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Abstract 

This note gives a short proof of a sampling lemma used by Karger, Klein, and Tatjan in the analysis of their randomized 
linear-time algorithm for minimum spanning trees. 0 1998 Published by Elsevier Science B.V. All rights reserved. 
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1. Background 

The problem of computing the minimum spanning 
tree in a weighted undirected graph has a long history, 
but a linear-time solution is realized only recently 
from the work of Karger et al. [2]. Their algorithm is 
randomized and works under a restricted RAM model 
of computation where the only allowable operations 
on the weights are comparisons. The basic idea is 
prune-and-search: one recursively applies (i) Boruvka 
steps to reduce the number of vertices by a constant 
factor, and (ii) random-sampling steps to reduce the 
number of edges. 

The novelty of the algorithm lies in (ii), and to be 
more explicit, we need a definition. Let G = (V, E) 

be the given connected graph with n vertices and m 

edges. An edge (u, v) is said to be light with respect to 

a spanning tree T if (u, V) E T or (u, V) has a smaller 

weight than some edge along the path from u to IJ in T. 

As is easily observed, edges that are not light cannot 
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be in the minimum spanning tree and can therefore be 
pruned. The light edges can be identified in linear time 
by known techniques for verifying minimum spanning 
trees. 

The key idea behind the algorithm is to choose 
T to be the minimum spanning tree of a random 

sample R c E (computable by another recursive 
invocation). It turns out that the expected number of 
light edges with respect to T is sufficiently small so 
that with a proper choice of sample size, the overall 
expected running time of the algorithm is O(m). 

Karger’s et al. proof of this sampling lemma requires 
a simulation of Kruskal’s algorithm; essentially the 
same approach is taken in all subsequent descriptions 
that the author is aware of at the time of this writing [ 1, 
31. Here we present an arguably simpler, more intuitive 
proof of a variant of this lemma. 

Before giving a precise statement of the lemma, we 
have to deal with two minor technical issues. First, 
to ensure that the minimum spanning tree is indeed 
unique, we assume that no two edge weights are equal. 
Such a nondegeneracy assumption poses no problem 
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if ties are broken in a consistent manner. Second, to 
ensure that the minimum spanning tree exists, we need 

connectedness of the sample subgraph. One remedy of 
this problem is to fix a spanning tree TO of G (which 

has only n - 1 edges) and consider the minimum 

spanning tree of R U To, which we will denote by 
MST(R). Our lemma is the following: 

Lemma 1.1 (Sampling Lemma). For a random subset 

R c E of size r, the expected number of edges that are 

light with respect to MST(R) is less than mn/r. 

Our proof of Lemma 1.1 makes use of the following 

simple characterization of light edges: 

Observation 1.2. An edge e is light with respect to 

MST(R) ifand only ife E MST(R U (e}). 

Proof. Straightforward. To be self-contained, we in- 

clude a proof sketch of the direction we will use, 
namely, the “only if” part. 

Assume e $ MST(R U (e)) and note that MST(R U 

{e}) = MST(R). If e is light with respect to MST( R U 

(e}), then e has a smaller weight than another edge e’ 

in some cycle of MST( R U (e}) U {e}. But replacing 

e’ with e in the spanning tree MST(R U {e}) would 

yield a spanning tree with a smaller weight: a contra- 

diction! q 

2. Proof of the Sampling Lemma 

Pick a random edge e E E (independent of R). It 
suffices to show that e is light with respect to MST(R) 

with probability less than n/r. By Observation 1.2, we 
only have to bound the probability that e E MST(R U 

(el). 

Let R’ = R U (e}. We take an approach called 
“backwards analysis”: instead of adding a random 
edge to R, we imagine deleting a random edge 
from R’. Since e is equally likely to be any element 

in R’ and MST(R’) has precisely n - 1 edges, the 
probability that e E MST(R’) conditioned to fixed 
choice of R’ is at most (n - l)/]R’] < n/r. As 
this upper bound does not depend on R’, it holds 
unconditionally and the result is proved. q 

3. Comments 

Lemma 1.1 differs from Karger’s et al. version 
of the sampling lemma in several points. First, they 
obtain the subset R by Bernoulli sampling, i.e., by 

selecting each edge independently with probability 
r/m. Second, they prove not just an expected bound 
but also a high-probability bound. Third, they avoid 
the issue of connectedness in the sample subgraph by 
considering minimum spanning forests. In the interest 
of preserving the simplicity of our proof, we have 
ignored these modifications. 

It is unclear why this simple proof has been missed. 
In fact, a weaker form of Observation 1.2 was al- 
ready noted in the original paper by Karger [ 11: an 
edge e is light with respect to MST(R) precisely when 
e E MST(MST(R) U {e)). In Karger’s matroid termi- 

nology, e is said to improve the basis MST(R). 
On the other hand, it is easily proved that given 

e 4 MST(R), the edge e is light with respect MST(R) 
if and only if MST(R U {e}) # MST(R). In Sharir 
and Welzl’s framework of “LP-type problems” [6], the 
condition can be interpreted as saying that e violates 
R, or equivalently, e violates the basis MST(R). This 
connection could explain why backwards analysis- 

a popular technique in computational geometry and 
low-dimensional linear programming [3-5]-would 
find an application here. 
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