 0.295 0.297 0.328
−2 0.174 0.175 0.210 0.230 0.239 0.270
−5 0.104 0.110 0.135 0.170 0.164 0.190
−10 0.056 0.059 0.125 0.139 0.143 0.167

This is in fact the model considered in Detemple et al. (1999). They calibrate this
model to a given data set and Dnd the following values for the parameters:

Yr = 0:06; �r = 0:0364; 1r = 0:0824; 1 = 0:6950; Y = 0:0871;

� = 0:21; �(t) ≡ 0:2; r(0) = 0:06; (0) = 0:1:

With respect to the utility function, they only consider the case of utility from TW.
We will consider both cases as expressed in Eqs. (11) and (12). In the case of utility
from TW, with time horizon T = 1, risk aversion characterized by & = −1 and initial
wealth X0 = 1 (so that the portfolio can be interpreted as the proportion of current
wealth invested in the risky stock), which is the case considered in Detemple et al.
(1999), we obtain an optimal investment in the risky security of $∗ = 0:252. In other
words, about 25% of the wealth is to be kept in stock.

In Table 1 we consider the sensitivity of the portfolio both to the changes in risk
aversion and horizon. Risk aversion is measured by the parameter &: the lower & (which
has to be smaller than 1 to guarantee the concavity of the utility function) the more
risk averse the individual. The case & = 0 corresponds to an agent with logarithmic
utility. In that case the problem has closed-form solution and the optimal portfolio is
=�. We consider both the case in which the individual only draws utility from TW and
when the individual draws utility from IC. As expected, when the horizon increases
and=or the agent becomes less risk averse, the investor allocates a larger proportion of
wealth to the risky asset. The investor allocates a smaller proportion of wealth to the
risky security when she derives utility from IC.

In Tables 2 and 3 we consider changes in 1r , the speed of mean reversion, �r , the
constant component of the volatility of the interest rate and �, the constant component
of the volatility of the equity premium. An increase in the mean-reversion parameter
of the interest rate slightly increases holdings of the risky security for a short horizon
(T = 1) and decreases holdings when the investor faces a long horizon (T = 5; 10).
The reason is that a higher mean-reversion coeNcient makes the interest rate more
volatile in the short term, but more stable in the long-term and hedging takes that into
consideration. Short term higher volatility results because shocks that push the interest
rate away from Yr will trigger a stronger opposite “reaction”; however, over time the
interest rate will 8uctuate less around Yr and the long-term hedging needs are lower.
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Table 2
EJect of parameter dynamics for & = −1. Yr = 0:06; Y = 0:0871; r0 = 0:06; 0 = 0:1; �0 = 0:2; 1 = 0:6950

T = 1 T = 5 T = 10

1r �r � IC TW IC TW IC TW

0.0824 0.0364 0.21 0.244 0.252 0.270 0.295 0.297 0.328
0.12 0.0364 0.21 0.250 0.252 0.269 0.285 0.287 0.306
0.0824 0.05 0.21 0.257 0.257 0.282 0.311 0.313 0.337
0.0824 0.0364 0.3 0.234 0.243 0.262 0.283 0.280 0.298

Table 3
EJect of parameter dynamics for & = −2. Yr = 0:06; Y = 0:0871; r0 = 0:06; 0 = 0:1; �0 = 0:2; 1 = 0:6950

T = 1 T = 5 T = 10

1r �r � IC TW IC TW IC TW

0.0824 0.0364 0.21 0.174 0.175 0.210 0.232 0.239 0.270
0.12 0.0364 0.21 0.175 0.181 0.194 0.205 0.234 0.248
0.0824 0.05 0.21 0.177 0.183 0.213 0.241 0.259 0.290
0.0824 0.0364 0.3 0.166 0.170 0.192 0.207 0.219 0.242

Table 4
Non-aNne models with &=−1. Yr =0:06; Y=0:0871; r0 =0:06; 0 =0:1; �0 =0:2; 1r =0:0824; 1 =0:6950;
�r = 0:0364; � = 0:21

T = 1 T = 5 T = 10

vr v IC TW IC TW IC TW

0.5 0 0.244 0.252 0.270 0.295 0.297 0.328
0.5 0.5 0.246 0.260 0.286 0.308 0.322 0.346
0.75 0 0.245 0.246 0.248 0.258 0.264 0.280

When volatility of the interest rate increases the agent invests more in the risky security
since it becomes relatively more attractive. When volatility of the risk premium process
increases, the agent invests less in the risky security (since it becomes less attractive).

Finally, we consider the following alternative dynamics of the interest rate and the
equity premium process:

drt = 1r( Yr − rt) dt − �r(rt)vr dWt; (32)

dt = 1( Y − t) dt + �()v dWt: (33)

For vr �=0:5 and=or v �=0 the problem does not belong to the class of aNne models
anymore. In Tables 4 and 5 we study the eJect of changes in these parameters. When
vr changes the volatility of the interest rate process is not proportional to the interest
rate. When vr increases, optimal investment in the risky security decreases. When v

increases, however, the proportion of wealth invested in the risky security increases. In
fact, the investment allocation seems to be quite sensitive to changes in this parameter.
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Table 5
Non-aNne models with &=−2. Yr =0:06; Y=0:0871; r0 =0:06; 0 =0:1; �0 =0:2; 1r =0:0824; 1 =0:6950;
�r = 0:0364; � = 0:21

T = 1 T = 5

vr v IC TW IC TW

0.5 0 0.174 0.175 0.210 0.230
0.5 0.5 0.184 0.189 0.221 0.244
0.75 0 0.168 0.170 0.171 0.190

Overall, however, it seems that, for time additive CRRA preferences (which are the
standard in the literature) portfolio allocation does not change very much, unless a
very high degree of risk aversion is considered.

5. Multiple factors

For ease of notation, in the previous section we have considered the case of a single
Brownian motion process. However, as we stated before, the method that we suggest in
this paper can be applied regardless of the number of Brownian motion processes that
explain the dynamics of the model, as long as we stay in a complete markets setting,
that is, the number of stocks is equal to the number of Brownian motion processes
and the variance covariance matrix of all the stocks is non-singular.

Suppose, for example that we have two stocks and two independent standard Brow-
nian motion processes W 1 and W 2. The price of each of the stock processes Si; i=1; 2
satisDes

dSi
t

Si
t

= �i
t + �i1

t dW 1
t + �i2

t dW 2; i = 1; 2 (34)

and we assume that the matrix

� =

(
�11

t �12
t

�21
t �22

t

)
(35)

is non-singular for all t.
In this setting, the agent can invest in both securities and, as a result, his=her wealth

dynamics will be of the type

dXt = �t dt + �1t dW 1
t + �2t dW 2

t : (36)

Of course the optimal portfolio of the individual will be now two dimensional and, as
in (23) equal to

$∗ = (�)−1�; (37)

where �� = (�1; �2).
The implementation of Monte Carlo simulation is analogous to the one-dimensional

case, but now we will have to generate two simultaneous series of random numbers
z1 and z2. The discrete version of (34) is

Si
t+St − Si

t = Si
t (�

i
tSt + �i1

t z1t + �i2
t z2t ); i = 1; 2: (38)
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Table 6
Two-stock portfolio. Yr = 0:06; Y = 0:0871; r0 = 0:06; 1(0) = 0:1; 1r = 0:0824; 1 = 0:6950; �r = 0:0364;
� = 0:21; �1(0) = 0:2; �2(0) = 0:1

& = −1 & = −2

2 $1 $2 $1 $2

0 0.252 0 0.175 0
0.03 0.253 0.156 0.176 0.090
0.06 0.254 0.295 0.176 0.197
0.09 0.256 0.451 0.177 0.298

Analogously, we can replicate the paths of the stochastic processes involved, r,  and
(. In order to retrieve �1 and �2 we use, (this is similar to (24))

�i
t = lim

St→0
E
[
(Xt+St − Xt)(Zi

t )
St

∣∣∣∣Ft

]
; i = 1; 2; (39)

where Zi
t :=Wi

t+St −Wi
t . In order to implement this expression we use a two-step pro-

cedure as the one described in the one-dimensional case, but with the following mod-
iDcation: we start at t where we know Xt , rt and t : We generate realizations of each
of the Brownian motion processes that we call z1; i1 and z2; i1 , i = 1; : : : ; N , and compute
rt+St(z

1; i
1 ; z2; i1 ), t+St(z

1; i
1 ; z2; i1 ) and (t+St(z

1; i
1 ; z2; i1 ). Then we compute Xt+St(z

1; i
1 ; z2; i1 ) by

replicating the paths of all the stochastic processes involved. We then approximate each
�j (whose estimate we denote by �̂j) by computing

�̂j
t =

1
N

N∑
i=1

(
X̂

∗
t+St(z

1; i
1 ; z2; i1 )− X ∗

t

)
zj; i
1

St
; j = 1; 2: (40)

Obviously, the approach would be analogous if we had more than two factors.
In Table 6 we report an example of an economy with two stocks and two independent

Brownian motion processes. In other words (we change the notation so that now the
subindex represents the stock, i = 1; 2).

dS1(t)
S1(t)

= �1(t)dt + �1(t) dW1(t); S1(0) = 1;

dS2(t)
S2(t)

= �2(t) dt + �2(t) dW2(t); S2(0) = 1: (41)

We assume that 1(t)= (�1(t)− r(t))=�1(t) is given as in the Drst one-factor example,
with �1(0)=0:2 while 2(t) is constant. We take �2(0)=0:1 The rest of the parameters
are as in the previous section. We Dnd the optimal portfolio ($̂1(t); $̂2(t)) for diJerent
degrees of risk aversion and diJerent values of 2. The results are not surprising:
increases in 2 result in larger investments in the second stock (investments in the Drst
stock are almost unchanged).
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6. Conclusions

In this paper, we introduce a method that relies exclusively on Monte Carlo simu-
lation in order to compute optimal portfolios. Our method is quite general and only
requires complete markets and knowledge of the dynamics of the security processes.
It can be applied regardless of the number of factors and of whether the agent derives
utility from IC, TW or both. The implementation is very easy and allows us to per-
form some comparative statics. The method relies on the fact that the optimal portfolio
is part of the instanteneous standard deviation of the wealth process and such stan-
dard deviation can be directly estimated. In fact, computing the instanteneous standard
deviation through Monte Carlo simulation has other applications in Dnance, like the
computation of the optimal hedge of an option, or optimal portfolio policies for an
individual with a random income and random time of death (see Cvitani(c et al., 1999,
2002). To illustrate the method we perform some comparative statics analysis for the
portfolio of an agent with CRRA. Our comparative statics show that risk aversion has
by far the greatest in8uence on the value of the hedging portfolio.
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