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ABSTRACT
We study the complexity of geometric minimum spanning trees un-
der a stochastic model of input: Suppose we are given a master
set of points {s1, s2, . . . , sn} in d-dimensional Euclidean space,
where each point si is active with some independent and arbitrary
but known probability pi. We want to compute the expected length
of the minimum spanning tree (MST) of the active points. This
particular form of stochastic problems is motivated by the uncer-
tainty inherent in many sources of geometric data but has not been
investigated before in computational geometry to the best of our
knowledge. Our main results include the following.

1. We show that the stochastic MST problem is #P-hard for any
dimension d ≥ 2.

2. We present a simple fully polynomial randomized approxi-
mation scheme (FPRAS) for a metric space, and thus also
for any Euclidean space.

3. For d = 2, we present two deterministic approximation al-
gorithms: an O(n4)-time constant-factor algorithm, and a
PTAS based on a combination of shifted quadtrees and dy-
namic programming.

4. We show that in a general metric space the tail bounds of
the distribution of the MST length cannot be approximated
to any multiplicative factor in polynomial time under the as-
sumption that P #= NP.

In addition to this existential model of stochastic input, we also
briefly consider a locationalmodel where each point is present with
certainty but its location is probabilistic.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—geometrical problems and
computations
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1. INTRODUCTION
Consider a set of pointsM = {s1, s2, . . . , sn}, called the mas-

ter set, in a d-dimensional Euclidean space. Each point si is ac-
tive, or present, with some independent and arbitrary but known
(rational-valued) probability pi. We let S ⊂ M denote the set of
active points in a trial, and wish to compute the expected length
of the minimum spanning tree of S. The problem, fundamental in
its own right, is also motivated by a growing need to deal with un-
certainty in many applications. For instance, the master set may
denote all possible customer locations, each with a known proba-
bility of being present at an instant, or it may denote sensors that
trigger and upload data at unpredictable times, or it may be a set
of multi-dimensional observations, each with a confidence value.
Since only a subset of the master set is active at any instant, the
expected length of its MST represents the likely cost of intercon-
necting the active sites. The complexity of computing, or approxi-
mating, the expected MST length is the focus of our paper.
The independent point probabilities induce a sample space Ω

with 2n outcomes, where an outcome A ⊆ M occurs with proba-
bility Pr[S = A] =

∏
si∈A pi

∏
si "∈A(1 − pi).We let MST(A)

denote the length of A’s minimum spanning tree under the Eu-
clidean norm—for the sake of succinctness, we use MST(A) to
denote both the graph and its length whenever its meaning is clear
from the context. MST(S) is a random variable that assumes val-
ues MST(A), over the 2n subsets A ⊂ M . The expected length of
the MST of S is the expectation of this random variable:

E[MST(S)] =
∑

A⊆M

Pr[S = A] ·MST(A).

Despite the implicit summation over an exponential number of
subsets, we observe that the expected value of many basic geomet-
ric structures can be computed easily. Consider, for instance, the
expected perimeter of the convex hull of S. For each ordered pair
a, b ∈ M , we need to compute the probability that ab forms an
edge of the convex hull of S. This happens if and only if a, b are
both active and the negative halfspace defined by the line ab con-
tains no active point, the probability of which is easy to calculate
because the points’ probabilities are independent. By linearity of
expectation, the expected perimeter is simply the sum of these edge
lengths weighted by their probabilities. By a similar reasoning,
the expected values of the bounding box area, minimum enclosing

65



ball radius, or the expected lengths of the Delaunay triangulation,
Gabriel graph or relative neighborhood graph, etc. can all be com-
puted in polynomial time. It is, therefore, a bit surprising that com-
puting the expected length of the MST proves to be intractable. In
particular, our paper contains the following results.

1.1 Our Contributions
• We show that computing E[MST(S)] is #P-hard for any di-
mension d ≥ 2. (The problem is trivial for d = 1.) The
proof is by reduction from a known #P-hard network relia-
bility problem for planar graphs.

• We present a simple FPRAS (fully polynomial randomized
approximation scheme) for approximating E[MST(S)] in a
metric space, and thus also in an Euclidean space. This
algorithm runs in O((n5/ε2) log(n/δ)) time and achieves
approximation factor 1 + ε with probability 1 − δ. The
approach is based on standard random sampling, but some
added twists are necessary to cope with point sets of poten-
tially large spread.

• We present an O(n4)-time deterministic algorithm for ap-
proximating E[MST(S)] within a constant factor in two di-
mensions. To obtain this result, we introduce a new graph
H between the MST and the relative neighborhood graph,
whose length is at most a constant factor of MST (S) and
which is efficiently computable even in the stochastic set-
ting. We compute the expected length of this graph H using
a simple dynamic programming algorithm.

• We improve the approximation factor further by a more com-
plicated, deterministic PTAS (polynomial time approxima-
tion scheme) in two dimensions, which computes a 1 + ε

approximation of E[MST(S)] in time nO(1/ε5). This result
is obtained using shifted quadtrees and dynamic program-
ming in an interesting way, different from the standard tech-
nique of Arora [3]. The result is particularly noteworthy as
there are many known #P-hard problems in the literature [23]
that admit FPRASs but currently do not have deterministic
PTASs.

• Finally, we argue that the tail bounds of the distribution of
MST(S) cannot be approximated to anymultiplicative factor
in a general metric space, assuming P #= NP. This result is
shown by a simple reduction from the Steiner tree problem.

The hardness of the problem carries over to the locational
stochastic model as well where objects are always present but have
a probabilistic distribution for their locations. For this model, we
propose a constant factor approximation for a special case where
the position of each point is distributed uniformly in a unit disk.
There is a long history of research on geometric or graph struc-

tures for stochastic inputs in probability theory, optimization, and
computational geometry. In the following, we briefly review the
work that is most relevant to our research.

1.2 Related Work
The term stochastic geometry has been used in the past to study

geometric properties of random points. For instance, the celebrated
result of Bearwood et al. [4] shows that the minimal traveling sales-
man tour (or the MST) through n i.i.d. random points in [0, 1]2 has
length Θ(

√
n). Other results of this type can be found in [5, 17,

29, 30]. In contrast to this line of research, our approach is com-
putational, focusing on algorithmic complexity for non-uniform,
non-identical, worst-case distributions.

Bertsimas and Jaillet [6, 15] investigate a model much like ours
in that points are not random and probabilities are not uniform, but
their motivation and objective are different. In particular, given a
master set of points M and individual probabilities, they seek a
single traveling salesman tour through all the points of M , called
the optimal a priori tour, which is then “shortcut” for any subset of
M . More recent work on the a priori TSP and a related concept of
universal TSP includes [12, 25, 28].
In optimization, there has been work on computing the MST or

TSP under uncertainty, using 2-stage stochastic optimization [11,
31]. In this framework, part of the input (or partial distribution) is
known in the first stage, when the resources can be acquired more
cheaply, and the rest of the input is revealed in the second stage,
when the resources are more expensive. The goal is to optimize the
expected cost of building a network structure [9, 10, 14, 18]. These
problems share in common some aspects of the online algorithms,
and do not suggest any useful techniques for our problem.
Within computational geometry, there have been two threads of

research dealing with imprecise or uncertain data. One thread is
motivated by robustness of geometric computation, arising from
the finite precision of machine arithmetic. One natural approach
adopted is to assume that numerical imprecision localizes a geo-
metric object, such as a point, to a small uncertainty region, such
as a disk or a ball. The goal in this research is to ensure consis-
tency of geometric computation despite this uncertainty. A slightly
different, but more relevant to us, is the recent work where data
uncertainty is assumed at the input level [19, 21]. The natural mo-
tivation in this work is the realization that in many geometric ap-
plications, the measurements themselves are imprecise, either due
to sensing noise, or because the input is the output of some imputa-
tion process that is inherently uncertain, such as a statistical model
or a data mining algorithm. In particular, Löffler and van Krev-
eld [20, 22] investigate a simple model of uncertainty where each
point is known to lie inside a simple shape, such as a square, rectan-
gle or disk, and they study the complexity of diameter, closest pair,
bounding box, minimum enclosing disks etc., for such imprecise
points. Their focus, however, is to derive bounds on the maximum
and the minimum possible values of the desired measure (diameter
etc.) for such a collection of points, as an indication of the “spread”
of the data uncertainty. Similarly, Löffler and Phillips [19] con-
sider the problem of approximating the probability distribution of
the minimum enclosing ball’s radius for such imprecise points. In
contrast, our focus is on the uncertainty about the existence of the
points, and not the location. Each point appears only with some
probability, but when it appears, its location is known to us.

2. HARDNESS OF STOCHASTIC MST IN
THE PLANE

To highlight the uniqueness and radical behavior of the MST
under the stochastic model, it is worth putting it in the context
of related proximity structures such as the nearest neighbor (NN)
graph, the Gabriel graph (GG), the relative neighborhood graph
(RNG), and the Delaunay triangulation (DT). These proximity
structures are related and obey the following containment hierar-
chy: NN ⊆ MST ⊆ RNG ⊆ GG ⊆ DT. (An interested reader may
refer to the textbook by de Berg et al. [8] for more details.)
Despite their close relationship, all these structures except the

MST can be computed for stochastic inputs efficiently. In particu-
lar, given any pair of points (u, v), we can easily compute the ex-
pected contribution of the edge uv to NN, RNG, or GG, by simply
computing the probability that an edge is the shortest edge incident
to some node (NN), that the common intersection of the circles
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centered at u and v does not contain any other nodes (RNG), or the
circle defined by uv is empty (GG). For the Delaunay graph, it is
easier to compute these values for the triangles (or simplices). On
the contrary, we show in this section that computing the expected
MST length is #P-hard, even in the plane.

THEOREM 2.1. Given a stochastic set M of n points in the
plane, it is #P-hard to compute E[MST(S)] for the subset S of ac-
tive points.

The proof uses a reduction from a special version of the 2-
terminal network reliability problem (2-NRP) [26]. Given a graph
G, a pair (s, t) of nodes, and a rational failure probability for each
edge of G, the goal is to compute the probability that there is at
least one path of operating edges from s to t in the surviving sub-
graph. This problem is known to be #P-hard, even for undirected,
source-sink-planar graphs having node degree at most 3, with a
common failure probability p for all the edges [27]. (A graph G is
called source-sink-planar, or simply (s, t)-planar, if it has a planar
representation with s and t on the boundary.) We now describe our
reduction from this problem to stochastic geometric MST.

The Construction
As an input to 2-NRP, letG be a connected (s, t)-planar graph with
maximum degree 3, each of whose edges fails independently with
probability p. We add an edge between s and t to G, which leaves
the graph (s, t)-planar with maximum degree 4.
Let Ĝ be an orthogonal grid drawing of G, where nodes are

mapped to distinct points on the integer grid, and edges are mapped
to orthogonal polylines that do not cross, with bends at integer grid
points. It is well known (e.g., see [32]) that for any planar graph
with degree at most 4, such an orthogonal drawing (on a polynomial
size grid) is always possible and can be found in polynomial time.
We first scale the embedding Ĝ by a sufficiently large integer

factor, say, 10. Next, we encode each edge in Ĝ as a path consisting
of edges of length 1 by putting a series of auxiliary points on them
(see Fig. 2(a,b)). We call such edges of length 1 short edges; we call
such paths virtual edges. It is clear that in Ĝ, the distance between
any two points of two different virtual edges is at least

√
2. On

the virtual edge st, we pick its two middle auxiliary points ŝ and t̂
(which have distance at least 4 from other virtual edges); we move ŝ
and t̂ slightly apart so that the length of ŝt̂ is changed from 1 to 1.1,
while keeping their distances from their predecessors/successors on
the path unchanged (see Fig. 2(c)).
Let M be the set of all nodes and auxiliary points in Ĝ. We

pick one auxiliary point from each virtual edge (excluding ŝt̂), to
which we assign the probability p of being present in S and call
it the representative point of that edge. All the other points of M
are present in S with probability 1. The following lemma shows
the relation between s-t connectivity and the stochastic minimum
spanning tree.

LEMMA 2.2. Let H be the surviving subgraph of G and S be
the subset ofM excluding the representative points corresponding
to the failed edges of G. Then s and t are connected in H iff the
edge ŝt̂ is not included in MST(S).

PROOF. Let G(S) denote the complete graph over S. Two
points vi and vj can be connected in G(S) using short edges iff
there is a path connecting vi and vj inH—this follows because the
points on different virtual edges in Ĝ are at least distance

√
2 apart,

and a path in H maps to a path of short edges in G(S). Consider
the nodes s and t. If they are connected inH , then there is a path of
short edges in S connecting the corresponding points andMST(S)

(a)

s t

(b)

s t

(c)

s t

ŝ t̂

Figure 1: (a) The input graph G. (b) A grid embedding of G with
short edges. (c) The virtual edge connecting s to t.

would not use ŝt̂. If they are disconnected, then the MST(S) must
use the edge ŝt̂ since it is the shortest edge in G(S) that is longer
than 1. This completes the proof.

We now show how to compute the probability that ŝt̂ ∈ MST(S),
given an oracle to the stochastic MST problem. For two points a, b,
let p(a, b) denote the probability that ab is included in MST(S).
By d(a, b) we denote the Euclidean length of the segment ab. By
linearity of expectation, we have

E[MST(S)] =
∑

a,b∈M

p(a, b)d(a, b).

Next, we increase the length of ŝt̂ to 1.2 by moving ŝ and t̂
further apart while keeping their distances from their predeces-
sors/successors on the path unchanged. Let M ′ be the modified
point set and S′ be the modified subset ofM ′ corresponding to S.
We have the following simple lemma.

LEMMA 2.3. For all pairs of points (a, b) #= (ŝ, t̂), the proba-
bility p(a, b) of inclusion in MST(S) and MST(S′) is equal, and ŝt̂
is the only edge in the two MSTs whose length changes.
PROOF. It is easy to see that the only edges incident to ŝ and t̂

that can possibly belong toMST(S) andMST(S′) are ŝt̂ and its two
adjacent edges on the virtual edge from s to t, where the lengths of
the latter ones are unchanged. Since the length of ŝt̂ in both cases
remains strictly between 1 and

√
2, the relative order of the edges in

the MST is unchanged, and therefore the twoMSTs contain exactly
the same set of edges, with only the length of ŝt̂ being changed.
Thus, the probability p(a, b) of inclusion inMST(S) andMST(S′)
remains the same for all pairs (a, b) #= (ŝ, t̂).

From this lemma, we conclude that E[MST(S′)] −
E[MST(S)] = 0.1E[I(ŝ, t̂)] = 0.1p(ŝ, t̂). Finally, by
Lemma 2.2, the probability of s and t being connected in H is
equal to

1− p(ŝ, t̂) = 1− 10(E[MST(S′)]− E[MST(S)]),
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which can be calculated by running the stochastic MST oracle
twice. The reduction is clearly polynomial time since the size of the
grid embedding is polynomial. This completes the proof of Theo-
rem 2.1. In the next three sections, we investigate approximation
algorithms.

3. AN FPRAS IN METRIC SPACES
In this section, we describe a simple fully polynomial random-

ized approximation scheme for the stochastic MST problem in met-
ric spaces. LetM be the input point set, where each point si ∈ M
is present in S with probability pi. We first consider the naive ran-
dom sampling strategy to approximate E[MST(S)]: In every run,
pick each point with probability pi, then compute the length of the
MST on the sampled points. At the end, output the average length
of all the runs. The effectiveness of this strategy can be seen from
the standard Chernoff bounds, a version of which is stated in the
lemma below. (For example, see [23]; the most common versions
assume U = 1, but we can divide all variables by U beforehand.)

LEMMA 3.1 (Chernoff Bound). Let X1 . . . XN be i.i.d. ran-
dom variables over a bounded domain [0, U ] with expectation
E[Xi] = µ. Let X = 1

N

∑N
i=1 Xi. Then for 0 < ε ≤ 2e − 1

we have

Pr[(1− ε)µ ≤ X ≤ (1 + ε)µ] > 1− 2e−N(µ/U)ε2/4.

Thus, in order to guarantee correctness with probability 1 − δ,
we should set the number of runs to be N = *(4R/ε2) ln(2/δ)+,
where R is the ratio between U , the maximum possible value of
MST(S), and µ, the expected value of MST(S). Unfortunately,
this ratio R can be large when the spread of M (the ratio of the
largest to smallest distance) is large and certain points have very
small probabilities.
We get around this difficulty by solving a series of restricted ver-

sions of the problem where one fixed point is known to be present.
We first arbitrarily order the points {s1, . . . , sn}. Let E[i] be the
expected MST length for the points {si, . . . , sn}, and let E′[i] be
the expected MST length for the points {si, . . . , sn} conditioned
on the event that si is active. Then, we have the following recur-
rence, for i = n− 1, . . . , 1.

E[i] = piE
′[i] + (1− pi)E[i+ 1]. (1)

We now consider a further restriction of the problem where
a point and its farthest neighbor are both known to be
present. Specifically, we reorder the points in {si+1, . . . , sn}
as {ri,i+1, . . . , ri,n} in increasing order of distance from si.
Let E′′[i, j] be the expected MST length for the points
{si, ri,i+1, . . . , ri,j} conditioned on the event that si and ri,j are
both active. Then, we have the following recurrence, for j =
i+ 1, . . . , n.

E′[i, j] = qi,jE
′′[i, j] + (1− qi,j)E

′[i, j − 1], (2)
where qi,j denotes the probability that ri,j is present. We ob-
serve that in the last restricted problem an approximate farthest
pair is present, because the distance between any two points in
{si, ri,i+1, . . . , ri,j} is at most 2D, where D = d(si, ri,j). Thus,
the minimum and maximum values of the MST length lies between
D and O(nD). (Recall that we are considering a general metric
space.) Therefore, the ratio of the maximum MST length to its ex-
pected length is bounded by O(n), and so by the above Chernoff
bound, we can compute a (1±ε)-approximation ofE′′[i, j] by sam-
pling with O((n/ε2) log(1/δ)) runs, i.e., in O((n3/ε2) log(1/δ))
time if we use an O(n2)-time MST algorithm such as Prim’s.

Once the value of E′′[i, j] is obtained for all i, j (i < j), we can
obtain the value E[1] = E[MST(S)] by dynamic programming via
(2) and (1) in additional O(n2) time. Note that we should decrease
δ by a factor of n2 to guarantee that all E′′[i, j] values are approx-
imated correctly with probability 1 − δ. The total running time is
O((n5/ε2) log(n/δ)).

Remark.

For Euclidean spaces in constant dimensions, we can save a fac-
tor of n by using an O(n/εO(1))-time algorithm for computing an
(1 + ε)-approximate Euclidean MST [7], instead of Prim’s algo-
rithm. Further speedups seem possible if we use appropriate data
structures for approximate MST.
In all running time upper bounds in this paper, we assume the

standard real RAM model, but precision can be an issue because
of the need to multiply chains of O(n) probability values. On the
word RAMmodel (or in terms of bit complexity), the running times
naively increase by a polynomial factor. For approximation results,
however, the increase can be mitigated, since it is sufficient to main-
tain O((1/ε) log n) bits of precision for all intermediate values.

4. A CONSTANT FACTOR APPROXIMA-
TION IN THE PLANE

We now turn to deterministic approximation algorithms. There
are several known O(log n)-approximation algorithms to MST or
TSP that can be easily adapted to the stochastic setting, for exam-
ple, the “nearest neighbor heuristic”, or sorting along space-filling
curves (the latter in fact gives a logarithmic approximation for the
universal TSP problem [25]). However, getting sublogarithmic ap-
proximation is a challenge for the stochastic MST problem, even
in two dimensions. In this section, we propose a polynomial-time
deterministic algorithm with a constant approximation factor in the
plane.
We switch to the L∞ norm throughout this section—our approx-

imation of the MST under this norm remains an approximation of
its L2 norm because ‖x‖∞ ≤ ‖x‖2 ≤

√
2‖x‖∞ in two dimen-

sions. In particular, the notation d∞(x) will refer to the L∞ norm
of x, where x can be an edge, a tree or a graph. Given a subset S
of the input point setM in the plane, letG(S) denote the complete
graph on S under the L∞ distance norm. We describe a subgraph
ofG(S) that is both lightweight, meaning a constant factor approx-
imation of MST(S), and whose expected length can be computed
exactly in polynomial time.
We start with the relative neighborhood graph RNG(S), defined

as follows. Each point of S is a node of RNG(S), and there
is an edge between u and v if the rectangular box Bu(u, v) ∩
Bv(u, v) does not contain any other point of S, where Bu(u, v)
and Bv(u, v) are the L∞ balls of radii d∞(u, v) centered at u and
v, respectively. In order to simplify the discussion, we will assume
that no two points of S have the same x or same y coordinate. This
can be easily enforced through a suitable rotation, or by imposing
an appropriate lexicographic order on the points. It is well known
that RNG(S) is a planar graph [33] and that it contains MST(S).
Unfortunately, it is not lightweight: for example, the set of n points
with coordinates (−iε, iε), for i = 1, 2, . . . , n, together with n
points with coordinates (1 − iε, 1 + iε) is easily seen to have a
relative neighborhood graph of length Ω(n), while the MST has
length O(1).
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4.1 A Lightweight Subgraph H
The main result of this section is to devise a pruning scheme

that constructs a lightweight subgraphH of RNG(S) which admits
stochastic estimation. (While several spanner graphs in the litera-
ture [24] are known whose weight is a constant factor of the MST,
they do not seem amenable to stochastic computation.) The rule for
pruning edges from RNG(S) is the following:

Pruning: An edge uv ∈ RNG(S) is deleted iff there
exists a pair of points a, b ∈ S such that uv is the
longest edge of the 4-cycle (u, v, a, b).

It is important to note that the remaining edges of the cycle
(u, v, a, b) are not required to be in RNG(S)—they only need to
be in G(S); in fact, this is crucial for computing the probabilities.
Let us call this pruned graph H . The following facts about H are
easily established.

1. H contains MST(S): This follows easily from the cycle
property, which says that the longest edge of any cycle in
G(S) cannot be inMST(S).

2. H is triangle-free: This follows because H is a subgraph of
RNG(S), and so the longest edge of any triangle necessarily
violates the RNG property.

Let d∞(C) be the sum of the L∞ norms of the edges in the cycle
C. We now establish the key property that allows us to show that
H is lightweight.

LEMMA 4.1. For any cycle C in H and any edge e ∈ C, we
have d∞(C) ≥ 3d∞(e).

PROOF. It suffices to prove the result for the longest edge of
any cycle. So, assume that C is a cycle ofH , and uv is the longest
edge of C. We consider the rectangular boxes Bu = Bu(u, v) and
Bv = Bv(u, v). Figure 2 illustrates the proof. If any node of the
cycle C, say a, lies outside or on the boundary of Bu ∪ Bv , then
the triangle /uvw is a lower bound on the length of C, and the
perimeter of the triangle is at least 3d∞(uv). Thus, assume from
now on that all nodes of C lie insideBu∪Bv , and let ub and va be
the edges preceding u and following v in the cycle. Note that a #= b
because otherwise we have a triangle inH , which we already ruled
out. The proof now breaks down in the following three cases.

1. [Both a and b either lie in Bv\Bu or in Bu\Bv .] See
Fig. 2(b). This is impossible since uv is the longest edge
in C.

2. [b ∈ Bv\Bu and a ∈ Bu\Bv .] See Fig. 2(c). This is also
impossible as uv is the longest edge in C.

3. [b ∈ Bu\Bv and a ∈ Bv\Bu.] See Fig. 2(d). Clearly, there
must be an edge b′a′ #= uv of the cycle C such that b′ ∈ Bu

and a′ ∈ Bv , and consider the 4-cycle (u, v, a′, b′). Both
ub′ and va′ are shorter than uv, and therefore either uv or
a′b′ is the longest edge in (u, v, a′, b′) and no longer exists
inH after pruning, which is a contradiction.

This completes the proof.

The cycle bound of the preceding lemma, together with the fact
that H is planar, now allows us to derive an upper bound on the
total cost ofH , using the following known result.

u

v

a

(a)

R2

R4

R1

R3

u

v

ab

(b)

u

v

b

a

(c)

u

v

b

a

(d)

Figure 2: Illustration for the proof of Lemma 4.1.

THEOREM 4.2 ([1, 16]). Let G be a connected, weighted
planar graph with nonnegative edge weights w() satisfying the
property that for every cycle C in G and every edge e ∈ C,
w(C) ≥ λw(e) for some constant λ > 2. Then, w(G) ≤
(1 + 2

λ−2 )w(T ), where T is a minimum spanning tree of G.

Lemma 4.1 shows thatH satisfies this condition for λ = 3 under
the L∞ norm. We, thus, have the following result.

LEMMA 4.3. The total length of the pruned subgraph H is
within a constant factor of MST(S).

4.2 Stochastic Estimation of H
We now discuss how to compute the expected length of H ex-

actly under our stochastic model. We will calculate the proba-
bility with which an edge uv belongs to H . The edge uv must
clearly belong to RNG(S), and this probability can be easily calcu-
lated in O(n) time—this happens precisely when the intersection
of the balls Bu ∩ Bv is empty of all other points of S. Condi-
tioned on uv ∈ RNG(S), computing the probability that uv sur-
vives the pruning rule requires calculating the probability that no
pair a, b ∈ M exists for which uv is the longest edge of the cycle
(u, v, a, b). We observe that if such a pair exists then it must neces-
sarily be the case that a ∈ Bv and b ∈ Bu; otherwise, either ub or
va is the longest edge of the cycle. Further, for uv to be the longest
edge of the 4-cycle, a and b must lie on opposite quadrants cre-
ated by the intersection of Bu and Bv , namely, either the quadrant
pair (R1, R2) or (R3, R4) in Fig. 2(a). We, therefore, arrive at the
following stochastic bichromatic closest pair estimation problem.

PROBLEM 4.4 (BICHROMATIC CLOSEST PAIR PROBABILITY).
Consider a stochastic set U of n points contained in the north-east
quadrant, and a stochastic set V of n points contained in the
south-west quadrant. Compute the probability that the closest
bichromatic pair of active points in U × V , under the L∞ norm,
has distance less than r, for some given r.

The following lemma describes a dynamic programming algo-
rithm to solve this above.
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LEMMA 4.5. The bichromatic closest pair probability can be
computed exactly in O(n2) time.

PROOF. Let U = {u1, u2, . . . , un} be the set of points in
the north-east quadrant sorted in increasing x-order, and V =
{v1, v2, . . . , vm} the points in the south-west quadrant sorted in
decreasing y-order. Each point ui ∈ U is active with probability pi,
while each point vi ∈ V is active with probability qi. We describe
a dynamic programming algorithm to compute the exact probabil-
ity that the minimum L∞ distance between the active points of U
and the active points of V is at least r.
Define P [i, j] as the probability that the minimum dis-

tance between the active points in {ui, ui+1, . . . , un} and
{vj , vj+1, . . . , vm} is at least r. Define P ′[i, j] to be the same
probability conditioned on the event that ui is active. Let x(u) and
y(u) denote the x- and y-coordinates of a point u. Clearly,

P [i, j] = piP
′[i, j] + (1− pi)P [i+ 1, j].

We also have

P ′[i, j] =






P ′[i, j + 1] if x(vj) ≤ x(ui)− r
(1− qj)P

′[i, j + 1] if x(vj) > x(ui)− r
and y(vj) > x(uj)− r

P [i+ 1, j] if y(vj) ≤ x(ui)− r.

The correctness of the formula is easy to see:

• in the first case, vj has L∞ distance at least r from
{ui, ui+1, . . . , un}, since the ui’s are in increasing x-order;

• in the second case, ui and vj have L∞ distance less than r,
so vj cannot be active if ui is active;

• in the third case, ui has L∞ distance at least r from
{vj , vj+1, . . . , vm}, since the vj’s are in decreasing y-order.

We can thus compute the desired probability P [1, 1] by dynamic
programming via the above two formulas in O(n2) time.

The overall problem boils down to computing the probability, for
each edge, that it belongs toH , and therefore we arrive at our main
result for this section.

THEOREM 4.6. Given a stochastic set M of n points in
the plane, we can compute a constant factor approximation of
E[MST(S)] for the subset S of active points in O(n4) time.

5. DETERMINISTIC PTAS IN THE PLANE
In this section, we present a different deterministic approxima-

tion algorithm for the stochastic MST problem in two dimensions.
Although much less efficient than the algorithm from the previous
section, the new algorithm achieves approximation factor arbitrar-
ily close to 1, yielding a PTAS.
The general approach is as follows. We define a new distance

function d̂(·, ·) which approximates the Euclidean distance func-
tion d(·, ·), and show that the expected MST length can be com-
puted exactly under this new distance function. The specially de-
signed distance function d̂ is based on quadtrees, which will allow
the stochastic estimation of the MST to be solvable by performing
dynamic programming over the quadtree cells.

5.1 A New Distance Function d̂

Let ε ∈ (0, 1/4). Let b > 1 be a parameter to be set later. Re-
call that in Section 3, we have shown that it is sufficient to solve
a restricted version of the problem where an approximate farthest
pair of distance D is known to be present; the original problem re-
duces to a polynomial number of such subproblems. By rounding
all points to grid points with a grid of side length εD/n, the ex-
pected MST length changes by at most O(εD), which is at most
O(εE[MST(S)]). By rescaling, we may thus assume that all co-
ordinates of the input point set M are integers between 0 and
U = O(n/ε). We initially shift the point set by a random vec-
tor v ∈ {0, . . . , U − 1}2.
We start by defining the distance function D(p, q) as the di-

ameter of the smallest quadtree cell enclosing two given points
p and q. Here, a quadtree cell refers to a box of the form
[j2i, (j+1)2i)× [k2i, (k+1)2i) for some natural numbers i, j, k.
Clearly, D(p, q) ≥ d(p, q). The following lemma bounds the ex-
pected value of D(p, q), where the expectation is over the random
vector v.

LEMMA 5.1. E[D(p, q)] ≤ O(logU)d(p, q).

PROOF. D(p, q) > 2i
√
2 iff pq crosses a horizontal or verti-

cal grid line in the grid formed by quadtree cells of side length
2i. After the random shift, this happens with probability at most
2 · d(p, q)/2i. Thus, E[D(p, q)] ≤

∑
i O(2i · d(p, q)/2i) =

O(logU)d(p, q).

The above lemma can be used to obtain a simple logarithmic
approximation algorithm for MST (related to sorting along space-
filling curves), but to achieve sublogarithmic factor, we need to
work with another distance function $(·, ·). Let Bs(p) denote the
quadtree box of diameter s containing p. As usual, let d(B,B′)
denote the minimum distance between two sets B and B′.

DEFINITION 5.2. $(p, q) := d(Bs(p), Bs(q)) + 2s, where
s = s(p, q) is the largest value of the form 2i

√
2 such that

s ≤ (ε/2)d(Bs(p), Bs(q)).

Clearly, d(p, q) ≤ $(p, q) ≤ (1 + ε)d(p, q). We are now ready
to define the distance function d̂:

DEFINITION 5.3. d̂(p, q) := max{$(p, q), D(p, q)/b}.

We have d̂(p, q) ≥ d(p, q) and E[d̂(p, q)] ≤ E[$(p, q) +
D(p, q)/b] ≤ (1 + ε + O(logU)/b)d(p, q). It follows that over
a random subset S of active points and a random shift v, the ex-
pected length of the MST of S under d̂ approximates the expected
length of the Euclidean MST of S with factor 1+ ε+O(logU)/b.
To guarantee 1 + O(ε) approximation factor, we should set b =
(1/ε) logU .

5.2 A Brute Force Algorithm for d̂

We now demonstrate that the expected MST length is indeed eas-
ier to compute under this particular distance function d̂. It suffices
to compute the expected MST length for a fixed shift vector v since
we can take average over the polynomial (O(U2)) number of all
possible vectors.
Given a value r, define the graph Gr(S) = (S, {pq : p, q ∈

S, d̂(p, q) ≤ r}) and let Nr(S) denote the number of connected
components ofGr(S). Let {r1, r2, . . .} be all the possible distance
values for d̂ in increasing order (there are at most n2 such values).
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By simulating Kruskal’s algorithm, it is not difficult to see that the
length of the MST of S is exactly

∑
i ri(Nri−1(S) − Nri(S))

(where r0 = 0). By linearity of expectation, it suffices to give an
algorithm to compute E[Nr(S)] exactly for a fixed value r; we only
need a polynomial number of calls to this algorithm.
By the definition of d̂, if D(p, q) > br, then d̂(p, q) > r. So, if

we take the grid formed by the quadtree cells of diameter within a
factor 2 of 2br, then there are no edges in Gr(S) between points
from different cells. Therefore the cells can be treated indepen-
dently, and it suffices to give an algorithm to compute E[Nr(S)]
for the case when all the points lie inside a quadtree cell of side
length Θ(br).
Furthermore, according to the following lemma, we may

“round” the points when computing Nr(S) for the distance func-
tion d̂:

LEMMA 5.4. Suppose D(p, p′) ≤ εr/5. Then d̂(p, q) > r iff
d̂(p′, q) > r.

PROOF. By symmetry, it suffices to prove one direction. There
are two cases.

1. D(p, q) > br. Then D(p, p′) 1 D(p, q)/2, implying that
D(p′, q) = D(p, q) > br.

2. $(p, q) > r. Let s = s(p, q). Then 2s >
(ε/2)d(B2s(p), B2s(q)) ≥ (ε/2)($(p, q) − 2s), implying
that s > (ε/[2(2 + ε)])$(p, q) > εr/5. So D(p, p′) < s,
implying that s(p′, q) = s(p, q) and $(p′, q) = $(p, q) > r.

Therefore, if we take the grid formed by the quadtree cells with
diameter within a factor of 2 of εr/10, then each nonempty grid cell
can be collapsed into a single point, with probability value equal to
the sum of the probability values of the points in the cell. The orig-
inal problem is thus reduced to a polynomial number of instances
of the following problem:

PROBLEM 5.5. Given a value r and a stochastic set of points
from a grid of side lengthΘ(εr) inside a quadtree cellBroot of side
length Θ(br), compute E[Nr(S)] for the subset S of active points.

Observe that in this problem, the number of points is at most
O(b/ε)2. Hence, there are 2O(b/ε)2 different choices for S, and
a brute force algorithm already yields a time bound of 2O(b2) for
constant ε. Unfortunately, for b =Θ (logU), the running time is
still super-polynomial (though quasi-polynomial).

5.3 A Dynamic Programming Algorithm
We next reduce the time bound for Problem 5.5 to bO(b) by dy-

namic programming. Given a quadtree cell B, let Bring denote the
region (a ring) of all points in B with Euclidean distance at most r
to ∂B, the boundary of B. Let Bin = B −Bring (a box inside B).

DEFINITION 5.6. Let state(S,B) be the triple σ = (N,V,∼),
where

1. N = Nr(S ∩B);

2. V = S ∩Bring;

3. ∼ is the equivalence relation over V where for p, q ∈ V ,
p ∼ q iff p and q are connected in Gr(S ∩B).

Bring

p

q

Figure 3: The state of a quadtree cell B and the graph Gr(S ∩
B). The vertices of V are shown in black,N is 4, and p ∼ q for
the two points p, q ∈ V shown.

Figure 3 illustrates the state of a quadtree cell.

LEMMA 5.7. Given a quadtree cell B ⊆ Broot, there are at
most (b/ε)O(b/ε2) different state(S,B) over all possible subsets S.
PROOF. There are O(b/ε)2 possible values for N . Since Bring

contains at mostO(4·b/ε·1/ε) = O(b/ε2) grid points, there are at
most 2O(b/ε2) choices for V . We can encode ∼ by assigning each
point of V a label (a number bounded byO(b/ε)2) representing its
equivalence class. Hence, there are at most [(b/ε)2]O(b/ε2) choices
for ∼.

LEMMA 5.8. Let B1, . . . , B4 be the children of a quadtree cell
B. Then σ = state(S,B) can be completely determined from σ1 =
state(S,B1), . . . ,σ4 = state(S,B4) (without knowing S itself), in
polynomial time.
PROOF. Let σ = (N,V,∼) and σi = (Ni, Vi,∼i), for i =

1, . . . , 4. Obviously, V = (V1∪ · · ·∪V4)∩Bring. To determine the
relation ∼, observe that an edge pq with p ∈ Bi, q ∈ Bj (i #= j)
can belong toGr(S ∩B) only if p ∈ Vi and q ∈ Vj . LetH denote
the graph with node set V1 ∪ · · · ∪ V4 and edge set {pq : p, q ∈
Vi, p ∼i q} ∪ {pq : p ∈ Vi, q ∈ Vj , i #= j, d̂(p, q) ≤ r}. See
Figure 4. Then for p, q ∈ V , p ∼ q iff p and q are connected inH .

B4B2

B1 B3

p

q

Figure 4: We can infer that p ∼ q from the relations ∼i and
edges (dashed lines) between Vi and Vj .

To computeN , observe that the numberN(H) of components of
H represents the number of components ofGr(S∩B) that include
some point of S ∩ (Bring

1 ∪ · · ·∪Bring
4 ). On the other hand, letting

| ∼i | denote the number of equivalence classes in ∼i, we see that
Ni−|∼ i | counts the number of components ofGr(S∩B) that are
completely contained in S∩Bin

i . Thus,N = N(H)+
∑4

i=1(Ni−
| ∼i |).

Let f denote the above map from σ1, . . . ,σ4 to σ, and let Λ be
the set of all the 4-tuples (σ1, . . . ,σ4) such that f(σ1, . . . ,σ4) =
σ. Then,
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Pr[state(S,B) = σ]

=
∑

(σ1,...,σ4)∈Λ

Pr[(state(S,B1) = σ1) ∧ · · · ∧ (state(S,B4) = σ4)]

=
∑

σ1,...,σ4:∈Λ

Pr[state(S,B1) = σ1] · · ·Pr[state(S,B4) = σ4],

where the first equality is due to disjointness of the events and the
second is due to independence of S ∩ B1, . . . , S ∩ B4. Thus,
by examining the O(b/ε)2 quadtree cells B in a bottom up order
(with the trivial base cases), we can generate the list of all possi-
ble choices for state(S,B), and for each such choice σ, compute
Pr[state(S,B) = σ], by dynamic programming. The final answer
is

E[Nr(S)] =
∑

(N,V,∼)

N · Pr[state(S,Broot) = (N,V,∼)].

By Lemma 5.7, the running time of the dynamic programming
algorithm is bO(b) for constant ε, which is still mildly super-
polynomial for b =Θ (logU).

5.4 Refined Analysis of the Dynamic Pro-
gramming Algorithm

Finally, we reduce the time bound to 2O(b) by improving the
counting in Lemma 5.7. To obtain the improvement, we exploit a
geometric property concerning the components of the graph Gr—
namely, different components can’t cross.

LEMMA 5.9. Suppose two line segments p1p2 and q1q2 inter-
sect. If d̂(p1, p2), d̂(q1, q2) ≤ r, then d̂(pi, qj) ≤ r for some i, j.

PROOF. Assume to the contrary that d̂(pi, qj) > r for all i, j.
Let D = max{D(p1, p2),D(q1, q2)} ≤ br. Since all four points
lie in a quadtree cell of diameterD, we haveD(pi, qj) ≤ br for all
i, j, which implies that $(pi, qj) > r, and d(pi, qj) > r/(1 + ε).
In the quadrilateral formed by the four points, one of the four

angles must be at least π/2. Without loss of generality, assume
∠p1q1p2 ≥ π/2. Then r2 ≥ d(p1, p2)

2 ≥ d(p1, q1)
2 +

d(q1, p2)
2 > [2/(1 + ε)2]r2, which is a contradiction.

LEMMA 5.10. The bound in Lemma 5.7 can be improved to
2O(b/ε4).

PROOF. Let A be the arrangement of all line segments pq with
pq ∈ Gr(S ∩ B). By Lemma 5.9, those points of R that are con-
nected in the arrangementA are connected in the graphGr(S∩B).
Let V ′ be the (multi)set of all intersections of ∂Bin with the line

segments in A. Let ∼′ be the equivalence relation over V ′ where
for u, v ∈ V ′, u ∼′ v iff u and v are connected in the arrangement
A ∩Bin (formed by clipping A to Bin).
Observe that ∼ is completely determined from ∼′, V ′, and V .

Indeed, define a graphH with vertex set V ∪V ′ and edge set {pq :

p, q ∈ V, d̂(p, q) ≤ r} ∪ {pv : v ∈ V ′ is defined by p ∈
V } ∪ {uv : u, v ∈ V ′, u ∼′ v}. Then for p, q ∈ V , p ∼ q iff p
and q are connected inH .
It therefore suffices to count the number of possible choices for

V ′ and ∼′. The number of pairs of grid points p ∈ Bring and q ∈
Bin of Euclidean distance at most r is bounded byO(b/ε2·1/ε2) =
O(b/ε4). Thus, there are at most 2O(b/ε4) choices for V ′. We can
encode ∼′ by a string z of labels representing the components of

e e da

b c c

a

a

d

∂Bin

Figure 5: The labels along ∂Bin are “abccaddaee”, and corre-
spond to a string of balanced parentheses.

A∩Bin that the points of V ′ belong to, where the points are ordered
clockwise along ∂Bin (from some fixed starting point). However,
notice that z cannot have a subsequence of the form acac, because
different components of A ∩Bin can’t cross. This property allows
us to map z to a string of balanced parentheses. Specifically, one
way is to change the first occurrence of each label a to “((”, the
last occurrence of a to “))”, and all other occurrences of a to “)(”;
in the special case when a occurs once, we can change it to “()”.
For example, the string “abacdae” is mapped to “((())(()()))()”. See
Figure 5. Then ∼′ can be decoded from the string of parentheses
and V ′. Since this binary string has length 2|V ′| = O(b/ε4), there
are at most 2O(b/ε4) choices for ∼′.

We conclude that the running time of the dynamic programming
algorithm is bounded by 2O(b/ε4). Setting b = (1/ε) logU finally
gives a PTAS:

THEOREM 5.11. Given a stochastic set M of n points in two
dimensions, we can compute a 1 + O(ε) factor approximation of
E[MST(S)] for the subset S of active points in nO(1/ε5) time.

Remarks.
The dependency of the exponent on ε is likely improvable with

more work. In a higher constant dimension d ≥ 3, the run-
ning time is, up to polynomial factors, bO(bd−1) for approxima-
tion factor 1 + ε + O(logU)/b. (The refined counting analy-
sis in Lemma 5.10 does not generalize.) Consequently, we can
obtain a quasi-PTAS with running time 2O(logd−1 n log logn), or a
polynomial-time algorithmwith sublogarithmic approximation fac-
tor O(log1−1/(d−1) n log1/(d−1) log n). We leave the existence of
a deterministic PTAS in higher dimensions as an open problem.
The combination of shifted quadtrees and dynamic program-

ming, as well as the counting analysis based on balanced paren-
theses, superficially resembles Arora’s TSP algorithm [3] (partic-
ularly, the first version of his algorithm [2]). However, there are
fundamental differences: Arora’s approach generates a large num-
ber of different optimization subproblems per cell, one for each
boundary configuration; in contrast, for our stochastic problem, we
need to work with one precisely defined optimization subproblem
per cell (computing the components of Gr(S ∩ B) under d̂), so
that we can consider the probability that the (uniquely determined)
solution has a specific boundary configuration/state. This explains
why Euclidean TSP seems to admit more efficient approximation
algorithms (for example, “patching lemmas” [3] do not appear to
help for the stochastic MST problem).
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6. TAIL BOUNDS AND THE
LOCATIONAL UNCERTAINTYMODEL

In this section, we show that computing or approximating the
tail bounds of the stochastic MST is hard, and briefly discuss a
stochastic model where the locations of the points are probabilisti-
cally distributed.

6.1 Tail Bound Approximation
In this section we investigate the complexity of approximating

the tail bounds for the distribution of the MST length of a stochastic
set of points in a metric space. Specifically we prove the following
result.

THEOREM 6.1. Given a stochastic setM of n points in a metric
space and a value $, it is NP-hard to approximate the value of the
probability Pr[MST(S) ≤ $] for the subset S of active points, to
within any (possibly nonconstant) factor α.

The reduction is from the metric Steiner tree problem (see [13]).
Given a metric (V, d) and a subset R ⊆ V of required points, con-
sider the complete graph G = (V,E) defined on this metric. The
goal is to find a tree T of minimum length connecting all the re-
quired points, potentially including other Steiner points from V \R.
It is known (see [13]) that it is NP-Hard to decide whether there ex-
ists a tree T of length $ or less. Suppose we have an algorithm
to approximate the tail bounds for the metric MST problem within
multiplicative factor α. Take the graph G as above, and let each
point in V \R be present in S with probability 1/2, while each re-
quired points in R are present in S with probability 1.

LEMMA 6.2. Pr[MST(S) ≤ $] > 0 iff there exists a Steiner
tree of length $ or less connecting all points in R.
PROOF. Suppose there exists a Steiner tree of length ≤ $ con-

necting all points inR. Then with a non-zero probability only those
Steiner points included in that tree will be present, and along with
the points in R, the MST would have length ≤ $.

Let p̂ be an α-approximation to p = Pr[MST(S) ≤ $]. By the
preceding lemma, Steiner tree of length ≤ $ does not exist if and
only if p̂ = p = 0. We can therefore solve the decision version
of the metric Steiner tree problem in polynomial time, given an
algorithm to approximate the tail bounds for the MST. This proves
Theorem 6.1.

6.2 Locationally Stochastic Points
In a locational uncertainty version of the MST, each point is

present with certainty but its location is probabilistic. This is
a natural model in settings where objects are mobile with some
known locational distribution, or where localization measurements
are noisy, causing objects to be located only approximately within
a region. We show below that computing the expected length of the
MST in this stochastic variant is also #P-hard.

THEOREM 6.3. Given a set of n point probability distributions
in the plane M = {µ1, . . . , µn}, the problem of computing the
expected length of the MST of S = {s1, . . . , sn}, where si is a
randomly and independently selected point from µi, is #P-hard.
PROOF. We show that the existential version of the stochastic

MST can be reduced to the locational uncertainty problem. Con-
sider an instance M of the former problem, where each point
si ∈ M is active in S with probability pi. We construct a loca-
tional uncertainty instance M ′ from M , as follows. Let z be a

point sufficiently far fromM , say, a multiple of the diameter of S.
In our construction, the distribution for point i ofM ′ is associated
with two locations: the point in S′ appears at si with probability
pi, and at z with probability 1 − pi. Equivalently, we can think of
S′ as equal to S ∪ {z} if S #= M , or S otherwise.
Sort the points {s1, . . . , sn} in order of increasing distances to

z. We observe that

E[MST(S′)] = E[MST(S)] +
n∑

i=1

qid(si, z),

where qi is the probability that siz ∈ MST(S′). Since only the
shortest edge between z and S can be present inMST(S∪{z}), we
have qi = pi

∏i−1
j=1(1−pj) for i > 1 and q1 = p1

(
1−

∏n
j=2 pj

)

(recall that ifS = M , then z #∈ S′). Thus, computing the locational
MST cost E[MST(S′)] is just as hard as computing the existential
MST cost E[MST(S)].

We can show a constant factor approximation for a special case
of the geometric locational uncertainty model: if each point’s lo-
cation set is a unit disk and the disks of all the points are pairwise
disjoint. In this case we show an efficient constant factor approxi-
mation algorithm.

THEOREM 6.4. Suppose we are given a set of n point probabil-
ity distributions in the planeM = {µ1, . . . , µn} where the support
of µi is contained in a unit disk Di and the disks {D1, . . . , Dn}
are pairwise disjoint. One can compute a constant factor approx-
imation of the expected length of the MST of S = {s1, . . . , sn},
where si is a randomly and independently selected point from µi,
in worst-case time O(n).

PROOF. We return Lc, the length of the MST connecting all the
centers of the disksDi. We can compute Lc exactly in O(n log n)
time, or approximately in O(n) time [7].
LetL denote the length ofMST(S). Observe that |L−Lc| ≤ 2n,

because the maximum distance of any point is at most 1 from the
center of its disk. Next, consider the Minkowski sum of a radius
2 disk and MST(S). The area swept by this sum clearly includes
all the disks inM . We therefore have the following bound for this
areaX:

πn ≤ X ≤ 4L+ 4π,

which implies n = O(L+1). Since L = Ω(1) (assuming n ≥ 3),
we get n = O(L). A similar argument implies that n = O(Lc).
Together with the inequality |L − Lc| ≤ 2n, we get L = O(Lc)
and Lc = O(L). Therefore, Lc approximates E[L] to within a
constant factor.

7. CLOSING REMARKS
In this paper, we have studied a stochastic version of the MST

problem. Our results show that the introduction of probabilities in
the input can change the complexity landscape in surprising ways.
For instance, despite close mutual relationships among the proxim-
ity structures, MST is shown to be #P-hard, while the others remain
polynomial. We believe that our stochastic model is a promising
new direction for dealing with uncertainty that is often inherent in
real world data, for various other problems as well.
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