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ABSTRACT

We present three results related to dynamic convex hulls:

• A fully dynamic data structure for maintaining a set of n points in the plane so that
we can find the edges of the convex hull intersecting a query line, with expected query
and amortized update time O(log1+ε n) for an arbitrarily small constant ε > 0. This
improves the previous bound of O(log3/2 n).

• A fully dynamic data structure for maintaining a set of n points in the plane to
support halfplane range reporting queries in O(logn + k) time with O(polylogn)
expected amortized update time. A similar result holds for 3-dimensional orthogonal
range reporting. For 3-dimensional halfspace range reporting, the query time increases
to O(log2 n/ log logn+ k).

• A semi-online dynamic data structure for maintaining a set of n line segments in the
plane, so that we can decide whether a query line segment lies completely above
the lower envelope, with query time O(logn) and amortized update time O(nε). As
a corollary, we can solve the following problem in O(n1+ε) time: given a triangulated
terrain in 3-d of size n, identify all faces that are partially visible from a fixed viewpoint.

Keywords: Convex hull; dynamic data structures; halfspace range searching; orthogonal
range searching; lower envelopes.

1. Introduction

1.1. Problem 1: Dynamic planar convex hulls with line

intersection and related queries

Dynamic planar convex hull has long been a favorite topic in classical computational

geometry. The problem is to design a data structure that can maintain a set S of

∗A preliminary version of this paper has appeared in Proc. 27th ACM Symp. Comput. Geom.,
2011. This work has been supported by NSERC.
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n points in the plane under insertions and deletions and that can answer queries

about the convex hull CH(S). Typical kinds of queries include:

(a) find the most extreme vertex in CH(S) (i.e., the most extreme point in S) along

a query direction;

(b) decide whether a query line intersects CH(S) (a special case of (a));

(c) find the two vertices of CH(S) that form tangents with a query point outside

the hull;

(d) find the two vertices adjacent to a given vertex of CH(S) (a special case of (c)).

The first polylogarithmic method was discovered by Overmars and van Leeuwen33

in 1981: their hull tree data structure can answer queries in O(log n) time and

support updates in O(log2 n) time.

For a long time this O(log2 n) bound had remained unsurpassed, until the au-

thor11 in 2001 proposed a new line of attack and obtained a method withO(log1+ε n)

amortized update time that can answer the above queries (a)–(d) in O(log n) time

for any fixed constant ε > 0. (By balancing, one can also get 2O(
√
log logn) logn

query and amortized update time with this approach.) Shortly afterwards, Brodal

and Jacob7 improved the amortized update time to O(log n log logn) for insertions

and O(log n log log logn) for deletions, by following the same approach and incor-

porating some additional ideas. Brodal and Jacob continued much further with

the approach and in 2002 eventually achieved the coveted O(log n) bound for both

query and amortized update time.8 The result is optimal in standard decision tree

models. The final method is quite complicated — the current draft of the full paper

exceeds 100 pages — but aside from this “minor” drawback, the dynamic planar

convex hull problem would appear to be fully solved, at least for queries of types

(a)–(d).

However, there is a second group of queries for which optimal O(log n) bounds

are not yet known:

(e) find the intersection of CH(S) with a vertical query line;

(f) decide whether a query point lies inside CH(S) (a special case of (e));

(g) find the intersection of CH(S) with an arbitrary query line;

(h) find the two outer common tangents (called the bridges) and the two separating

common tangents for two disjoint convex hulls CH(S1) and CH(S2) of given

point sets S1 and S2. (See Fig. 1(left).)

All these queries arise naturally in many applications. For example, answering linear

programming queries in a dynamic set of halfplanes in 2-d can be reduced to the

above kinds of queries by duality.6 (In fact, queries (e)–(h) are all related to linear

programming.)

What distinguishes the first group of queries (a)–(d) from the second group

(e)–(h) is that the former is decomposable,5 i.e., if S is partitioned into subsets

S1 and S2, the answer to a query for S can be obtained from the answers to the

query for S1 and the query for S2 in constant time. Queries (e)–(h) do not directly
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type (v)

type (vi)

a bridge

a separating
common
tangent

Fig. 1. (Left) Two convex hulls and an illustration of a type-(h) query. (Right) The lower envelope
of a set of segments and an illustration of type-(v) and type-(vi) queries.

satisfy the decomposability property: Overmars and van Leeuwen’s result still holds,

but the author’s approach currently only gives a solution with O(log3/2 n) query

and amortized update time,11 while Brodal and Jacob’s subsequent papers do not

address this group of queries at all.

Since Brodal and Jacob’s papers, no further progress has been reported. (De-

maine and Pǎtraşcu20 had results on the word RAM model for integer input, but

the present paper will focus on results on the real RAM.) In this paper we will

revisit the problem:

Problem 1. Design a data structure to maintain a set of points in the plane under

insertions and deletions so that queries of types (e)–(h) above can be answered

efficiently.

New result. We describe a solution with query and amortized update time

O(log1+ε n) for any fixed ε > 0 (for the inquisitive readers, the precise bound is actu-

ally 2O(
√
log logn log log logn) logn). Although the solution follows the same approach

as in the author’s paper,11 using exactly the same data structure, and requires only

one major new idea in the query algorithm, we believe the result is still interesting

because of the fundamental nature of the problem.

1.2. Problem 2: Dynamic halfplane range reporting

Next, we turn to another related fundamental problem: dynamic halfplane range

reporting. The goal here is to maintain a set S of n points in the plane under

insertions and deletions so that we can efficiently report all points inside a query

halfplane. We let k denote the number of reported points, i.e., the output size.

This problem can be solved using a dynamic convex hull data structure, by

repeatedly finding an extreme point along the direction defined by the query half-

plane, deleting it, and re-inserting it back later. This gives O(log n+k log2 n) query

time with Overmars and van Leeuwen’s data structure, or O((1 + k) logn) with

Brodal and Jacob’s. With Overmars and van Leeuwen’s structure, one can more
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directly obtain O((1 + k) logn) query time. However, neither approach achieves

linear dependency in the output size k, which is much desirable in practice:

Problem 2. Design a data structure to maintain a set of points in the plane under

insertions and deletions so that halfplane range reporting queries can be answered

in O(polylog n+ k) time.

Static data structures achieving O(log n + k) query time are known with opti-

mal O(n log n) preprocessing time,10,17 but the best dynamic data structure with

O(log n+ k) query time currently requires O(nε) amortized update time.4

New result. We show that O(log n + k) query time is possible with polyloga-

rithmic amortized expected update time; the precise update bound is O(log6+ε n).

The expectation is with respect to internal randomization in the update algorithm;

the result holds for worst-case point sets and worst-case update sequences. Our

idea is to move away from both the approach by Overmars and van Leeuwen33

and the 2-d dynamic convex hull approach initiated by the author,11 but instead

adapt an approach from a different paper of the author on 3-d convex hulls.14

That paper presented the first data structure for dynamic 3-d convex hull queries

that achieves polylogarithmic query and update time, namely, O(log2 n) query time

and O(log6 n) amortized expected update time. It was already noted that 3-d half-

space range reporting queries can be answered in O(log2 n+ k logn) time with that

data structure.14 We use additional (simple) ideas to bring the query time down to

O(log n+ k) in 2-d.

Extensions to 3-d dynamic halfspace range reporting and orthogo-

nal range reporting. Our ideas imply a weaker O(log2 n/ log logn + k) query

bound for dynamic 3-d halfspace range reporting, which has applications to

2-d circular range reporting and 2-d k-nearest-neighbors queries.2,10 Note that the

O(log2 n/ log logn) query bound is currently the best known even in the insertion-

only case for k = 1. Perhaps more interestingly, our ideas imply the first data

structure for dynamic 3-d orthogonal range reporting (reporting all points inside a

query axis-aligned box) with O(log n + k) query time and polylogarithmic amor-

tized expected update time, by exploiting the similarity between 3-d halfspace range

reporting and 3-d dominance range reporting. Consequently, we obtain the current-

record query time for dynamic orthogonal range reporting in any constant dimension

d ≥ 3 with polylogarithmic update time: O((log n/ log logn)d−3 logn+k) query time

with O(logd+6+ε n) amortized expected update time. Compare this to Mortensen’s

previous result,30 which has query time worse by almost a log factor, though with a

better update bound: O((log n/ log logn)d−1+k) query time with O(logd−1−1/8+ǫ n)

update time. (See also Ref. 31 and references therein for more on dynamic orthogo-

nal range reporting; see Ref. 16 for recent developments on static orthogonal range

reporting.)
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1.3. Problem 3: Semi-dynamic lower envelopes of line segments

Lastly, we explore a generalization of dynamic planar convex hulls: dynamic lower

envelopes of line segments. The goal is to maintain a set S of n possibly intersecting

line segments in the plane under insertions and deletions so that we can efficiently

answer queries about the lower envelope LE(S). The lower envelope is defined as

the boundary of the region of all points q that lie above at least one segment of

S. This boundary is x-monotone and consists of pieces of segments of S and extra

connecting vertical edges. (See Fig. 1(right).) Some natural types of queries include:

(i) compute the intersection of LE(S) with a vertical query line;

(ii) decide whether a point is above or below LE(S) (a special case of (i));

(iii) decide whether a query line segment is completely below LE(S);

(iv) given a query ray originating from below LE(S), compute the first point on

LE(S) that is hit by the ray;

(v) decide whether a query line segment q is completely above LE(S) (i.e., whether

LE(S ∪ {q}) = LE(S));

(vi) given a query ray originating from above LE(S), compute the first point on

LE(S) that is hit by the ray.

The problem generalizes dynamic convex hulls in more ways than one. For ex-

ample, if all the segments degenerate to points, then query (iii) for lines reduces to

an extreme point query. On the other hand, if all the segments are lines, then the

lower envelope is dual to the upper hull,6 and query (v) for lines reduces to testing

whether a point lies inside a convex hull.

It is already known that queries (i)–(ii) can be solved efficiently in polylogarith-

mic amortized time for lower envelopes of arbitrary x-monotone curves (of constant

description complexity) by adapting the author’s technique for dynamic 3-d convex

hulls.14 For line segments in the insertion-only case, queries (iii)–(iv) can still be

solved in polylogarithmic time easily by the so-called logarithmic method,5 because

such queries are decomposable (a segment is completely below LE(S1 ∪ S2) iff it is

completely below both LE(S1) and LE(S2)). For line segments with both insertions

and deletions, one can also obtain a polylogarithmic solution for (iii)–(iv) using a

dynamic segment tree approach18,34 (details are left as an exercise to the reader).

However, despite superficial likeness, queries (v)–(vi) are nondecomposable and ap-

pear markedly more difficult even in the insertion-only case — which is all the more

reason why we will study them in this paper:

Problem 3. Design a data structure to maintain a set of line segments in the plane

under insertions only so that queries of types (v)–(vi) can be answered efficiently.

Several approaches can get sublinear O(
√
npolylogn) query and update time.

For example, as suggested by Pankaj Agarwal (personal communication, 2002), we

can divide the plane into
√
n slabs and maintain a dynamic lower envelope of lines
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and a static lower envelope of segments in each slab; this approach works in the

fully dynamic setting. Alternatively, in the insertion-only case, following a strategy

from Ref. 12, we can maintain one single static lower envelope which is rebuilt after

every
√
n insertions.

New result. We break the
√
n barrier by presenting a new data structure with

O(log n) query time for (v), O(log2 n) query time for (vi), and O(nε) amortized

update time for any fixed ε > 0. (By balancing, we can also get 2O(
√
log n) query

and update time.) The result extends to the semi-online update setting,12,21 where

during each insertion, we know the position of the matching deletion operation in

the update sequence. In particular, the semi-online case includes the offline case

where the entire update sequence is known in advance.

Application to partial visibility in terrains. Problem 3 has at least one inter-

esting algorithmic application: given a triangulated terrain of size n in 3-d (i.e., a

polyhedron such that each vertical line intersects the polyhedron once and all faces

are triangles), and given a viewpoint or viewing direction q, classify each face as

either “partially visible” or “totally hidden” with respect to q. This problem has

obvious connections to hidden surface removal and occlusion culling: it provides a

useful preprocessing step to speed up hidden-surface-removal algorithms. An advan-

tage in studying this problem is that the output size, i.e., the number of partially

visible faces, is obviously at most n, even if the entire visibility map may have

quadratic combinatorial complexity. Grove, Murali, and Vitter24 (see also Ref. 27)

for example have studied the similar problem of identifying partially visible faces

among n disjoint axis-aligned rectangles in 3-d and gave an O(n log n) algorithm.

The partial visibility problem for the terrain case was explicitly mentioned in a

paper by Kitsios et al.,27 who noted an O(n3/2α(n) log n) algorithm (or more pre-

cisely, O(n
√
kα(k) log n) if there are k partially visible faces). We show in Section 4

that the terrain problem can be reduced to Problem 3 for an (offline) sequence of

insertions and type-(v) queries and thus can be solved in time O(n1+ε) (or more

precisely, n2O(
√
logn)) by our new data structure, improving Kitsios et al.’s previous

result.

Note that the superficially similar problem of classifying each face as “partially

hidden” versus “totally visible” is easier, again due to decomposability: a set S1 ∪
S2 of objects partially hides an object q iff S1 partially hides q or S2 partially

hides q. (For the terrain case, it is possible to solve this version of the problem in

O(n polylog n) time using a 2-d lower envelope data structure with insertions and

type-(iii) queries.)

1.4. Organization

The three problems are solved in the three sections to follow, which are independent

of one another and can be read in any order one wishes. The solutions to Problems 1
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and 2 are more technical, being reliant on methods from previous papers;11,14 the

solution to Problem 3 is the most original, and arguably the most interesting — it

involves a clever new variant of the segment tree. By the end of this paper, all of the

three current dynamic convex hull techniques — Overmars and van Leeuwen’s hull

trees33 and the author’s approaches to dynamic 2-d convex hulls11 and dynamic 3-d

convex hulls14 — will have been encountered.

2. Dynamic Planar Convex Hulls with Line Intersection Queries

In this section, we solve Problem 1. We focus on one representative type of queries

(which we call type-(e) queries in the Introduction): computing the intersection of

the convex hull with a vertical query line. It suffices to consider the upper hull.

If the input points are (ai, bi) and the query line is x = m, then the problem is

equivalent to finding a line y = ξx − η such that bi ≤ ξai − η for all i, while

minimizing ξm − η. We work in dual space6 and the input points are transformed

into lines {(ξ, η) : η = aiξ − bi}. The problem then reduces to linear programming

(LP) queries: maintain a set S of lines in IR2 under n insertions and deletions so

that given a query direction q, we can find a point on the lower envelope LE(S)

that is extreme along q. Denote the desired point by ans(S, q).

We will actually solve a slight generalization of LP queries for two lower en-

velopes: for any two sets S and S′ currently maintained, find ans(S ∪ S′, q) for

a query direction q. As a subroutine, we will include a solution of the previously

solved problem of lowest line queries: given a query vertical line q, find LE(S) ∩ q.

(In primal space, these correspond to extreme point queries.)

The previous data structure. The data structure we use is identical to one

from the author’s previous paper;11 the innovation lies in the query algorithm.

We summarize all the properties we need about the data structure in the theorem

below. Given this theorem as a black box, our solution will be self-contained. The

theorem itself was obtained by a combination of a base-b version of the logarithmic

method,5,11 a known deletion-only data structure,26 and a dynamic bO(1)-ary version

of the interval tree.6,11

Theorem 1. (Ref. 11) Let b ≥ logn be any fixed value. For a dynamic set S of

lines in IR2 that is initially empty and undergoes n insertions and deletions, we

can maintain a tree T (S) of bO(1) degree and O(logb n) height in O(logb n logn)

amortized time with the following properties (see Fig. 2):

(1) Each node v stores a vertical slab σv. At each internal node v, the bO(1) chil-

dren’s slabs partition the slab at v and are maintained in a standard search tree.

At a leaf v, the slab does not contain any vertex of LE(S).

(2) Each node v stores a list Sv of bO(1) lines of S. The lists undergo a total of

O(n logb n) updates over time.
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}Sv

} } } }
.

.

.

LE(Sv1)

LE(Sv2)
LE(Sv3)

σv3

σv2

σv1

σv

Fig. 2. (Left) The data structure consists of a degree-bO(1) tree of slabs, where each node v
stores a list Sv of bO(1) lines. (Right) A path v1, v2, v3, . . . in the tree and the lower envelopes of
Sv1 , Sv2 , Sv3 , . . .; property 3 of Theorem 1 is satisfied in this example.

(3) If v1, . . . , vi is a path from the root (i ≥ 2), then LE(S) ∩ ∂σvi coincides with

LE(Sv1 ∪· · · ∪Svi−1)∩∂σvi ;
a in other words, the lowest line at either boundary

of σvi must be in the list Svj of some proper ancestor vj of vi.

We store each list Sv in an auxiliary data structure that supports updates in

U0(b
O(1)) amortized time, lowest line queries in Qlow0(b

O(1)) time, and LP queries

(over two sets) in Qlp0(b
O(1)) time. By property 2 of Theorem 1, each inser-

tion/deletion causes an amortized O(logb n) number of updates to the lists Sv,

and thus the amortized update time of the whole data structure is

U(n) = O(logb n logn+ U0(b
O(1)) logb n). (1)

Answering lowest line queries with this data structure is relatively straightfor-

ward: We find the root-to-leaf path consisting of all nodes v1, . . . , vℓ whose slabs

contain the query vertical line q. The answer is the line defining LE(S)∩∂σvℓ , which

by property 3 of Theorem 1 is the lowest among the lowest lines of LE(Svi) ∩ ∂σvℓ

over the O(logb n) nodes vi. Thus, we get query time

Qlow(n) = O(Qlow0(b
O(1)) logb n). (2)

The new query algorithm. For LP queries, we need the following locality prop-

erty. This property is implicitly used in known binary search algorithms for solving

LP over the intersection of two convex polygons, and related problems such as

computing common tangents between linearly separated convex polygons.33,34

Lemma 1. Let S and S′ be two sets of lines in IR2. Given two vertical lines ℓ

and ℓ′, and a query direction q, knowing the lowest line of S at ℓ and the lowest

line of S′ at ℓ′ only (but not knowing S and S′ themselves), we can deduce in O(1)

aThroughout this paper, ∂X denotes the boundary of a set X; for example, in the case that X is
a two-dimensional vertical slab, ∂X is the union of two vertical lines.
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ℓ ℓ
′ ℓ ℓ

′

LE(S)

LE(S′)

LE(S)

LE(S′)

Fig. 3. Deciding which side to prune when computing the highest point of LE(S ∪ S′).

time which side of ℓ contains the ans(S ∪ S′, q) or which side of ℓ′ contains the

ans(S ∪ S′, q) (but not necessarily both).

Proof. By applying a linear transformation (x, y) 7→ (x, y − mx) for a suitable

value m, we can make q the vertical upward direction. Let v = LE(S) ∩ ℓ and

v′ = LE(S′)∩ ℓ′. W.l.o.g., suppose ℓ is to the left of ℓ′ and v is higher than v′. If the
lowest line of S′ at ℓ′ has positive slope, then the answer must be to the right of ℓ

(see Fig. 3(left)). Otherwise, the answer must be to the left of ℓ′ (see Fig. 3(right)).

By applying the above lemma a constant number of times, we immediately

obtain this slight generalization:

Corollary 1. Let S and S′ be two sets of lines in IR2. Given two partitions Σ and

Σ′ of IR2 into O(1) disjoint vertical slabs, and a query direction q, knowing the

lowest lines of S at all dividing vertical lines in Σ and the lowest lines of S′ at all
dividing vertical lines in Σ′, we can deduce in O(1) time which slab of Σ contains

ans(S ∪S′, q) or which slab of Σ′ contains ans(S ∪S′, q) (but not necessarily both).

We now describe how to answer an LP query, i.e., find ans(S ∪ S′, q) given a

data structure for S and a data structure for S′. We maintain a sequence of nodes

v1, v2, . . . in T (S) and v′1, v
′
2, . . . in T (S′) whose slabs contain ans(S ∪ S′, q). We

start with the root v1 of T (S) and v′1 of T (S′) and initialize i = i′ = 1. In each

iteration, let

Z = Sv1 ∪ · · · ∪ Svi , Z ′ = S′
v′

1
∪ · · · ∪ S′

v′

i′
, and z = ans(Z ∪ Z ′, q).

We will explain how to compute z later. In O(log b) time, locate the child slab

σ of σvi and the child slab σ′ of σv′

i′
containing z.b Compute the lowest lines

of Z at ∂σ and the lowest lines of Z ′ at ∂σ′, by querying the O(logb n) subsets

Sv1 , . . . , Svi , S
′
v′

1
, . . . , S′

v′

i′
in O(Qlow0(b

O(1)) logb n) time. By property 3 of Theo-

rem 1, these coincide with the lowest lines of S at ∂σ and the lowest lines of S′

at ∂σ′. Apply Corollary 1 for the partition formed by ∂σ (2 vertical lines, 3 verti-

cal slabs) and the partition formed by ∂σ′; the outcome of the corollary for S, S′

must be the same as the outcome for Z,Z ′. Recall that σ and σ′ both contain

bIn this sentence, the two unbounded slabs from the complement of σvi (resp. σv′

i′
) are considered

possible child slabs.
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z = ans(Z ∪ Z ′, q). Therefore, in O(1) time, we can deduce one of the following:

that σ contains ans(S∪S′, q) or that σ′ contains ans(S∪S′, q). In the former case,

we set vi+1 to the child of vi with slab σ and increment i; in the latter, we set v′i′+1

to the child of v′i′ with slab σ′ and increment i′. When both vi and v′i′ are leaves,

we can stop, as the answer is defined by the lowest lines at ∂σvi and ∂σv′

i′
. The

number of iterations is at most twice the tree height, i.e., O(logb n).

It remains to provide a method to compute z in each iteration. The key idea is to

view the ℓ = O(logb n) lower envelopes LE(Sv1), . . . ,LE(Svi),LE(S
′
v′

1
), . . . ,LE(S′

v′

i′
)

as constraints in a convex programming problem where the constraints are not given

explicitly but are accessible only through certain oracles or primitive operations.

(This idea was used in some previous papers, e.g., in a geometric optimization tech-

nique by the author.13) We first recall some facts about convex programming in a

constant dimension d: Given a set of N convex objects in IRd, suppose we want to

minimize a convex function over the intersection of these objects. Existing random-

ized algorithms for LP-type problems19,35 can solve this problem using an expected

linear number of primitive operations. Only two types of primitive operations are

required:

• violation test : decide whether a given point lies outside a given object; and

• basis evaluation: find the optimum over the intersection of d given objects.

It is known that an expected O(N) number of violation tests and an expected

O(logN) number of basis evaluations are sufficient.

In our setting, the objective function is linear, the convex objects are the poly-

gons formed by the lower envelopes of Sv1 , . . . , Svi , S
′
v′

1
, . . . , S′

v′

i′
, and N = i + i′ =

O(ℓ). A violation test corresponds to testing whether a given point lies above a

lower envelope, which reduces to a lowest line query, requiring Qlow0(b
O(1)) time. A

basis evaluation corresponds to an LP query over two subsets, requiring Qlp0(b
O(1))

time. We conclude that z can be computed in O(ℓ ·Qlow0(b
O(1))+ log ℓ ·Qlp0(b

O(1)))

expected time. The total expected time over all iterations is

Qlp(n) = O(logb n · [Qlow0(b
O(1)) logb n+Qlp0(b

O(1)) log logb n]). (3)

Analysis. We can now obtain a near-logarithmic solution by bootstrapping. As-

sume the availability of a solution with U0(n) ≤ ck(logn)
1+1/k, Qlow0(n) ≤ ck logn,

and Qlp0(n) ≤ ck(logn)
1+1/k(log logn)k. We can use Overmars and van Leeuwen’s

method for the base case k = 1 (alternatively we can use a more trivial base case

with some extra bootstrapping steps). Substituting into (1), (2), and (3) gives

U(n) = O(logb n logn+ ck(log b)
1+1/k logb n)

= O(log2 n/ log b+ ck logn(log b)
1/k)

Qlow(n) = O(ck log b logb n) = O(ck logn)

Qlp(n) = O(logb n · [ck log b logb n+ ck(log b)
1+1/k(log log b)k log logb n])

= O(ck log
2 n/ log b+ ck logn(log b)

1/k(log logn)k+1).
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Choosing b with log b = (logn)k/(k+1) yields the improved bounds U(n) =

O(ck(logn)
1+1/(k+1)) and Qlp(n) = O(ck(logn)

1+1/(k+1)(log logn)k+1). Thus,

induction can be carried out if we set ck+1 = O(ck), i.e., ck = 2O(k). We

obtain update and query time 2O(k)(logn)1+1/k(log logn)k. Setting k to an

arbitrarily large constant is sufficient to give O(log1+ε n). Better still, setting

k =
√
log log n/ log log logn gives:

Theorem 2. There is a dynamic data structure for 2-d LP queries in the lower

envelope of n lines with 2O(
√
log log n log log log n) logn amortized update time and ex-

pected query time.

Remarks. For the above theorem, a straightforward upper bound on the space

complexity is 2O(
√
log logn log log logn)n. The version of the data structure with

O(log1+ε n) time can guarantee O(n) space.

It is not important whether n denotes the number of updates or the size of

S, since we can apply the following standard trick: we maintain a counter for the

number of updates, and whenever the counter exceeds twice the current size of S,

we rebuild by performing |S| insertions on an empty data structure and reset the

counter to |S|. Since a linear number of updates must occur between two rebuilds,

the amortized update time remains the same up to constant factors.

We can slightly simplify the algorithm to compute z by observing that in each

iteration, Z differs by the insertion of one constraint. If z does not violate the new

constraint, then z does not change. Otherwise, we know that the new z lies on the

boundary of this new constraint, and it suffices to solve a 1-d LP-type problem

on this boundary. (In 1-d, LP reduces to finding the minimum of a set of num-

bers, and the method becomes similar to the randomized optimization technique

in Ref. 9.)

Extension to other queries. The problem of finding the intersection of the con-

vex hull with an arbitrary query line (type-(g) queries) dualizes to the following

kind of queries: given a query point q, find a point v on LE(S) to the right of q such

that the line qv has the largest slope. This problem is LP-type and Lemma 1 is still

satisfied (we can first make q the origin by translation, and then apply a projective

transformation (x, y) 7→ (−1/x, y/x) to reduce the problem to the LP case with the

vertical upward direction). So the same method works.

The same applies to finding the intersection of the convex hull of P ∪ P ′ with
an arbitrary query line for two dynamic point sets P and P ′. In particular, we can

compute the two bridges (i.e., the two outer common tangents) between two disjoint

convex hulls if a separating line (e.g., a separating common tangent) is given.

The problem of finding the two separating common tangents between two dis-

joint convex hulls (to complete the solution of type-(h) queries) dualizes to comput-

ing the two intersections between a lower envelope of a set S of lines and an upper

envelope of a set S′ of lines. It suffices to find the left intersection. An analog of
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Lemma 1 (where concerning S′, we replace “lower/lowest” with “upper/highest”)

is still satisfied, and we obtain the same result.

The same applies to LP queries over an intersection of arbitrary (lower and

upper) halfplanes, i.e., the region between the lower envelope of a set S of lines

and the upper envelope of a set S′ of lines. Here, the answer can be one of four

possibilities: the optimum for the lower envelope alone or for the upper envelope

alone, or one of the two intersections between the two envelopes.

The approach here is not applicable to certain types of convex hull queries, for

example, maintaining the area or the perimeter of the convex hull, where currently

only Overmars and van Leeuwen’s technique is applicable.

3. Dynamic Halfplane Range Reporting

In this section, we solve Problem 2, dynamic halfplane range reporting in IR2.

It suffices to consider upper halfplanes. If the input points are (ai, bi) and the

query halfspace is y ≥ ξx − η, then the problem is equivalent to finding all i with

bi ≥ ξai − η. We work in terms of the dual input lines {(ξ, η) : η = aiξ − bi}, where
the problem becomes the following: maintain a set of lines in IR2 under insertions

and deletions so that we can report all lines below a query point (ξ, η). We work

with the following related query problem called k-lowest-lines queries: given a query

vertical line q and an integer k, report the k lowest lines at q, in arbitrary order.

(In primal space, this corresponds to k-extreme-points queries.) Halfplane range

reporting reduces to this problem by “guessing” k (e.g., see Ref. 10): we use an

increasing sequence of values for k and stop when an output line lies above the

query point. If k-lowest-lines queries can be answered in O(log n+ k) time, we can

use the sequence k = 2i logn, i = 0, 1, 2 . . . and obtain O(log n + k) time for a

halfplane range reporting query with output size k.

The previous data structure. The data structure we use is an adaptation of a

previous one by the author, originally for dynamic 3-d convex hulls.14 We encap-

sulate all the properties we need about the data structure in the theorem below.

The theorem itself was obtained from a new deletion-only “partial” data structure

involving a hierarchy of shallow cuttings, which is then combined using a variation

of the logarithmic method. For the details, see Ref. 14 along with the small changes

noted in the appendix.

Theorem 3. (Ref. 14) Let b ≥ 2 be any fixed value. For a dynamic set S of

lines in IR2 that is initially empty and undergoes n insertions and deletions, in

O(bO(1) log6 n) expected amortized time, we can maintain a collection of cuttings

T
(j)
i , i = 1, . . . , ⌈logn⌉, j = 1, . . . , O(logb n) with the following properties (see

Fig. 4(left)):

(1) Each cutting T
(j)
i is a set of O(2i) interior-disjoint cells, where each cell is

a trapezoid containing the point (0,−∞). Each cutting is static, i.e., does
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∆
}L∆

q

Fig. 4. (Left) A cutting T
(j)
i . One cell ∆ is shaded, for which we store a list L∆ of lines. The

data structure consists of O(logn logb n) such cuttings, one for each i = 1, . . . , ⌈logn⌉ and j =

1, . . . , O(logb n)). (Right) The x-projection of several cuttings T
(j)
i ; a query requires searching

among these projected intervals over all j for a fixed i.

not change, although a cutting T
(j)
i may on occasion be replaced with a new

one created from scratch. The total size of all cuttings created over time is

O(bO(1)n log4 n).

(2) Each cell ∆ ∈ T
(j)
i is associated with a list L∆ of O(n/2i) lines of S. Each list

L∆ undergoes deletions only after its creation. The total size of all lists created

is O(bO(1)n log5 n).

(3) Let ik := ⌈log(n/Ck))⌉ for a sufficiently large constant C. If a line h is among

the k lowest lines at a vertical line q, then for some j, h is in the list L∆(j) of

the cell ∆(j) ∈ T
(j)
ik

intersecting q.

The above theorem immediately gives a dynamic method for k-lowest-lines

queries: according to property 3, given a query vertical line q, we can simply find

the cell ∆(j) ∈ T
(j)
ik

intersecting q for each j, search for the k lowest lines in each

list L∆(j) by “brute force”, and return the k lowest among all the lines found. The

x-projection of each cutting T
(j)
i is a 1-d subdivision, and so we can locate the cell

∆(j) for each j in O(log n) by binary search. Since |L∆(j) | = O(n/2ik) = O(k),

the total query time is O((log n + k) logb n). Setting b = 2, we obtain O(log6 n)

amortized expected update time and O(log2 n+ k logn) query time.

The refined data structure and query algorithm. To improve the query time,

we propose a simple idea: store the lists L∆ in auxiliary data structures. Specifi-

cally, we store each L∆ in a data structure that supports k-lowest-lines queries in

O(Q0(|L∆|)+k) query time and U0(|L∆|) update time. By property 2 of Theorem 3,

each insertion/deletion causes an O(bO(1) log5 n) amortized number of updates to

the lists L∆, and thus the amortized expected update time becomes

U(n) = O(bO(1) log6 n+max
m≤n

U0(m) · bO(1) log5 n). (4)

Brute force search in L∆(j) can be replaced by a query in an auxiliary structure.

The query time becomes

Q(n) = O([log n+Q0(O(k))] logb n+ k).

The logn logb n term in the Q(n) expression is a bottleneck that prevents us from

getting optimal query time (b must be at most polylogarithmic if we are aiming for
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polylogarithmic update time). The logn logb n term arises from O(logb n) binary

searches to locate the cells ∆(j) for all j.

We need a second idea to speed up these binary searches. We can use dynamic

fractional cascading here, but we suggest a simpler alternative: dynamic interval

trees.6,29 For each i = 1, . . . , ⌈logn⌉, we store the intervals of the x-projection of

the cuttings T
(j)
i over all j’s (see Fig. 4(right)) in an interval tree Ti. With interval

trees, we can support insertions and deletions of intervals in O(log n) time and

report all K intervals containing a query point in O(log n+K) time. We can thus

maintain all the Ti’s in additional amortized update time O(log n · bO(1) log4 n), and

locate the cells ∆(j) ∈ T
(j)
ik

over all j = 1, . . . , ⌈logb n⌉ in O(log n + logb n) time.

The overall query time is

Q(n) = O(log n+Q0(O(k)) logb n+ k). (5)

Analysis. For m ≥ log1/ε n, we use a known method4,28 with Q0(m) = O(m1−ε)

and U0(m) = O(logm). For m < log1/ε n, we switch to a static method10,17 with

Q0(m) = O(logm) and U0(m) = mO(1). Substituting into (4) and (5) and setting

b = logε n give U(n) = O(polylog n) and

Q(n) =

{
O(log n+ k1−ε logn+ k) if k ≥ log1/ε n

O(log n+ log k logn
log logn + k) if k < log1/ε n

= O(log n+ k). (6)

The update time can be improved by another bootstrapping step. For m ≥
log1/ε n, as before we use Q0(m) = O(m1−ε) and U0(m) = O(logm). For

m < log1/ε n, this time we use Q0(m) = O(logm) and U0(m) = O(polylogm).

Again we set b = logε n. Then Q(n) = O(log n + k) as in (6), but (4) now gives

U(n) = O(log6+O(ε) n).

Theorem 4. There is a dynamic data structure for 2-d halfplane range reporting

with O(log6+ε n) amortized expected update time and O(log n+ k) query time.

The space usage is proportional to the total current size of all the lists L∆, which

is O(n log n).14 Perhaps additional ideas could lower the O(n log n) space bound;

we leave this as an open problem.

Extensions to 3-d and dominance/orthogonal range reporting. For 3-d

halfspace range reporting, finding the cell ∆(j) reduces to 2-d point location in

the xy-projection of the cutting T
(j)
i . This time, we do not know how to improve

the logn logb n term arising from the O(logb n) planar point location queries. For

b = logε n, the query time is now O(log2 n/ log log n+ k).

The 3-d dominance range reporting problem can be solved by the same tech-

niques as 3-d halfspace range reporting, due to similarity of lower envelopes of planes

and lower envelopes of dominance ranges (orthants); e.g., see Ref. 1. Cells are now

axis-aligned boxes, and the required planar point location queries are for orthogonal
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subdivisions. By a recent result of the author,15 2-d orthogonal point location can

be solved in O(log logn) time with O(n) preprocessing, if we are given the x- and

y-ranks of the query point with respect to the given subdivision. We can again use

dynamic interval trees (for x and y) to search for the x- and y-ranks of the query

point with respect to T
(j)
ik

over all j = 1, . . . , ⌈logb n⌉ in O(log n+ logb n) time. So,

the logn logb n term reduces to O([log n+ logb n] + log log n logb n). For b = logε n,

the query time is thus O(log n+ k).

The 3-d j-sided orthogonal range reporting problem reduces to 3-d (j− 1)-sided

range reporting by standard binary divide-and-conquer (e.g., see Ref. 30), where

the update time (but not the query time) increases by a logarithmic factor. Thus,

3-d general (6-sided) orthogonal range reporting reduces to 3-d dominance range

reporting, where the update time increases by a log3 n factor.

In higher dimensions, general orthogonal range reporting reduces to range re-

porting in one dimension lower by a dynamic b-ary range tree,6,29 where the update

time increases by a factor of bO(1) logb n and the query time increases by a factor of

logb n. We can set b = logε n to keep the update time polylogarithmic.

Theorem 5. There is a dynamic data structure for 3-d halfspace range report-

ing with O(log6+ε n) amortized expected update time and O(log2 n/ log logn + k)

query time. There is a dynamic data structure for 3-d dominance range report-

ing with O(log6+ε n) amortized expected update time and O(log n + k) query

time. There is a dynamic data structure for d-d orthogonal range reporting for

any constant d ≥ 3 with O(logd+6+ε n) amortized expected update time and

O((log n/ log logn)d−3 logn+ k) query time.

4. Semi-Dynamic Lower Envelopes of Line Segments

In this section, we solve Problem 3. The problem is to maintain a set S of n line

segments under insertions to answer the following types of queries (which we call

type-(v) and type-(vi) queries in the Introduction):

• segment query: decide whether a query line segment is completely above the lower

envelope LE(S); and

• ray shooting query: given a query ray originating from a point above LE(S), find

the first point on LE(S) that is hit by the ray.

Segment queries can be viewed as a decision version of ray shooting queries. Inter-

estingly, our update algorithm will rely on our query algorithm in a crucial way.

Preliminaries. To develop intuition, it is helpful to keep in mind the special case of

a segment query where the segment is a line. Here, the query is equivalent to deciding

whether a line is completely above the upper hull of LE(S), denoted UH(LE(S)). Al-

though LE(S) can change drastically in an insertion, we will show that UH(LE(S))

is easier to update.
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One ingredient we use is Overmars and van Leeuwen’s hull tree structure.33 A

hull tree for a point set consists of a pointer to a hull tree for the subset of points to

the left of a dividing vertical line ℓ, a pointer to a hull tree for the subset of points

to the right of ℓ, and a pointer to the bridge at ℓ (the common tangent of the two

subhulls). Standard operations such as intersecting a hull with a line and merging

two vertically separated hulls can be performed by binary search in logarithmic

time if the heights of the hull trees are logarithmically bounded.33,34

Another tool we need is a standard data structure for storing a set of line seg-

ments — the segment tree.34 Our data structure will involve an unusual adaptation

of the segment tree. Recall the following standard definitions: given a segment s

that intersects a vertical slab σ, s is short in σ if at least one endpoint of s is inside

σ; s is long otherwise (i.e., if s completely cuts across σ). A traditional segment tree

can be recursively described as follows: given a set S of line segments and a vertical

slab σ (at the root, σ is the entire plane), we store the set Slong of all long segments

of S at the current tree node, divide σ into two subslabs σ1 and σ2, and recursively

build the data structure for the set Si of all short segments of S intersecting the

subslab σi for each i ∈ {1, 2}. Our data structure will be more intricate: first, we

need to use a tree of degree b higher than 2 and maintain auxiliary data structures

concerning Slong; second, and more intriguingly, because we are unable to handle

all the long segments directly, we need to pass a certain (hopefully small) number

of long segments to the sets Si to be handled recursively.

The data structure. Let b be a fixed value to be set later. Let P be a given set of

points (possible endpoints of line segments). Given a set S of line segments whose

endpoints are from P and a vertical slab σ with at most m points of P inside, we

describe our data structure for S and σ recursively as follows (at the root, σ is the

entire plane):

• Let Sshort = {s ∈ S | s is short in σ} and Slong = {s ∈ S | s is long in σ}.
• Store the concave chain L = LE(Slong) ∩ σ in a standard search tree. For each

s ∈ Slong, define its reduced segment s̃ to be the segment delimited by the leftmost

point and the rightmost point on s lying on LE(S)∩σ, if such points exist. Observe

that the reduced segments all lie on L. See Fig. 5(left).

• If m > 0, divide σ into O(b) subslabs σ1, σ2, . . . (indexed from left to right), each

with at most m/b points of P inside. For each σi:

– Recursively store a data structure for a subset Si ⊆ S and the subslab σi,

where we maintain the invariant

Si ⊇ {s ∈ Sshort | s intersects σi} ∪ {s ∈ Slong | s̃ is short in σi}.

– Observe that there is at most one segment s ∈ Slong such that s̃ is long in σi.

If such an s exists, call s the special segment of σi and mark σi as special. See

Fig. 5(middle).
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* * *

Fig. 5. (Left) The long segments are shown as solid lines cutting across a vertical slab. The lower
envelope of the short segments are drawn “abstractly” in dotted lines. The reduced segment of each
long segment is highlighted in bold. (Middle) Another example showing just the lower envelope
L of the long segments, together with the reduced segments all lying on L; subslabs marked *
are special. (Right) Inserting a new segment causes the recomputation of two existing reduced
segments.

Clearly, Si includes all segments that participate in LE(S) ∩ σi, except possibly

for the one special segment. In particular, if σi is not special, then LE(S) ∩ σi =

LE(Si) ∩ σi. On the other hand, if σi is special, then no vertices inside σi can

participate in UH(LE(S) ∩ σ), since the reduced special segment is an edge of

this upper hull and has endpoints outside σi.

• Store U = UH(LE(S) ∩ σ) in a hull tree of logarithmic height. By the above

observations, special slabs do not affect U and we have the key identity

U = UH


 ⋃

σi not special

UH(LE(Si) ∩ σi)


 . (7)

• Finally, store the subhulls Uj,k = UH(
⋃k

i=j UH(LE(Si) ∩ σi)) in a hull tree of

logarithmic height for each index pair j, k.

Let n denote the maximum number of segments overall.

Segment queries. We can decide whether a query segment s is completely above

LE(S) ∩ σ as follows:

(1) Compute the intersection of s with the region underneath L; the result is a

clipped segment which we denote by s′.
It suffices to decide whether s′ is completely above LE(Sshort) ∩ σ. This is

equivalent to deciding whether s′ is completely above LE(Si) ∩ σi for every

subslab σi intersected by s′; this will be described in the next step. (If m = 0,

the answer is yes iff s′ = ∅.)
(2) Suppose that s′ is short in two subslabs, say, σj and σk. (The case where s′

is short in just one subslab is similar.) Directly decide whether s′ is above

Uj+1,k−1, and recursively decide whether s′ is completely above LE(Sj)∩σ and

LE(Sk)∩σ. Then the answer to the original query is yes iff the answers to these

queries are all yes.
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For the analysis, note that computing s′ (intersecting a concave chain with a

line) and querying Uj+1,k−1 (intersecting a hull with a line) can be handled by

binary search in logarithmic time.33,34 Letting Qseg(m) denote the query time for

a slab σ with at most m points of P , we obtain the recurrence

Qseg(m) = 2Qseg(⌊m/b⌋) +O(log n),

with Qseg(0) = O(log n). This recurrence solves to Qseg(m) = O(2logb m logn).

Ray shooting queries. Given a query ray originating from above LE(S) ∩ σ, we

can find the first point on the ray that lies on or LE(S)∩σ as follows (we could use

parametric search3 but the following is simpler):

Use binary search and the segment query algorithm to identify the subslab σi

containing the desired point. Then recursively answer the query in σi. (Ifm = 0,

the answer can be found directly by a ray shooting query on L.)

The query time Qray(m) then obeys the recurrence

Qray(m) = Qray(⌊m/b⌋) + O(log b)Qseg(m),

with Qray(0) = O(log n). This yields Qray(m) = O(2logb m log b logn).

Segment insertion. The insertion of a new segment s proceeds in two stages:

first, the two endpoints of s are inserted to P ; second, the segment s are inserted

to S under the assumption that the two endpoints of s are already in P . Below is

the algorithm for the second stage (segment insertion to S); we will describe the

algorithm for the first stage (endpoint insertion to P ) later.

For a given segment s and slab σ:

(1) Compute the (at most two) intersections of L with ∂τ , where τ denotes the

region above s (an unbounded trapezoid). See Fig. 5(right).

(2) For each s′ ∈ Slong defining an intersection found in step 1, recompute the

reduced segment s̃′ and recursively insert s′ to Si for each subslab σi where s̃′

is short. Observe that other reduced segments need not be updated, as those

completely inside τ are now non-existent and those completely outside τ are

unchanged.

(3) If s is long in σ, compute the reduced segment s̃ and recursively insert s to Si

for each subslab σi where s̃ is short. Update L.

(4) If s is short in σ, recursively insert s to Si for each subslab σi intersected by s.

(5) Update the specialness marks of the subslabs.

(6) Update U by repeated merging according to (7). Similarly update the Uj,k’s.

We now analyze the cost of this algorithm. Step 1 takes logarithmic time by

binary search on a concave chain. There are at most two candidates for s′ and

In
t. 

J.
 C

om
pu

t. 
G

eo
m

. A
pp

l. 
20

12
.2

2:
34

1-
36

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

06
.1

88
.6

6.
16

8 
on

 1
1/

20
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



October 17, 2012 17:2 WSPC/Guidelines S0218195912600096

Three Problems about Dynamic Convex Hulls 359

thus at most fourc recursive calls in step 2; there are at most two recursive calls in

step 3. The computation of a reduced segment (steps 2 and 3) corresponds precisely

to answering a ray shooting query in LE(S) ∩ σ from each of the two endpoints, a

problem which we have conveniently solved. The concave chain L can be updated

in logarithmic (worst-case) time by splitting at the (at most two) intersections of L

with s (as in a standard insertion-only algorithm for convex hulls34 when dualized).

Step 4 requires O(b) recursive calls, but the inserted segment is short in at most

two of the subslabs in these calls. Step 5 can be done in O(b) time. In step 6, each

hull tree U or Uj,k can be computed naively by O(b) merges of existing hull trees

at the subslabs, in O(b logn) time. (Note that these O(b2) trees may share common

subtrees, so the entire data structure is not a tree but a dag; this does not affect

the query algorithms.) We can indeed guarantee that the maximum height of the

hull trees is O(log n) if the O(b) merges are done in a balanced fashion, so that the

height increase is O(log b) at each of the O(logb m) levels of the recursion.

Letting Ulong(m) (resp. Ushort(m)) denote the insertion time when the given

segment s is long (resp. short) in σ, we obtain the following pair of recurrences:

Ulong(m) = 6Ulong(⌊m/b⌋) +O(Qray(m) + b3 logn)

Ushort(m) = 2Ushort(⌊m/b⌋) +O(r)Ulong(⌊m/b⌋) +O(Qray(m) + b3 logn),

with Ulong(0), Ushort(0) = O(log n).

The first recurrence solves to Ulong(m) ≤ 2O(logb m)bO(1) logn. The second recur-

rence then gives Ushort(m) ≤ 2O(logb m)bO(1) logn. We conclude that a segment can

be inserted in Useg(m) ≤ 2O(logb m)bO(1) logn time assuming that endpoints have

already been inserted.

Endpoint insertion. To complete the description of the insertion algorithm, we

now describe how to insert a new endpoint p to the set P (the first stage). We use

a standard partial-rebuilding technique.29,32 For a given point p in a slab σ:

(1) Recursively insert p in the subslab σi containing p.

(2) If the number of points of P inside σi exceeds m/r, then rebuild the data

structure at σ in a manner where each slab is divided into 2r subslabs with

equal number of points of P inside, and all segments in S are then reinserted

from scratch.

Note that the rebuilding step requires O(m) segment insertions but can occur

only after at least ⌊m/2b⌋ endpoint insertions. The amortized cost of each endpoint

insertion, Uendpt(m), thus satisfies

Uendpt(m) = Uendpt(⌊m/b⌋) +O((b/m) ·mUseg(m)),

which solves to Uendpt(m) ≤ 2O(logb m)bO(1) logn.

cActually, at most two of the four endpoints of the reduced segments can change, so the number
of recursive calls here can be reduced to two.

In
t. 

J.
 C

om
pu

t. 
G

eo
m

. A
pp

l. 
20

12
.2

2:
34

1-
36

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

06
.1

88
.6

6.
16

8 
on

 1
1/

20
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



October 17, 2012 17:2 WSPC/Guidelines S0218195912600096

360 T. M. Chan

Finally, setting b = nε gives Qseg(m) = O(log n), Qray(m) = O(log2 n),

and Useg(m), Uendpt(m) = O(nO(ε)). Alternatively, setting r = 2
√
logn gives

Qseg(m), Qray(m), Useg(m), Uendpt(m) = 2O(
√
log n).

Theorem 6. There is an insertion-only data structure for Problem 3 with O(log n)

time for segment queries, O(log2 n) time for ray shooting queries, and O(nε) amor-

tized insertion time. Alternatively, we can obtain 2O(
√
logn) query and amortized

insertion time.

The space usage is 2O(logb m)n, which isO(n) in the first structure and 2O(
√
logn)n

in the second structure of the above theorem.

Extension to the semi-online dynamic case. Our data structure does not seem

to cope with arbitrary deletions well, because a single deletion may reveal a large

number of new reduced segments in unpredictable ways. However, we can extend

the insertion-only result to the semi-online dynamic setting, where both insertions

and deletions are allowed but during each insertion, we are told the position of the

corresponding deletion in the update sequence. This extension follows from a general

simple transformation, using a segment tree of time intervals. The segment tree idea

has been used before for offline22 and semi-online21,23 dynamic data structures for

decomposable search problems, but the formulation in the lemma below for general

non-decomposable problems has not been explicitly stated before, to the author’s

knowledge:

Lemma 2. Given a data structure for a problem that supports insertions and the

undo operation (i.e., deletion of the most recent element in the current set) in

O(U(n)) time, there is a semi-online dynamic data structure with O(U(n) log n)

amortized update time.

Proof. We first consider the design of an offline data structure. Given an offline

sequence of n updates, build a segment tree34 over the time intervals of the elements

(the left/right endpoint correspond to the insertion/deletion time of an element),

where the i-th leaf vi (in left-to-right order) correspond to the i-th update in the

sequence. Each time interval is stored in O(log n) nodes in the tree. Let Sv denote

the subset of elements whose time intervals are stored at node v of the tree. The

current set at the time of the i-th update is equal to the (disjoint) union of Sv over

all nodes v from the root to the leaf vi.

At the i-th update, let u be the lowest common ancestor between vi−1 and vi. We

can execute the update simply by undoing the insertions of the elements in Sv over

all nodes v from vi−1 up to u’s left child, then inserting the elements in Sv over all

nodes from u’s right child down to vi. The total number of insertions/undos is equal

to the total size of all the Sv’s, which is O(n log n). This implies the O(U(n) log n)

amortized bound.
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The same reduction works in the semi-online case, by building the segment tree

online. At the time of the i-th update, we know Sv for all nodes v from the root to

vi, because deletion times are given for all the elements inserted so far.

The above lemma is applicable to our data structure, because it supports undos.

The main observation is that our insertion time bound is worst-case, not amortized,

if we ignore endpoint insertion. Thus, by keeping a transcript of the changes made

during each insertion, we can undo an insertion with the same cost. We do not

need to undo endpoint insertions in P , since extra endpoints in P do not affect

the correctness of the query algorithm. (Besides, the endpoint insertion part can be

de-amortized by standard techniques.29,32) The extra log factor is absorbed by the

nε or 2O(
√
logn) bound.

Application to partial visibility in terrains. Given a triangulated terrain T

in IR3 of size n and a viewpoint q, we consider the problem of identifying all faces

of T which are partially visible from q.

First, we observe that it suffices to address the case where q = (−∞, 0, 0). To

see this, first we can make q the origin by translation. It suffices to consider the part

of the terrain inside {(x, y, z) : x > 0}, since the other part can be handled sym-

metrically. Apply a projective transformation (x, y, z) 7→ (−1/x, y/x, z/x). Vertical

lines are mapped to vertical lines, so the terrain remains a terrain. Lines through

the origin are mapped to lines parallel to the x-axis, i.e., lines through the point

(−∞, 0, 0).

Let f1, . . . , fn be the faces of the terrain and let f̂i denote the projection of fi
onto the xy-plane. First find an ordering of f1, . . . , fn such that whenever f̂i is to

the left of f̂j along some horizontal line, we have i < j. Since the f̂i’s are disjoint

2-d convex sets (triangles), such a permutation, called a depth order, is known to

exist and can be computed in O(n logn) time.25

To test the partial visibility of fi from q = (−∞, 0, 0), we only need to consider

obstructions caused by f1, . . . , fi−1. More precisely, let f ′
i be the region below fi

(an unbounded tetrahedron) and let f ′′
i be the projection of f ′

i onto the yz-plane

(a union of at most two unbounded trapezoids). Then fi is partially visible iff f ′′
i

is not completely contained in f ′′
1 ∪ · · · ∪ f ′′

i−1, i.e., ∂f
′′
i is not completely below the

upper envelope of ∂f ′′
1 , . . . , ∂f

′′
i−1. Thus, we can determine whether fi is partially

visible for all i by inserting the O(n) segments ∂f ′′
1 , . . . , ∂f

′′
n in that order to a

dynamic 2-d upper envelope data structure, and answering O(n) segment queries.

By Theorem 6, the problem can be solved in n2O(
√
logn) time.
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Appendix A. On Theorem 3

The constant b case of Theorem 3 follows directly from the the dynamic 3-d convex

hull method in Ref. 14, after specialization to 2-d, as we now explain. We assume

that the reader has Ref. 14 handy. The cuttings T
(j)
i are just the Ti’s from the paper,

taken over each of the O(log n) partial data structures S. The list L∆ corresponds

to (Slive)∆.

The proof of Lemma 6.1 in Ref. 14 shows that in a partial data structure, if h is

among the k lowest lines of S at a vertical line q and h ∈ Slive, then h∩ q lies inside

the cell ∆ ∈ T⌈log(|S|/8ck)⌉ that intersects q; in particular, h ∈ (Slive)∆ for this cell

∆. Hence, property 3 of Theorem 3 follows. (Minor note: for |S| ≪ n, indices i of

the Ti’s technically should be shifted to match the setup in Theorem 3.)

The generalization for nonconstant b requires only a few adjustments of pa-

rameters. In line 4 of construct(S) from Section 3 in Ref. 14, we replace 4c′⌈logn⌉
with (2c′/α)⌈logn⌉ for an appropriate parameter α. This would guarantee that

construct(S) puts at least (1 − α)n planes in Slive. In Section 4 in Ref. 14, we

change the definition of depth from ⌊log |Slive|⌋ to ⌊logb |Slive|⌋, to ensure that the

number of partial data structures at any time is O(logb n). We merge whenever there

are 2 (rather than 16) subsets of the same depth. (Note the different meaning of b in

the paper.) In the proof of Theorem 4.1(a) in Ref. 14, the potential increase caused

by an insertion is now given by the following expression, where p = |S(1)
live| + |S(2)

live|
and bk ≤ |S(1)

live|, |S
(2)
live| < bk+1 (which imply |S(1)

live|, |S
(2)
live| ≤ b

b+1p):

∞∑

j=0

(1− α)αjp log[(1 − α)αjp] −
2∑

i=1

|S(i)
live| log |S

(i)
live|

≥ (1− α)p log[(1− α)p]

∞∑

j=0

αj − (1− α)p log(1/α)

∞∑

j=0

jαj − p log[bp/(b+ 1)]

= p log[(1− α)p] − [αp log(1/α)]/(1− α) − p log[bp/(b+ 1)] = Ω(p/b),

by setting α = 1/b1+ε, for example. The rest of the amortized analysis thus goes

through after readjusting bounds by polynomial factors in b.
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3. P. K. Agarwal and J. Matoušek, Ray shooting and parametric search, SIAM J. Com-

put. 22 (1993) 794–806.
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