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All-Pairs Shortest Paths for Unweighted Undirected
Graphs in o(mn) Time
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We revisit the all-pairs-shortest-paths problem for an unweighted undirected graph with n vertices and m
edges. We present new algorithms with the following running times:⎧⎨

⎩
O(mn/ log n) if m > n log n log log log n
O(mn log log n/ log n) if m > n log log n
O(n2 log2 log n/ log n) if m ≤ n log log n.

These represent the best time bounds known for the problem for all m � n1.376. We also obtain a similar type
of result for the diameter problem for unweighted directed graphs.
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1. INTRODUCTION

In this article, we address one of the most familiar and often-taught problems in the
subject of discrete algorithms: the all-pairs-shortest-paths (APSP) problem—namely,
given a graph, find the shortest path between every pair of vertices. We mostly focus
here on the simplest case of unweighted, undirected graphs. The textbook solution
of running breadth-first search (BFS) from every vertex has an O(mn) running time,
where n and m denote respectively the number of vertices and edges. In terms of n,
this bound is cubic. Through the years, improvements have been obtained using more
advanced techniques, which can be grouped into two categories briefly summarized
here.

—Algorithms that use fast matrix multiplication. Galil and Margalit [1997a, 1997b]
and Seidel [1995] gave algorithms that run in O(nω log n) = O(n2.376) time for the
unweighted undirected case, using Coppersmith and Winograd’s result [1990] on the
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34:2 T. M. Chan

matrix multiplication exponent ω. (The running time is O(n2.81) if Strassen’s more
implementable method [1969] is used instead.)

Fast matrix multiplication has also been applied to solve APSP in the unweighted
directed case [Alon et al. 1997; Zwick 2002] (currently the best time bound is O(n2.575)
by Zwick [2002]), as well as the weighted undirected/directed cases [Alon et al. 1997;
Galil and Margalit 1997b; Shoshan and Zwick 1999; Takaoka 1998; Zwick 2002]
when the weights are small integers (subcubic time bounds hold when weights are
at most n0.634 [Shoshan and Zwick 1999; Zwick 2002]).

—Algorithms that achieve logarithmic-factor speedups. At STOC’91, Feder and Mot-
wani [1995] obtained (among other things) an algorithm that runs in O(n3/ log n) time
for APSP in the unweighted undirected case, using a graph compression technique.

Although this algorithm is theoretically inferior to Galil and Margalit’s and Seidel’s
algorithms, log-factor-like speedups yield the currently best (and only) type of results
known for APSP in the general case with real-valued weights (the first subcubic
time bound was O(n3(log log n/ log n)1/3) by Fredman [1976], and this was improved
in a series of papers [Dobosiewicz 1990; Han 2004; Takaoka 1992, 2004; Zwick 2006;
Chan 2008; Han 2008], culminating in an O(n3 log3 log n/ log2 n) time bound by this
author [Chan 2010]). We should also mention that one of the earliest and most well-
known examples of log-factor speedup was Arlazarov (a.k.a. the “four-Russians”)
algorithm [1970] for the simpler Boolean matrix multiplication problem, which
originally runs in time O(n3/ log n) (or, upon closer examination, O(n3/ log2 n)).

This summary ignores analysis in one crucial parameter, the number of edges m. In
the unweighted undirected case, the more sophisticated methods beat the naive O(mn)
method only when m � n1.376, but arguably the more important case is when the graph
is sparse. So what is known about the complexity of the problem for small m besides
the naive bound?

Essentially nothing! Many results have been published on shortest paths in sparse
weighted graphs under various models (e.g., see Ahuja et al. [1990], Hagerup [2000],
Pettie [2004], Pettie and Ramachandran [2005], and Thorup [1999, 2004]), and these
results improve over the standard Fibonacci-heap implementation of Dijkstra’s algo-
rithm, which runs in time O(n log n + m) for the single-source problem (with positive
weights), or O(n2 log n+mn) for the all-pairs problem. However, the improvements all lie
in the first term, not the O(mn) term for APSP. There have also been many average-case
results (for one early example, see Spira [1973]) and many approximation results (for
one particularly relevant example, see Aingworth et al.’s [1999] and Dor et al.’s [2000]
algorithms for unweighted undirected graphs, which can approximate all shortest-path
distances in O(m1/2n3/2 polylog n) time up to an additive error of 2, or faster for larger
additive errors). However, we are primarily interested in worst-case exact algorithms
in this paper.

Regarding matrix-multiplication-based methods, Yuster and Zwick [2005] have re-
cently observed a nontrivial bound for Boolean matrix multiplication for two sufficiently
sparse matrices (roughly O(m0.7n1.2 + n2) for n× n matrices with m nonzero elements),
by using known results for dense rectangular matrix multiplication. However, the ap-
proach falls short of giving new results for multiplying four or more matrices, let alone,
computing powers of matrices as required to solve the APSP problem.

Regarding methods with log-factor speedups, Feder and Motwani [1995] actually re-
ported a time bound that is sensitive to both mand n for APSP in unweighted undirected
graphs. The bound is O(mnlog(n2/m)

log n ), which, for m � n2−ε, offers no asymptotic improve-
ment at all! The known slightly subcubic results for APSP in the general weighted
case [Chan 2008; Fredman 1976] do not adapt well either for sparse graphs. Generally
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speaking, log-factor speedups may be possible when there is some amount of redun-
dancy or repetition in the input or computational process (Feder and Motwani [1995]
exploited the compressibility of dense graphs, while Fredman [1976] exploited the re-
occurrences of certain small subproblems). The main difficulty seems to be that as the
input graph becomes sparser, it is harder to find such repeated “patterns”.

We should be careful not to overstate the difficulty, though. For the simpler prob-
lem of Boolean matrix multiplication for two (or any constant number of) matrices,
it is easy to obtain an O(mn/ log n)-time algorithm. It is also not hard to devise an
O(mn/ log n) algorithm for the related transitive closure problem for an unweighted
directed graph, as noted previously [Chan 2008]. However, APSP is more involved and
it is not immediately clear how one might obtain an o(mn) algorithm. For example, a
standard “repeated squaring” approach fails because it could create dense intermediate
matrices all too quickly.

In this article, we present two new APSP algorithms for unweighted undirected
graphs. The first runs in O(mn/ log n) time for all m � n log2 n, and the second runs in
O(mn log log n/ log n+n2 log2 log n/ log n) time for all (see Sections 3 and 4, respectively).
These results beat the previous O(n2.376) algorithms when m � n1.376, and subsume the
previous O(n3/ log n) algorithm, as well as the naive O(mn) algorithm, for all m. Both
our algorithms are derived from nontrivial combinations of a number of old and new
ideas.

Although log-factor-type improvements may appear slight, the first algorithm has the
advantage of simplicity: it is very much implementable, avoids matrix multiplication,
and has reasonable constant factors (see the experimental data in Section 7). The
second algorithm is surprising and shows that speedup is possible even for the sparsest
graphs with m = O(n): of course, we cannot break the obvious �(n2) lower bound if we
want to report all shortest-path distances, but what we show is that within the stated
subquadratic time bound, it is possible to compute a succinct representation of all
shortest-path distances so that each distance can be reported in constant time and
each path can be retrieved in time linear in its length.

As a further refinement, we show (in Section 5) that a combination of the two al-
gorithms can guarantee O(mn/ log n) running time for a slightly wider range m �
n log n log log log n.

We also consider the unweighted directed case. Although we are unable to obtain
new results for APSP here, we still manage to solve some related problems, like the
computation of the diameter (largest shortest-path distance), in O(mn log2 log n/ log n)
randomized time for m � n log2 n (see Section 6). For unweighted directed planar
graphs, we can solve APSP in O(n2 log log n/ log n) time.

We can easily modify our algorithms to handle graphs with very small (O(1)) positive
integer weights. Our algorithms work under the standard RAM model with logarithmic
word size. (In Section 7, we note how the algorithms may be adapted in a more powerful
word-RAM model or a weaker pointer-machine model.)

2. PRELIMINARIES

In the rest of this article, δG(u, v) denotes the shortest-path distance from u to v in
graph G.

Although our main results are for unweighted undirected graphs, we find it conve-
nient to consider a slightly extended family of graphs. We work with a given undirected
graph G whose edges may be unweighted (i.e., have weight 1) or weighted, and all
weights and distances are positive integers at most n. Let V be its vertex set, E be the
set of all unweighted edges, and V0 be a subset of special vertices. In the next three
sections, we assume the following property: for every two vertices s, v, there exists a
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shortest path π from s to v such that all but at most one edge along π are unweighted,
and if π does use a weighted edge, it can only be the first edge su with u ∈ V0. We
call such a path π a normalized shortest path, and we call a graph G satisfying this
property an almost unweighted graph.

Throughout this article, let n = |V |, m = |E|, and n0 = |V0|. Without loss of generality,
we assume that m = �(n). In our algorithm descriptions, the reader may find it helpful
to focus primarily on the case of a purely unweighted undirected graph where we take
V0 = ∅ and n0 = 0. (In fact, the main purpose of considering almost unweighted graphs
with special vertices V0 is to ease the proof of the slightly improved result in Section 5
via recursion.)

Note that we can compute a shortest-path tree from each source vertex s ∈ V in
O(m) time: For an almost unweighted graph, the only weighted edges that need to be
considered are O(n0) weighted edges incident to s. We could apply Dijkstra’s algorithm,
which runs in linear time if we implement the (monotone) priority queue by bucketing,
since distances are small integers. However, a simpler method is to apply BFS: only a
slight modification is required for an almost unweighted graph (namely, when gener-
ating the ith level of the shortest-path tree, we just preload all unexplored vertices in
{u ∈ V0 | su has weight i}).
3. FIRST ALGORITHM

Our first APSP algorithm for unweighted undirected graphs is inspired by the algo-
rithms by Aingworth et al. [1999] and Dor et al. [2000] that solved an approximate
version of APSP with additive error 2. The basic idea is to treat high-degree ver-
tices and low-degree vertices separately: roughly speaking, high-degree vertices allow
potential for speedup because they are all dominated by a small subset of vertices;
low-degree vertices are cheap because the number of incident edges is small. Our
treatment of high-degree vertices will differ from Aingworth et al.’s as we want exact
distances.

We begin with some easy “word tricks”. A subset of {1, . . . , k} can be represented as a
bit vector and stored in a sequence of O(�k/ log n�) words each of 	α log n
 bits for some
suitable constant α.

LEMMA 3.1. Given the bit-vector representations of sets S1, S2 ⊆ {1, . . . , k}, we can

(i) compute the bit-vector representations of S1 ∪ S2, S1 ∩ S2, and S1−S2 in O(k/ log n+
1) time;

(ii) list the elements of S1 in O(|S1| + k/ log n + 1) time.

PROOF. (i) is obvious by bitwise or/and/not operations. (ii) follows by repeatedly
finding (and turning off) the most significant bit. If these operations are not di-
rectly supported, we can precompute the answers to all words (or pairs of words)
with O(n2αn) = o(n) preprocessing time (if α < 1/2) and subsequently perform table
lookup.

The key subroutine behind our algorithm is given in the next lemma, which allows
us to compute all shortest paths from k starting vertices in time better than the naive
O(km+ kn) bound. This subroutine however works only under the assumption that the
starting vertices are all very close to a common vertex.

LEMMA 3.2. Given a set S of k vertices of distances at most c = O(1) from a fixed
vertex s0, we can compute a representation of a shortest path from every vertex in S to
every vertex in V in total time O(km/ log n + kn + m).

PROOF. We first compute the distance from s0 to every vertex in O(m) time by one
BFS. By our assumption about S, δG(s0, v) = i implies that i − c ≤ δG(s, v) ≤ i + c.
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So, we already know approximately the level of each vertex v in the shortest-path tree
from any starting vertex s ∈ S. The idea is to use these level estimates to run BFS
simultaneously from all starting vertices in S.

More precisely, we compute the sets Si[v] = {s ∈ S | δG(s, v) = i} iteratively as follows.

1. for every i do Ai = {v ∈ V | δG(s0, v) = i}
2. for s ∈ S do S0[s] = {s}
3. for i = 1 to n do
4. for v ∈ Ai−c ∪ · · · ∪ Ai+c do {
5. if v ∈ V0 then Si[v] = {s ∈ S | sv has weight i} − OLD[v]
6. for every u adjacent to v in (V, E) do {
7. NEW = Si−1[u] − OLD[v]
8. Si[v] = Si[v] ∪ NEW, OLD[v] = OLD[v] ∪ NEW

9. for s ∈ NEW do ANS[s, v] = (i, u)
}

}

(Recall that in the standard case of a purely unweighted graph, there are no special
vertices V0, i.e., line 5 can be skipped.)

Here, NEW and OLD[v] are subsets of S (OLD[v] contains all s ∈ S for which δG(s, v)
has been found). All sets are initialized to the empty set by default. The table ANS

encodes the shortest-path trees—ANS[s, v] holds the distance δG(s, v) as well as the
predecessor of v in a shortest path from s to v. Correctness easily follows by induction
(since δG(s, v) = i implies that s ∈ Si−1[u] for some u adjacent to v in (V, E), or sv has
weight i).

For the analysis, observe that each vertex plays the role of v at most 2c + 1 = O(1)
times in the loop in line 4. The total cost of line 5 is O(kn0). The total number of
set-union/difference operations in lines 7 and 8 is thus O(m), and their total cost is
O(m(k/ log n + 1)) by Lemma 3.1(i) using bit vectors. The total additional cost of line 9
is O(kn) by Lemma 3.1(ii), since each of the O(kn) entries of ANS is set once. The lemma
follows.

We now show that every high-degree vertex is close to some vertex in a small sub-
set, thereby enabling the previous lemma to find shortest paths from all high-degree
vertices effectively.

LEMMA 3.3. Consider the unweighted undirected graph (V, E). Given a number d,
let H be the subset of all vertices of degree at least d. We can find a subset R of at most
n/d vertices, in O(m) time, such that each vertex in H has distance at most 2 from some
vertex of R.

PROOF. Let N(v) denote the set of all vertices adjacent to v. We use a simple greedy
strategy: initially unmark all vertices; for each v ∈ H, if all vertices of N(v) are un-
marked, then insert v to R and mark all vertices in N(v).

To show correctness, observe that for each v ∈ H, N(v) must intersect N(r) for some
r ∈ R, and thus v and r have distance at most 2. Furthermore, {N(r) | r ∈ R} is a
collection of disjoint subsets each of size at least d, and so |R| ≤ n/d.

Remark 3.4. In the original algorithm by Aingworth et al [1999], this lemma was
proved by simply letting R be a random sample; this yields actually a better distance
guarantee (1 instead of 2) but the size of R is larger by a logarithmic factor (and R may
not be a subset of H).

With the preceding two lemmas, we can put together a complete APSP algorithm.
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THEOREM 3.5. We can solve the APSP problem for an almost unweighted, undirected
graph G with n vertices, m edges, and n0 special vertices in time O(mn/ log n+ n2 log n+
mn0).

PROOF. Let d be a parameter to be set later. We compute the shortest-path distance
δG(s, v) of every pair s, v ∈ V as follows:

(1) Let H and R be as in Lemma 3.3. Add all vertices in V0 to both H and R.
(2) For each v ∈ H, let rv ∈ R be a vertex of distance at most 2 from v.
(3) Compute the shortest-path distance from every vertex in H to every vertex in V by

calling Lemma 3.2 on subsets of the form S = {v ∈ H | rv = r}.
(4) Form a graph G′ by taking the edges in E incident to the vertices of V − H, and

adding an edge su of weight δG(s, u) for every s ∈ V, u ∈ H.
(5) Compute all shortest-path distances in G′ naively by repeated BFSs.
(6) For every s, v ∈ V , set δG(s, v) = δG′(s, v).

To prove correctness, first note that δG′(s, v) ≤ δG(s, v) is obvious. For the reverse,
let u be the last vertex of H ∪ {s} on a normalized shortest path from s to v in G.
Since the portion of the path from u to v avoids intermediate vertices from H and
thus uses only unweighted edges in G′, we indeed have δG′(s, v) ≤ δG(s, u) + δG(u, v) =
δG(s, v). Incidentally, this also proves that G′ is almost unweighted (with special
vertices H), and so (modified) BFSs can indeed be used in step 5, as noted in
Section 2.

For the analysis, it suffices to examine steps 3–5. Step 3 requires O(n/d+ n0) calls to
Lemma 3.2, with a total running time of O(mn/ log n+n2 +m[n/d+n0]). Step 5 requires
n BFSs, with a total running time of O(dn2), since G′ has only O(dn) unweighted
edges. Setting d = �log n� yields the theorem. Note that the shortest-path trees of G
themselves can be easily pieced together from the shortest-path trees from steps 3
and 4.

4. SECOND ALGORITHM

Our second algorithm is more complicated but can yield nontrivial running time even
when m � n log2 n (and subquadratic running time when m = O(n)). Like in some
previous APSP algorithms such as Alon et al’s [1997] and Zwick’s [2002], the basic
idea is to consider the case of short shortest paths and long shortest paths separately:
roughly speaking, short shortest paths are easier to compute because fewer steps are
involved and operations are done to smaller numbers; long shortest paths can also be
found quickly because they all pass through a small subset of vertices. Our treatment
of the short case requires a careful analysis (together with a more sophisticated set-
representation scheme) that is sensitive to the size of the intermediate sets generated.
Our treatment of the long case also requires a new interesting “mod” trick, to keep
intermediate numbers small.

We begin with some fancier word tricks. We describe a different scheme to represent
a set S ⊆ {1, . . . , k} that has the advantage of input-size sensitivity. Instead of using
a bit vector (which always requires k bits, even if S is sparse), we list the elements
of S in sorted order, where each element uses �log k� bits; we then divide the list into
O(�|S| log k/ log n�) words, where each word holds 	α log n/�log k�
 elements. We call the
resulting sequence of words the “packed-sorted-list” representation of S. (Similar word
tricks have been used before; for example, see Albers and Hagerup [1997].)

LEMMA 4.1. Given the packed-sorted-list representations of sets S1, . . . , Si ⊆
{1, . . . , k}, we can
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(i) compute the packed-sorted-list representations of S1 ∪ S2, S1 ∩ S2, and S1 − S2 in
O((|S1| + |S2|) log k/ log n + 1) time;

(ii) compute the packed-sorted-list representation of S1 ∪ · · · ∪ Si in O((|S1| + · · · +
|Si|) log2 k/ log n + i) time.

PROOF

(i) To compute S1 ∪ S2, we imitate the standard linear-time algorithm for merging
two sorted lists. Let B = 	α log n/�log k�
. We first define some nonstandard word
operations: given two sorted sequences w1, w2 of B elements, let M[w1, w2] be the
sequence of the B − 1 smallest elements of w1 ∪ w2 after duplicates are removed;
also let Nj[w1, w2] ( j ∈ {1, 2}) be the number of elements of w j that appear in
the sequence M[w1, w2]. If these operations are not supported, we can precompute
the answers to all pairs of w1, w2 with O(n)-time preprocessing (if α < 1/2) and
subsequently perform table lookup.
In each iteration, we grab the next B elements w1 of S1 and the next B elements
w2 of S2, append M[w1, w2] to the output sequence, and then skip over N1[w1, w2]
elements of S1 and N2[w1, w2] elements of S2. Each iteration requires just a constant
number of operations and shifts (if shifting is not directly supported, we can again
use table lookup). The number of iterations, and thus the running time for union,
is O(

⌈
(|S1| + |S2|)/B

⌉
) as desired. Intersection and difference are similar.

(ii) We repeatedly take binary unions in the form of a complete binary tree with i leaves.
By part (i), the cost of each level of the tree is O((|S1| + · · · + |Si|) log k/ log n) plus
the number of nodes in the level. So, the total cost of the bottommost log k levels
is O((|S1| + · · · + |Si|) log2 k/ log n + i). The remaining levels involve O(i/k) merges
only and require a total cost of O((i/k) · (k log k/ log n + 1)), which is subsumed by
the earlier cost.

The following lemma solves the short case.

LEMMA 4.2. Given a number �, we can compute a representation of a shortest
path for every pair of distance at most �, in total time O(mn log(� log n)/ log n +
n2 log2(� log n)/ log n + nn0).

PROOF. Consider any set S of k vertices. Like before, the idea is to run BFS simul-
taneously from all starting vertices s ∈ S, thereby computing the sets Si[v] = {s ∈ S |
δG(s, v) = i} iteratively. This time, we only need to generate the first � levels of the
shortest-path trees, but to generate each level, we have to go through all vertices of the
graph. The pseudocode is as follows (where as usual, all sets are initially empty).

1. for s ∈ S do S0[s] = {s}
2. for i = 1 to � do
3. for v ∈ V do {
4. if v ∈ V0 then Si[v] = {s ∈ S | sv has weight i} − OLD0[v]
5. for the j-th vertex u adjacent to v in (V, E) do {
6. NEW = Si−1[u] − (Si−2[v] ∪ Si−1[v] ∪ Si[v])
7. Si[v] = Si[v] ∪ NEW

8. ANSi j[v] = {(s, i, j) | s ∈ NEW}
9. if v ∈ V0 then OLD0[v] = OLD0[v] ∪ NEW

}
}

10. for v ∈ V do ANS[v] = ⋃
i, j ANSi j[v]
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(Recall that in the standard case of a purely unweighted graph, there are no special
vertices V0, i.e., lines 4 and 9 can be skipped.)

Line 6 here takes advantage of the undirectedness of (V, E): if δG(s, u) = i − 1 and
uv ∈ E, then δG(s, v) ≥ i − 2; so s ∈ Si−1[u] − (Si−2[v] ∪ Si−1[v]) indeed implies that
δG(s, v) = i. Also, ANS is now in a different format: if the set ANS[v] contains the triple
(s, i, j), then δG(s, v) = i and the jth vertex u adjacent to v is a predecessor of v in a
shortest path from s to v. Correctness again easily follows by induction.

For the analysis, first note that the total cost of lines 4 and 9 is O(kn0) by trivially
implementing the OLD0’s using bit vectors. Lines 6 and 7 involve a total of O(�m) set-
union/difference operations, and the total size of the sets involved in these operations
is O(

∑�
i=1

∑
uv∈E(|Si−1[u]| + |Si−2[v]| + |Si−1[v]| + |Si[v]|)) = O(km), since for each v,∑

i |Si[v]| ≤ k by disjointness. The total cost of lines 6 and 7 is thus O(kmlog k/ log n +
�m) by Lemma 4.1(i) using packed sorted lists.

We use the packed-sorted-list representation also for the sets ANSi j[v] and ANS[v]; each
triple (s, i, j) is encoded as an integer bounded by O(k� deg(v)), ordered lexicographi-
cally. For each v, line 8 involves a multiple-set union operation for O(� deg(v)) sets with
total size

∑
i, j |ANSi j[v]| ≤ k; the cost of this operation is thus O(k log2(k� deg(v))/ log n +

� deg(v)) by Lemma 4.1(ii). The total cost of line 10 is therefore O(kn log2(k�m/n)/ log n+
�m) (by concavity of polylogarithms).

At the end, we need to convert each set ANS[v] to a vector indexed by s, stored over
O(k log(� deg(v))/ log n) words. This way, given s, we can indeed look up s’s entry in
ANS[v] to identify the distance δG(s, v) as well as the predecessor u of v in constant
time by simple address calculations. Using the appropriate word operations (like in
the proof of Lemma 4.1), the conversion can be accomplished in time linear in the
number of words in ANS[v], that is, O(k log(k� deg(v))/ log n). The total additional cost is
O(kn log(k�m/n)/ log n).

We conclude that the shortest paths from every vertex s ∈ S to every vertex of
distance at most � can be computed in time O(kmlog k/ log n+�m+kn log2(�m/n)/ log n+
kn0). To obtain the lemma, we call this procedure �n/k� times for different size-k subsets
S, for a total running time of O(mn log k/ log n+ �mn/k+n2 log2(�m/n)/ log n+nn0). The
time bound follows by setting k = �� log n� (and noting that log2(m/n) = o(m/n)).

We now focus our attention on the long case. The following lemma is well known and
has been used in previous papers, for example, Dor et al. [2000], King [1999], Ullman
and Yannakakis [1991], and Zwick [2002].

LEMMA 4.3. Consider the unweighted undirected graph (V, E). Given a number �, we
can find a subset R of O((n/�) log n) vertices, in O(n) time, such that with high probability,
for every pair of distance at least �, a shortest path passes through some vertex of R.

PROOF. Basically, we seek a hitting set R for a collection of O(n2) subsets (paths)
where each subset has size at least �. (In the terminology of set systems, R is an “ε-net”
with ε = �/n.) We can simply let R be a random sample of c(n/�) ln n vertices for c � 2.
Then, the probability that a fixed subset is not hit by R is about

[
1 − c(1/�) ln n

]� ≤
n−c.

We now put together our second APSP algorithm, by using modular arithmetic to
map long distances into short distances in a constant number (8) of modified graphs.

THEOREM 4.4. We can solve the APSP problem for an almost unweighted, undirected
graph G with n vertices, m edges, and n0 special vertices with high probability in time
O(mn log log n/ log n + n2 log2 log n/ log n + mn0).
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PROOF. Let � be a parameter to be set later. We introduce some shorthand notation:
let [ x ]a := ⌊

(x + a)/8�
⌋

and { x }a := (x + a) mod 8�. Our algorithm works as follows:

(1) Let R be as in Lemma 4.3. Add all vertices in V0 to R.
(2) Compute the shortest-path distance from every vertex in R to every vertex in V

naively by repeated BFSs.
(3) For each v ∈ V , let rv ∈ R be a vertex of distance less than � from v (if it exists).
(4) For each value a ∈ {0, �, 2�, . . . , 7�}:

(a) Form an almost unweighted graph G′
a (with special vertices R), by taking the

edges in E, adding an extra vertex s′ for each s ∈ V , and adding a directed edge
(s′, u) of weight { δG(s, u) }a for every s ∈ V, u ∈ R.

(b) Compute the shortest-path distance for every pair of distance at most 4� in G′
a

by Lemma 4.2 (which is still applicable even though the weighted edges in G′
a

are directed).
(5) To compute δG(s, v): if δG′

0
(s, v) < �, then set δG(s, v) = δG′

0
(s, v); otherwise, if 2� ≤

{ δG(s, rv) }a < 3� and δG′
a
(s′, v) < 4� for some a, then set δG(s, v) = [ (δG(s, rv) ]a · 8� +

δG′
a
(s′, v) − a.

We analyze the cost of the algorithm first. Step 2 takes O(m|R|) = O(m[(n/�) log n+n0])
time. Step 4 takes O(mn log(� log n)/ log n+n2 log2(� log n)/ log n+ (n2/�) log n) time. Set-
ting � = �log2 n� yields the desired time bound. Note that each shortest-path distance
can indeed be reported in constant time, and the shortest path itself can be easily
retrieved in time linear in its length from the shortest-path trees from steps 2 and 4.

To prove correctness, suppose that δG(s, v) ≥ � (otherwise, δG(s, v) = δG0 (s, v) is clearly
correctly found). Let a ∈ {0, �, . . . , 7�} be such that 2� ≤ { δG(s, rv) }a < 3�. We need to
show that δG′

a
(s′, v) < 4� and δG(s, v) + a = [ δG(s, rv) ]a · 8�+ δG′

a
(s′, v). In other words, we

want to establish the following three facts.

—[ δG(s, v) ]a = [ δG(s, rv) ]a.
PROOF. This follows since |δG(s, v) − δG(s, rv)| ≤ δG(v, rv) < �.

—{ δG(s, v) }a = δG′
a
(s′, v).

PROOF OF ≥. Let u be the last vertex from R ∪ {s} on a normalized shortest path
from s to v in G (if the path is not unique, take the one with the most vertices
from R). Then, δG(s, v) = δG(s, u) + δG(u, v). Because any shortest path from u to v
avoids intermediate vertices from R and uses only edges in E, we have δG(u, v) < �
by Lemma 4.3. Incidentally, this confirms the existence of rv (as δG(s, v) ≥ � implies
s �= u ∈ R). Since |δG(s, v) − δG(s, rv)| < �, it follows that � ≤ { δG(s, v) }a < 4� and
0 ≤ { δG(s, u) }a < 4�. So, δG′

a
(s′, v) ≤ { δG(s, u) }a + δG(u, v) = { δG(s, v) }a.

PROOF OF ≤. Let û ∈ R be such that δG′
a
(s′, v) = { δG(s, û) }a + δG(û, v). We al-

ready know from the previous proof that δG′
a
(s′, v) ≤ { δG(s, v) }a < 4�. Thus, we also

have { δG(s, û) }a < 4� and δG(û, v) < 4�. Since |δG(s, v) − δG(s, û)| ≤ δG(û, v) < 4�,
it follows that { δG(s, v) }a, { δG(s, û) }a < 4� implies [ δG(s, v) ]a = [ δG(s, û) ]a. So,
δG(s, v) ≤ δG(s, û) + δG(û, v) yields { δG(s, v) }a ≤ { δG(s, û) }a + δG(û, v) = δG′

a
(s′, v).

—δG′
a
(s′, v) < 4�.

PROOF. Already shown.

Remark 4.5. This description technically gives only a Monte Carlo algorithm, but it
can be easily made Las Vegas because we can verify whether a given subset R satisfies
the requirement of Lemma 4.3: form an almost unweighted graph G′ by taking the
edges in E, adding an extra vertex s′ for each s ∈ V , and adding an edge (s′, u) of weight
δG(s, u) for every s ∈ V, u ∈ R; then we check, by Lemma 4.2, that for every s, v ∈ V ,
δG(s, v) = � implies δG′(s′, v) = � (so as to guarantee that minu∈R(δG(s, u) + δG(u, v)) = �).
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We can also derandomize Lemma 4.3, as in Zwick [2002], by using the greedy algo-
rithm for hitting sets, although this would require an extra O(n2�) cost. See the ap-
pendix for a simpler derandomization of Lemma 4.3, specialized for undirected graphs,
that requires only linear time.

We mention one quick application—computing the diameter of sparse unweighted
undirected graphs in subquadratic time.

COROLLARY 4.6. We can compute the diameter of an unweighted undirected graph G
with n vertices and m edges in time O(mn log log n/ log n + n2 log2 log n/ log n).

PROOF. For each a ∈ {0, �, . . . , 7�} and v ∈ V , it suffices to search for the maximum
ρa,v of [ δG(s, rv) ]a · 8� + δG′

a
(s′, v) over all s ∈ V such that 2� ≤ { δG(s, rv) }a < 3� and

δG′
a
(s′, v) < 4�.

For each r ∈ R, we first generate a bit vector for the set Sa,r of all s ∈ V such that
2� ≤ { δG(s, r) }a < 3� and [ δG(s, r) ]a is maximal. This takes O(n|R|) = O((n2/�) log n)
total time. For each v ∈ V , Lemma 4.2 gives us a vector storing all values δG′

a
(s′, v) at

most 4� over s ∈ V . By scanning this vector and Sa,r using appropriate word operations,
we can determine ρa,v in time linear in the number of words O(n log �/ log n). The total
additional time is thus O(n2 log log n/ log n).

5. A HYBRID ALGORITHM

We now show how the algorithms in the previous two sections can be combined.

THEOREM 5.1. We can solve the APSP problem for an unweighted undirected graph
G in time O(mn/ log n + n2 log log log n).

PROOF. Observe that in the first algorithm, we can perform step 5 by recursion. The
running time of the two algorithms can be summarized as follows:

T (m, n, n0) = O(mn/ log n + n2 + mn/d + mn0) + T (dn, n, n/d + n0)

T (m, n, n0) = O(mn log log n/ log n + n2 log2 log n/ log n + mn0).

Let T (m) := T (m, n, 2n2/m). By choosing d = m/(2n), we then get

T (m) = O(mn/ log n + n2) + T (m/2)

T (n log n/ log log n) = O(n2).

By running the first algorithm multiple times and then finishing with the sec-
ond algorithm, we therefore obtain T (m) = O(mn/ log n + n2 log � m

n log n/ log log n�). If
m > n log n log log log n, the first term dominates; otherwise, the bound is at most
O(n2 log log log n).

6. THE DIRECTED CASE?

We next examine the case when the given graph G is unweighted and directed. Our first
algorithm cannot be adapted here because there is no adequate version of Lemma 3.3
for directed graphs. Therefore, we consider modifying the second algorithm. We show
that speedup is possible in the short case by a variation of Lemma 4.2. Lemma 4.3
clearly still works. However, the mod trick from Theorem 4.4 doesn’t, because it heavily
relies on symmetry of the distance function. So, we cannot solve APSP but are able to
solve some APSP-related problems, like diameter, using a subtraction trick in place of
mod.
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We begin with the substitute for Lemma 4.2.

LEMMA 6.1. For an almost unweighted, directed graph G, given a number �, we can
compute a representation of the shortest paths for all pairs of distances at most � in G′,
in O(mn log2(� log n)/ log n + �n2 log(� log n)/ log n + n2) time.

PROOF. Consider any set S of k vertices. We compute the sets Si[v] = {s ∈ S |
δG(s, v) = i} as follows:

1. for s ∈ S do S0[s] = {s}
2. for i = 1 to � do
3. for v ∈ V do {
4. NEW = (⋃

u: (u,v)∈E Si−1[u]
) ∪ {s ∈ S | (s, v) has weight i} − OLD[v]

5. Si[v] = NEW, OLD[v] = OLD[v] ∪ NEW

6. for every u adjacent to v in (V, E) do {
7. for s ∈ NEW ∩ Si−1[u] do ANS[s, v] = (i, u)
8. NEW = NEW − Si−1[u]

}
}

The main difference with the algorithm of Lemma 4.2 is that each Si[v] is now
computed using a single multiple-set union operation (line 4) instead of several binary
unions; the reason is that in the directed case, we need to maintain the OLD[v] sets and
and their sizes could be large (O(k)). The ANS table is also computed differently.

The total sizes of the O(�m) sets involved in the unions in line 4 is
O(

∑�
i=1

∑
(u,v)∈E |Si−1[u]|) = O(km), since for each v,

∑
i |Si[v]| ≤ k by disjointness. The

total cost of these unions is thus O(kmlog2 k/ log n + �m) using packed sorted lists.
The O(�n) set-difference operations in line 4 and set-union operations in line 5 take

O(�n·k log k/ log n) time. In lines 7 and 8, the total sizes of the sets involved in the O(�m)
set-intersection/difference operations is O(

∑�
i=1

∑
(u,v)∈E(|Si−1[u]| + |Si[v]|)) = O(km);

the cost of these operations is thus O(kmlog k/ log n + �m). The total cost of the loop in
line 7 is O(kn), since each ANS entry is set once.

We conclude that the shortest paths from all s ∈ S to all vertices of distances at most
� can be computed in O(kmlog2 k/ log n+ �m+ �n · k log k/ log n+ kn) time. To obtain the
lemma, we multiply the time bound by n/k and set k = �� log n�, as before.

We now put together a diameter algorithm, using subtraction to reduce long distances
to short distances.

THEOREM 6.2. We can compute the diameter of an unweighted directed graph
with n vertices and m edges with high probability in time O(mn log2 log n/ log n +
n2 log n/ log log n).

PROOF. We solve a slightly more general problem: for each s ∈ V , compute its eccen-
tricity ρs = maxv∈V δG(s, v).

(1) Let R be as in Lemma 4.3.
(2) Compute the shortest-path distance from every vertex in V to every vertex in R

naively by repeated BFSs (in the transposed graph).
(3) For each s ∈ V , let as = maxu∈R δG(s, u).
(4) Build a weighted graph G′ from G, by adding an extra vertex s′ for each s ∈ V , and

adding an edge (s′, u) of weight max{δG(s, u) − (as − �), 0} for every s ∈ V, u ∈ R.
(5) Compute the shortest-path distance for every pair of distance at most 2� in G′ by

Lemma 6.1.
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(6) For every s, v ∈ V : if δG′(s, v) < �, then set d[s, v] = δG′(s, v); otherwise, if
δG′(s′, v) < 2�, then set d[s, v] = δG′(s′, v) + (as − �). For each s ∈ V , set ρs =
maxv∈V max{d[s, v], as}.

We analyze the running time first. Step 2 takes O(m|R|) = O((mn/�) log n) time.
Step 5 takes O(mn log2(� log n)/ log n + �n2 log(� log n)/ log n + n2) time. Setting � =
�log2 n/ log2 log n� yields the desired time bound.

To prove correctness, suppose that δG(s, v) ≥ � (otherwise δG(s, v) = δG′(s, v) is clearly
correctly found). It suffices to establish the following two facts (since ρs ≥ as obviously
implies ρs = maxv∈V max{δG(s, v), as}).
—max{δG(s, v), as} = max{δG′(s′, v) + (as − �), as}.

PROOF OF ≤. Let û ∈ R be such that δG′(s′, v) = max{δG(s, û) − (as − �), 0} + δG(û, v).
Then, δG(s, v) ≤ δG(s, û) + δG(û, v) ≤ δG′(s′, v) + (as − �).

PROOF OF ≥. Let u be the last vertex from R on a shortest path from s to
v in G (if the path is not unique, take the one with the most vertices from
R). Then, δG(s, v) = δG(s, u) + δG(u, v), and δG(u, v) < � by Lemma 4.3. So,
δG′(s′, v) ≤ max{δG(s, u) − (as − �), 0} + δG(u, v) ≤ max{δG(s, v) − (as − �), �}, imply-
ing δG′(s′, v) + (as − �) ≤ max{δG(s, v), as}.

—δG′(s′, v) < 2�.
PROOF. As before, δG′(s′, v) ≤ max{δG(s, u)−(as −�), 0}+δG(u, v) < 2�, since δG(s, u) ≤

as and δG(u, v) < �.

We can also solve another special case of the APSP problem—that of finding the
shortest paths of selected pairs instead of all pairs. Here, the algorithm is much more
straightforward.

THEOREM 6.3. Given O(m) pairs in an unweighted directed graph with n vertices and
m edges, we can compute a representation of the shortest path for every such pair with
high probability in total time O(mn log2 log n/ log n + n2 log n/ log log n).

PROOF. We first compute all distances at most � by Lemma 6.1. Let R be the subset
from Lemma 4.3. We compute the shortest path from every vertex in V to every vertex
in R, and from every vertex in R to every vertex in R, by repeated BFSs in O(m|R|) =
O((mn/�) log n) time. For each given pair (s, v) with δG(s, v) > �, set its distance to be
minu∈R(δG(s, u)+δG(u, v)); this step costs O(m|R|) as well. The theorem follows by setting
� = �log2 n/ log2 log n�.

Remark 6.4. As in Remark 4.5, we can make the algorithms Las Vegas or, with an
extra O(n2�) cost, deterministic.

We can also consider APSP for other special cases, for example, planar graphs in the
directed case. Here, we note a different approach to beating O(mn), which works for
any graph families that possess good separators.

THEOREM 6.5. We can solve the APSP problem for an unweighted directed planar
graph G with n vertices in time O(n2 log log n/ log n).

PROOF. By a multiple-cluster version of the planar separator theorem (e.g., Fred-
erickson [1987]), we can partition V into a separator subset R of size O(n/

√
�) and

cluster subsets V1, . . . , VO(n/�) each of at most size �, such that vertices of Vi can only be
adjacent to vertices of Vi ∪ Ri for some subset Ri ⊆ R of size O(

√
�), in the undirected

version of G. The subsets can be constructed in near-linear time.
We first compute the shortest-path distance from every vertex in R to every vertex

in V , and vice-versa, by repeated BFSs in O(n|R|) = O(n2/�) time.
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For every s, v ∈ V − R, we next compute the distance of the shortest path from s to v
that avoids intermediate vertices from R. Since such a path must stay entirely inside
one cluster (in particular, it exists only if s and v are in the same cluster), this step can
be carried out by solving an APSP subproblem in the subgraph induced by each Vi.
Each subproblem is solvable naively in O(�2) time, for a total of O(n/� · �2) = O(n�).

For every s, v ∈ V − R, it remains to compute the distance of the shortest path from
s to v that passes through some vertex of R. Say v ∈ Vi. This distance is equal to
minu∈Ri :δG(u,v)≤�(δG(s, u) + δG(u, v)), as we can take u to be the last vertex in R along the
shortest path from s to v (so that the portion of the path from u to v stays inside one
cluster and thus has length at most �). Let ANS[s, v] denotes the vertex u attaining the
minimum.

Fix a vertex s and a cluster index i. Let ANSi[s] be a vector holding ANS[s, v] for
all v ∈ Vi; the vector can be encoded in O(� log �) bits, that is, O(� log �/ log n) words.
Permute the vertices u1, . . . , uO(

√
�) of Ri so that δG(s, u1) ≤ δG(s, u2) ≤ δG(s, u3) ≤ · · · , and

let dj = min{δG(s, uj+1) − δG(s, uj), �}. Let CODEi[s] be an encoding of the permutation
along with the numbers d1, . . . , dO(

√
�); the encoding requires only O(

√
� log �) bits, which

can be made smaller than α log n by setting � = 
(log2 n/ log2 log n).
We claim that ANSi[s] is completely determined by CODEi[s] and the distances between

R and Vi. Indeed, if v ∈ Vi and δG(uj, v), δG(uk, v) ≤ � with j < k, we have δG(s, uj) +
δG(uj, v) < δG(s, uk) + δG(uk, v) iff δG(uj, v) − δG(uk, v) < δG(s, uk) − δG(s, uj), iff δG(uj, v) −
δG(uk, v) < dj + · · · + dk−1, since the left-hand side is known to be at most �.

As initialization, we precompute the mapping from CODEi to ANSi for each i; this
preprocessing takes O(n1+α polylog n) time. For each s ∈ V − R, we can sort δG(s, u)
over all u ∈ R in O(n/

√
�) time by radix sort (assuming n/

√
� � nε), and subsequently

compute CODEi[s] for all indices i in O(n/� · √�) time. We can then determine ANSi[s] for
all i by table lookup in O(n/� ·� log �/ log n) time. The total time per vertex s is O(n/

√
�+

n log �/ log n). For our choice of �, the overall running time becomes O(n2 log log n/ log n).
(As before, the shortest paths themselves can be retrieved easily.)

7. DISCUSSION

Other Models. Although we have used bitwise-logical or table-lookup operations, they
can be avoided in some of our algorithms. Often, we can simulate a batch of table
lookups on a pointer machine: we gather the arguments involved in the lookups, per-
form a radix-sort variant to detect duplicates, and compute the answer directly for each
distinct argument, skipping over duplicates. This idea is formalized in the lemma below.
(The idea is not exactly new; e.g., see Buchsbaum et al. [1998] for a more sophisticated
form of this approach.)

We say that a list is a purged list if items of the list whose values are identical are
made to point to a common record holding that value.

LEMMA 7.1. On a pointer machine:

(i) We can purge any list of n �-bit strings in O(�n + 2�) time.
(ii) Given a purged list 〈x1, . . . , xn〉 of �-bit strings and a purged list 〈y1, . . . , yn〉 of m-bit

strings, we can form a purged list 〈x1y1, . . . , xnyn〉 in O(n + 2�+m) time.
(iii) Given a purged list 〈x1, . . . , xn〉 of �-bit strings and a function f : {0, 1}� → {0, 1}m

evaluable in c time, we can form a purged list 〈 f (x1), . . . , f (xn)〉 in O(n + (c+m)2� +
2m) time.

PROOF

Proof of (ii) We use a form of a 2-pass bucket/radix sort. For each i, we create an item i
pointing to xi and yi. For each x ∈ {0, 1}�, we create a bucket Lx containing
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all items i with xi = x. This step takes O(n + 2�) total time. For each Lx
and each y ∈ {0, 1}�, we create a bucket Lx,y containing all items i in Lx
with yi = y. This step takes O(|Lx| + 2m) time per x, for a total time of
O(n+ 2�+m). We can then make all items in Lx,y point to a common record
representing xy.

Proof of (i) Just apply the concatenation routine from (i) � − 1 times, starting with
lists of 1-bit strings.

Proof of (iii) Let Abe the list of all strings in {0, 1}�. Build a list Bof the same cardinality
where if item j of A holds x, item j of B holds f (x). The list can be
formed in O(c2�) time. We purge B by (i) in O(m2� + 2m) time. By pointer
redirections, we can then make x point to f (x) and obtain the purged list
〈 f (x1), . . . , f (xn)〉 in O(n) time.

As a simple illustration of this approach, we can obtain a pointer-machine version of
the four-Russians Boolean matrix multiplication algorithm [Arlazarov et al. 1970]. We
are not aware of any previous mention of this observation.

OBSERVATION 7.2. The four-Russians algorithm for multiplying two n × n Boolean
matrices can be implemented in O(n3/ log2 n) time on a pointer machine.

PROOF. We first give a quick reinterpretation of the four-Russians algorithm on the
traditional RAM. Let w = 	α log n
 for a sufficiently small α. Note that a w×nsubmatrix
can be stored in n words, each holding a column. The key ideas can be summarized by
the following two subroutines:

(1) We can multiply a w × w matrix A with a w × n matrix B in O(n) time: For
each possible w-bit column vector x, we precompute Ax; this preprocessing takes
O(nα polylog n) time. Afterwards, we can determine the ith column of the output,
that is, the product of A with the ith column of B, by table lookup in O(1) time for
each i.

(2) We can compute the bitwise-and of two n × w matrices in O(n) time: We simply
perform n bitwise-and operations on n pairs of words in parallel.

Applying subroutines 1 and 2 O(n/w) times, we can immediately multiply a w × n
matrix with an n×n matrix in O(n2/w) time. Repeating this O(n/w) times, we can then
multiply two n × n matrices in O(n3/w2) time on the RAM.

Now, to implement this algorithm on a pointer machine, we first represent each w×n
submatrix as a purged list of nw-bit columns viewed as w-bit strings; this preprocessing
requires O(nw) time by Lemma 7.1(i) for each of the O(n/w) submatrices of the second
matrix. Subroutine 1 can be implemented in O(n) time by Lemma 7.1(iii) (with f
mapping w-bit columns x to Ax, � = m = 	α log n
, and c = O(polylog n)). Subroutine 2
can be implemented in O(n) time by applying Lemma 7.1(ii) to purge the n pairs of
words and then applying Lemma 7.1(iii) (with f mapping xy to the bitwise-and of x
and y, � = 2	α log n
, m = 	α log n
, and c = O(log n)).

We can implement at least our first algorithm on the pointer machine by a similar
approach. Observe that the table-lookup/bitwise-logical operations in this algorithm oc-
curs in O(m) rounds each of O(n/ log n) operations, since the pseudocode in Lemma 3.2
requires O(m) sequential steps but the O(n/d) applications of Lemma 3.2 may be exe-
cuted in parallel. In each round, we gather and purge the O(n/ log n) word pairs involved
in these operations by Lemma 7.1(ii), and obtain the answers to the operations by
Lemma 7.1(iii) in O(n/ log n) time. The total time remains O(mn/ log n) for m � n log2 n.

Although this might be messy to do in practice, the point we want to emphasize is
that our log-factor-like speedups are obtained not because we “cheat” using the bit-level
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Fig. 1. Experimental results for graphs with 1800 vertices.

parallelism afforded by the word RAM, but rather because there are indeed repetitions
of small subproblems.

On the other hand, if we are allowed to exploit the full power of the word RAM, we can
get better time bounds for a larger word size w > log n. Our first algorithm actually runs
in O(mn/w) time for all m � nw2, using commonly available operations (bitwise-logical
and most-significant-bit). Our second algorithm runs in O((mn log w)/w+ (n2 log2

w)/w)
time but requires a constant number of nonstandard (non-AC0) operations.

Experimental Results. We have implemented one version of the first algorithm, to
illustrate that it is indeed simple enough to be of practical value. This implementation is
done in C++ (on a Sun Ultra 10), using operations on long long int (with w = 64) and
the simpler sampling strategy noted in Remark 3.4 (with a sample size of 0.015n). In
Figure 1, we compare the running times of our algorithm and the naive O(mn) algorithm
for “random” unit-disk graphs with n = 1800 (vertices are uniformly distributed points
inside a square, and two vertices are adjacent if their distance is at most one). The new
algorithm works well especially for larger densities; for m ≈ 170000, it is more than 6
times faster than the naive algorithm.

Our implementation is not optimized; fine-tuning of the sample-size parameter or
alternative strategy for choosing R may speed up the algorithm a little. We should
mention that for many families of random graphs, the diameter � tends to be low
(the “small-world phenomenon”), and we have found that a simpler algorithm with
O(mn�/w) running time also works well (though it is still slower than our algorithm
for the above unit-disk graphs). Of course, this simpler algorithm has very poor worst-
case performance (as � could be as large as �(n)).

Open Problems. It seems difficult to beat the O(mn/ log n) time bound. Even for the
simpler Boolean matrix multiplication problem, without using “algebraic” techniques
(like Strassen’s), we don’t know of a o(mn/ log n) algorithm for any range of values of
m � n2/ log n. With or without algebraic techniques, no o(mn/ log n) algorithm is known,
for any value of m � n2/ log n, to compute, say, the fifth power of an n×n Boolean matrix
with m nonzero entries (a problem that reduces to APSP).

Very recently, Bansal and Williams [2009] announced a new improved combinatorial
algorithm for Boolean matrix multiplication that runs in O(n3 log2 log n/ log2.25 n) time.
It remains to be seen whether their techniques have any implication to the case when
the matrices are sparse.

Remaining open problems include finding o(mn) APSP algorithms for general un-
weighted directed graphs, or weighted undirected graphs with large integer or real
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positive weights. We can also consider further special cases, for example, finding o(n2)
APSP algorithms for real-weighted planar graphs.

APPENDIX

A Deterministic Proof of Lemma 4.3 (Undirected Case). Given an unweighted undirected
graph G = (V, E), We pick a starting vertex s and run BFS for k levels to obtain the
sets Si = {v ∈ V | δG(s, v) = i} for i = 0, . . . , k, where k is the smallest index with
|Sk| ≤ 2((|S0| + · · · + |Sk|)/�) ln n. We then add the vertices of Sk to R, and recursively
handle the subgraph G′ induced by V − S0 − · · · − Sk.

Excluding the recursive step, the running time is proportional to the total degree
among the vertices in S0 ∪ · · · ∪ Sk. So, the overall running time is O(m). The overall
size of R is clearly O((n/�) ln n).

We claim that k < �/2: by letting ni = |S0|+· · ·+|Si|, we see that for all i = 1, . . . , k−1,
ni − ni−1 > 2(ni/�) ln n. So, if k ≥ �/2, then

ni > ni−1

[
1 − 2 ln n

�

]−1

=⇒ nk >

[
1 − 2 ln n

�

]−�/2

> n,

a contradiction.
Correctness is a consequence of the following stronger statement: for every pair u, v

of shortest-path distance at least � in G, any path π from u to v in G passes through
some vertex of R. To prove this, notice that if both u and v are in S0 ∪ · · · ∪ Sk, then
δG(u, v) ≤ 2k < �. So assume that u �∈ S0 ∪ · · · ∪ Sk. If π is entirely within the subgraph
G′, then the statement follows by induction (as the distance between u and v in G′ is
surely at least �). Otherwise, π contains a vertex w in S0 ∪ · · · ∪ Sk. Now, u has distance
more than k to s, and w has distance at most k to s in G. As we traverse through the
vertices in the subpath from u to w, the distance to s can only increment, decrement,
or stay unchanged. So, the subpath must pass through a vertex in Sk.
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