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Abstract. We present new data structures for representing binary rela-
tions in an adaptive way, that is, for certain classes of inputs we achieve
space below the general information theoretic lower bound, while achiev-
ing reasonable space complexities in the worst case. Our approach is de-
rived from a geometric data structure [Arroyuelo et al., TCS 2011]. When
used for representing permutations, it converges to a previously known
adaptive representation [Barbay and Navarro, STACS 2009]. However,
this new way of approaching the problem shows that we can support
range searching in the adaptive representation. We extend this approach
to representing binary relations, where no other adaptive representations
using this chain decomposition have been proposed.

1 Introduction

Binary relations and permutations arise in many applications in computer sci-
ence. Examples include text indexing [12] and graph representations [8], among
others. These fundamental objects have been heavily studied [11,4,5,6], and very
efficient data structures supporting a wide range of operations have emerged.
However, most of them remain bounded by the information theoretic lower
bound in their space consumption, even in the cases where the objects have
exploitable properties; for example Web Graphs [7]. Some exceptions are all the
developments for compressed suffix arrays [12] and the work by Barbay and
Navarro [6] on more general permutations.

In this paper, we present space-efficient data structures that have adaptive
space and time complexities. Our approach comes from a geometric perspective,
and for permutations, converges to the representation by Barbay and Navarro [6].
However, our new approach brings a new perspective, showing how to support
range searching operations. We show that the work of [6] serves to represent
binary relations with Theorem 1, and also prove an alternative tradeoff based
on our own formulation of their structure.
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The paper is organized as follows. In Section 2 we present related work on
representing permutations and binary relations, we also include some background
on data structure for range searching proposed by Arroyuelo et al. [1]. In Section
3 we present our adaptive representation for permutations, and show how this
representation converges to the one by Barbay and Navarro. Next, in Section
4, we extend the representation for permutations to cover binary relations in
general, presenting two different approaches. Then, in Section 4.2, we present
one simple application of our structure. Finally, in Section 5, we present our
conclusions.

2 Related Work

We present the related work in the next two subsections. The first one presents
previous results on representing permutations and binary relations; the second
covers recent results on adaptive range searching.

2.1 Permutation and Binary Relations

The most common queries for a permutation Π over [n]1 are: (1) π(i): obtain
the value of Π [i]; (2) π−1(j): find i such that j = Π [i]; (3) πk(i): apply π k
times, similarly we define π−k(j); and (4) RΠ(i1, i2, j1, j2): find elements i such
that i1 ≤ i ≤ i2 and j1 ≤ π(i) ≤ j2.

One efficient representation for arbitrary permutations is that of Munro et al.
[11]. This representation achieves (1 + ε)n lgn(1 + o(1)) bits. It supports π in
O(1) time and π−1 in O(1ε ) time. They also showed that π±k can be supported
in the same time as the time required to perform both π and π−1 by using only
O(n) extra bits. This extension applies to any representation, and thus, to our
results too.

The R operation is less commonly required, but also of interest. For instance,
consider a position-restricted search using a suffix array. The suffix array is a
permutation and searching for a pattern P between positions p1 and p2 is just
the result of doing a range query over the range of suffixes starting with P (i.e.,
[i1, i2]) and those pointing to positions in [p1, p2]. Mäkinen and Navarro showed
how to use wavelet trees to solve this operation and all others in O(lg n) time
within n lgn(1 + o(1)) bits of space [10].

Prior to this paper the only adaptive representation for permutations was that
proposed by Barbay and Navarro [6]. They show many possible decompositions
into monotonic sequences and subsequences, and give their space/time complex-
ities in term of the entropy of such sequences. As we will see later, we converge
to the same structure at the end of Section 3.

A natural representation for a permutation is a binary matrix of n× n where
we mark the coordinates (i, j) with a 1 iff π(i) = j. We will use this conceptual
representation in our construction. For a binary relation B over two sets [n1]

1 We use [n] to represent {1, 2, . . . , n}.
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Table 1. Operations and implementations supported by the representation of Barbay
et al. [4,5]. The space requirement is t(lgn2 + o(lg n2)) bits.

Operation Implementation 1 Implementation 2

rowrankB(i, j): number of 1s in row i O(lg lgn2 lg lg lg n2) O(lg lg n2)
up to position j (included).

rowselectB(i, p): p-th 1 in row i, or O(lg lg n2) O(1)
∞ if rowrankB(i, n2) < p.

rowcountB(i): number of 1s in row i. O(1) O(1)

colrankB(i, j): number of 1s in column j O(lg lg n2) O(lg lg n2 lg lg lg n2)
up to position i (included).

colselectB(p, j): p-th 1 in column j, O(1) O(lg lg n2)
or ∞ if colrankB(n1, j) < p.

colcountB(j): number of 1s in column j. O(1) O(1)

relaccessB(i, j): true iff (i, j) ∈ B. O(lg lg n2) O(lg lg n2)

and [n2], n2 ≤ n1, with t = |B| elements in the relation, we can also use the
same conceptual representation. B is represented as a matrix of n1 rows by n2

columns with t ones. A one in position (i, j) indicates that i relates to j in B.
Barbay et al. [4,5] presented a structure for representing binary relations that

requires t(lg n2+o(lgn2)) bits of space and supports the operations, offering two
tradeoffs, as shown in Table 1.

In a follow-up work, Barbay et al. [7] proved a set of reductions for many
operations on binary relations, and presented two structures supporting a core
of operations allowing to answer efficiently this extended set. An important op-
eration that allows us to support many of the operations in the extended set is
relrangeB. The operation relrangeB takes a range [i1, i2]× [j1, j2] and returns all
the coordinates in that range containing a one. From the structures proposed
in Barbay et al.’s work [7], the first structure achieves t lgn2 + o(t lg n2) bits,
slightly different from the previous proposal in the lower order term. The sec-
ond structure achieves lg(1 +

√
2)tH(B) + o(tH(B)) bits, where H corresponds

to the general information theoretic lower bound, supporting most operations
of interest in O(lg n2) time per element retrieved. In this case H(B) = t lg n1n2

t
corresponds to the information theoretic lower bound for representing a binary
relation with the characteristics of B.

2.2 Monotonic Decomposition of Sequences

Arroyuelo et al. [1] presented an adaptive data structure for range searching that
decomposes the set of points into non-crossing ascending and descending chains.
Let k be the number of chains generated by the decomposition, the search time
for a range query is O(lg k lgn+ k′ + output) time, where k′ corresponds to the
number of chains intersecting the query rectangle and output is the number of
points in the answer. The main idea behind the search strategy is to first search
for a chain that crosses the query rectangle (or discard all of them). Since the
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chains do not cross, we can binary search the chains, at O(lg n) cost each probe.
Once a chain is found, we have to traverse neighbouring chains until leaving the
rectangle in order to retrieve all points.

The decomposition into non-crossing chains can be computed in polynomial
time if we are given an optimal decomposition into monotonic subsequences
[1]. The optimal decomposition into monotonic subsequences is NP-Hard [15],
yet it is interesting that the optimal decomposition for a permutation of length
n is bounded by c

√
n, where c ≤ 2, and that we can get a constant factor

approximation in polynomial time [16]. In this work we consider the optimal
decomposition and show how this allows for a representation that is adaptive
in the number of monotonic subsequences into which a permutation or binary
relation can be decomposed. The results as stated apply also for the case when
we compute a constant factor approximation, thus making the data structure
feasible in practice.

3 Representing Permutations

Our representation works by decomposing the permutation into ascending and
descending subsequences. A simple way to visualize this is to consider the rep-
resentation of the permutation in a grid. Every row represents the index i, the
columns represent the value ofΠ [i]. It is easy to see that the inverse permutation
corresponds just to the transposed matrix. In order to simplify the presentation
of this work, we will only consider ascending subsequences, the results extend
easily to the general case.

First, we show how to represent a chain using bitmaps that support rank,
select and access operations.

Definition 1. A chain [(x1, y1), (x2, y2) . . . , (xn, yn)] is ascending iff xi ≤ xi+1,
1 ≤ i < n and yi ≤ yi+1, 1 ≤ i < n.

From this definition it is easy to prove our first result, stated in the following
lemma. In order to present this result in a general way we use S(n,m) as the
space requirement (in bits) for representing a bitmap of length n withm ones that
supports rank in tr, select in ts, and access in ta time. We use tb asmax(tr, ts, ta).

Lemma 1. Given an ascending chain C = [(i1, j1), (i2, j2), . . . , (im, jm)], of
length m, where the values do not exceed n, we can represent the chain in
2S(n,m) bits and support the following queries:

– getjC(i): gets j such that (i, j) ∈ C or ⊥ if such pair does not exist. We
also define getiC(j) in an analogous way. Both queries are supported in time
O(tb).

– rangeC(i1, i2, j1, j2): find the (i, j) ∈ C such that (i, j) ∈ [i1, i2]× [j1, j2] or ⊥
if such a point does not exist. This runs in time O(tb).

We can represent each chain using Lemma 1, this leads to the following
theorem:
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Lemma 2. Let mi be the number of elements in chain i. The total space
of the structure for a permutation that can be decomposed into χ chains is
2
∑χ

i=1 S(n,mi), and supports range queries in O(tb lgχ+ tbχ
′ + output), where

χ′ is the number of chains that intersect the range. The next table summarizes
some of the tradeoffs we can achieve.

Bitmap Representation Total Space tb

Pǎtraşcu [14] 2n lgχ+O
(
χ lgn+ χn

lgc n

)
O(c)

Okanohara and Sadakane [13] 2n lgχ+O(χ lg n+ n) O
(
lg n

mi
+ lg4 mi

lgn

)

The complexity for range queries follows from the work by Arroyuelo et
al. [1]. The computation of the final space is similar to the one used in proof of
Theorem 2.

This representation of course is only useful for very small values of χ, other-
wise the structure can be asymptotically bigger than the information theoretic
minimum. This can be improved by the following observation.

Observation 1. Given a set of χ bitmaps of length n, where the total number
of ones in the set is n and no two bitmaps contain a 1 in the same position,
we can represent them as a sequence of length n over an alphabet of size χ.
Furthermore, any sequence representation supporting rank, select, and access in
times tr, ts, and ta, allows us to support the same operations in each individual
bitmap within the same time.

This not only allows us to lower the space, but it also simplifies the π and
π−1 queries. To know which chain contains the value associated with π(i) we
just need to know which bitmap is referred to in the sequence representation by
accessing its position.

It is interesting that we can represent our structure using two sequences (x
and y coordinates), and they correspond exactly to Sπ and Sπ−1 . Furthermore,
they also correspond to the representation proposed by Barbay and Navarro [6],
which was originally proposed using wavelet trees, but can be modified to work
with any representation, offering a wider set of tradeoffs [2]. Currently, the most
interesting tradeoff is that of of Barbay at el. [3,2].

Another point to highlight, is that this shows that the original structure of
Barbay and Navarro also supports adaptive range searching. This particular
searching algorithm has proven to be efficient in practice [9]. This allows to
state the following corollary.

Corollary 1. Given (i) a permutation Π, that can be decomposed into χ mono-
tonically ascending and descending chains, and (ii) a sequence representation
that requires S(n, σ) for representing a sequence of length n over an alphabet
of size σ supporting rank, select and access queries in O(tb) time, there exists
a structure requiring 2S(n, χ) bits that supports computing π and π−1 in O(tb)
and range search queries in O(tb lgχ+ tbχ

′ + output), where χ′ is the number of
chains that touch the query rectangle, and output the size of the output.
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4 Representing Binary Relations

We use the same approach on the grid representing the binary relation. Given
a binary relation B, the pair (i, j) is marked iff i relates to j in B. We follow
the notation of the previous sections. Recall that σ is the number of rows, n the
number of columns, and t the number of pairs in B.

We assume all columns and rows have at least one element, as we can trivially
map the problem when we accept empty row/columns adding a bitmap of length
n+ σ supporting rank, select, and access.

We focus mostly on three operations: (1) Iterating over rowselectB(i, p =
1 . . . rowcountB(i))); (2) Iterating over colselectB(i, p = 1 . . . colcountB(i))); and
(3) Obtaining all pairs in [i1, i2]× [j1, j2] (i.e., relrangeB).

The technique presented in Section 3 does not apply directly to this case. The
main problem is that a chain could contain many elements that are in the same
row or column, and would result in multiple chains in the same position in a
bitmap. We first give a representation that matches the result for the permuta-
tions in time and space and then we show how to potentially improve the space
by using a more elegant technique. This new approach has a worse query time.

4.1 Using Permutations

We show how to transform a binary relation into a permutation by just con-
sidering a simple row/column addition algorithm that moves points around and
allows one to answer the queries of interest.

The main idea is to create multiples copies of rows and columns having more
than one point and then distribute the points across them so that each of them
has only one point, leading to a permutation on t elements. This is inefficient in
terms of space, but it allows us to match the performance of our structure for
permutations. In order to be able to extract the original information we need to
add 2t+o(t) bits, stored in B1 and B2. These bitmaps tell the length, in unary, of
each expanded row/column. Using these two bitmaps, we can answer rowcount =
Xa.select(1, x+1)−Xa.select(1, x)−1 and colcount = Xb.select(1, y+1)−
Xb.select(1, y)−1 in constant time. We omit the algorithm pseudo-code for lack
of space. We also omit the proof that our procedure generates a permutation.

This yields a theorem similar to that of Barbay et al. [4], but supporting a
different subset of operations.

Theorem 1. A binary relation B ⊆ {(i, j)|i ∈ [n1], j ∈ [n2]}, where t = |B|, that
can be decomposed into k monotonic chains, can be represented as a permutation
of length t with (n1 +n2)(1+ o(1)) extra bits. Furthermore, the resulting permu-
tation can be decomposed into k monotonic chains, and the operations rowselect,
colselect and relrange can be mapped to π, π−1 and R operations on the per-
mutation, respectively. The counting operations can be solved using bitmaps B1

and B2.
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4.2 Using Chains Directly

An alternative method can be obtained by decomposing the binary relation
directly. A chain could now contain more than one occurrence of a given row or
column, and because of that, the transformation that converges to the structure
by Barbay and Navarro does not work. At this point, the departure from the
original proposal by Barbay and Navarro pays off, allowing the representation
of a class wider than that of permutations.

We first take a look at the space consumption of our structure when decom-
posing B into chains. For that, we present an alternative representation for the
chains. For simplicity, we will use the bitmaps representation by Pǎtraşcu [14],
yet the results translate in a similar way as for Lemma 2, and thus, we can offer
a wide set of bounds.

Lemma 3. An ascending chain of length m with at most n̄ = n + σ points in

[n] × [σ] can be represented in 2m lg n̄
m + O

(
m+ n̄

lgc n

)
bits of space, but now

geti, getj and range take O(c lgm) time.

If we represent the structure using these chains, we obtain the following
theorem:

Theorem 2. A binary relation B over [n1] × [n2], where t = |B|, can be repre-
sented in 2t lg nk

t +2t lg k+O( kn
lgc n + k lg t) bits, where n = max(n1, n2). Within

this space, we can list elements in O(r) time per datum retrieved, and answer
range queries in O(r(lg k + k′) + output) time, where k is the number of chains,
k′ the number of chains hitting the query rectangle, output the size of the output,
and r = max(c lg k, c lg lgn).

We could try merging the sequences marking with a bitmap where each posi-
tion starts, and this would lead to the result obtained in Theorem 1.

Another observation regarding the representation presented in Theorem 2 is
that we can answer range minimum queries (RMQs) over the binary relation in
the same time as for relrange.

Lemma 4. By adding O(t) extra bits to the representation from Lemma 2, or
Theorems 1 and 2, and adding weights to each pair in the permutation/relation,
we can support range minimum queries in the same complexity as the one re-
quired for answering relaccess.

5 Conclusions and Future Work

We presented an alternative formulation for the representation by Barbay and
Navarro. This new approach allows to show how to support range searching
and provides some different tradeoffs. We then extended the results to the case
of binary relations. We proposed two alternatives, both achieving interesting
tradeoffs supporting navigation and range searching. It is worth noting that for
easy instances we obtain smaller and faster representations, which is clearly an
interesting behaviour.
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Munro, J.I., Nicholson, P.K., Salinger, A., Skala, M.: Untangled monotonic chains
and adaptive range search. TCS 412(32), 4200–4211 (2011)

2. Barbay, J., Claude, F., Gagie, T., Navarro, G., Nekrich, Y.: Efficient fully-
compressed sequence representations. Algorithmica (to appear, 2013)

3. Barbay, J., Gagie, T., Navarro, G., Nekrich, Y.: Alphabet partitioning for com-
pressed rank/select and applications. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.)
ISAAC 2010, Part II. LNCS, vol. 6507, pp. 315–326. Springer, Heidelberg (2010)

4. Barbay, J., Golynski, A., Munro, J.I., Rao, S.S.: Adaptive searching in succinctly
encoded binary relations and tree-structured documents. TCS 387(3), 284–297
(2007)

5. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary
relations and multi-labeled trees. In: SODA, pp. 680–689 (2007)

6. Barbay, J., Navarro, G.: Compressed representations of permutations, and appli-
cations. In: STACS, pp. 111–122 (2009)

7. Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation rep-
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