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Abstract

We consider several multiperiod portfolio optimization models where the market consists of a riskless asset and several
risky assets. The returns in any period are random with a mean vector and a covariance matrix that depend on the pre-
vailing economic conditions in the market during that period. An important feature of our model is that the stochastic
evolution of the market is described by a Markov chain with perfectly observable states. Various models involving the
safety-first approach, coefficient of variation and quadratic utility functions are considered where the objective functions
depend only on the mean and the variance of the final wealth. An auxiliary problem that generates the same efficient fron-
tier as our formulations is solved using dynamic programming to identify optimal portfolio management policies for each
problem. Illustrative cases are presented to demonstrate the solution procedure with an interpretation of the optimal
policies.
� 2006 Published by Elsevier B.V.
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1. Introduction

The portfolio selection problem is faced by an
investor who wants to allocate his wealth among
different assets within a market according to an
objective based on his preferences. The investor’s
decisions about which portion of his wealth to
invest in each asset over the investment horizon con-
stitute his investment policy. Many factors, such as
the investment horizon, characteristics of the mar-
ket and the objective of the decision maker affect
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the optimal investment policy. In this paper, we
consider a multiperiod portfolio selection problem
where the returns of the assets are modulated by a
Markov chain that represents the stochastic market.
The main objective is to come up with optimal ana-
lytical solutions to several multiperiod formulations
with different objective functions that represent the
investor’s preferences.

The traditional single-period mean–variance
model developed by Markowitz [16] has been the
basis of portfolio theory. It is the first systematic
treatment of investors’ conflicting objectives of high
return versus low risk. The mean–variance model is a
parametric optimization model for the single-period

mailto:sozekici@ku.edu.tr
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portfolio selection problem which provides analyti-
cal solutions for both an investor trying to maximize
his expected wealth without exceeding a predeter-
mined risk level and an investor trying to minimize
his risk ensuring a predetermined wealth. The ana-
lytic derivation of the mean–variance efficient port-
folio frontier is given by Merton [18]. Despite its
wide-ranging success, the single-period framework
suffers from an important deficiency. It is difficult
to apply to long-term investors having goals at par-
ticular dates in the future, for which the investment
decisions should be evaluated with regard to tempo-
ral issues besides static risk-reward trade-offs.

Researchers have tried to adapt the classical
mean–variance model for the multiperiod case con-
sidering the fact that investors invest continuously
rather than for a single period. Mostly, it is assumed
that the return of an asset in a certain period is inde-
pendent of the return of the same asset in previous
periods. More realistically, some sort of dependence
among the returns should be considered. In this
paper, this is accomplished by assuming that there
are some economic, social, political and other fac-
tors affecting the asset returns. These factors form
our stochastic market and it is assumed to be a Mar-
kov chain.

Early portfolio problems were mainly based on
expected gain maximization. However, some objec-
tions were raised to this approach, and it is argued
that some investors put more emphasis on the risk
of default rather than on the investment’s yield so
that they want to secure at least a minimal return
with a high probability. The safety-first problem,
developed by Roy [23] as an alternative to the classi-
cal mean–variance concept, is of practical impor-
tance in portfolio selection, and it is one of the
main problems that are analyzed in this paper. It is
considered to be a simpler decision model to under-
stand that concentrates on disastrous results where
the objective is to minimize the probability that the
terminal wealth of an investor is below a predeter-
mined level. The quadratic utility function is one
that has been widely used in the literature to describe
investor’s preferences. This problem is also analyzed
where the objective is to maximize the expected util-
ity at the end of the investment horizon. Another
problem analyzed in this paper is the minimization
of the coefficient of variation of the final wealth.

Multiperiod portfolio optimization models have
been studied by many researchers using different
approaches. This paper follows the work of Çakmak
and Özekici [4] on multiperiod mean–variance port-
folio optimization in Markovian markets. The
correlation among returns in different periods is for-
mulated by a stochastic market representing the
underlying factors that form a Markov chain. Con-
sidering a market with one riskless and m risky assets,
a multiperiod mean–variance formulation is deve-
loped. An auxiliary problem generating the same effi-
cient frontier is used to eliminate nonseparability in
the sense of dynamic programming. The analytical
optimal solution is obtained for the auxiliary prob-
lem using dynamic programming. In our setting, we
extend this line of research by considering various
problems involving the safety-first approach, coeffi-
cient of variation and quadratic utility functions.

We want to emphasize that there is growing inter-
est in the literature to use a stochastic market process
in order to modulate various parameters of the
financial model to make it more realistic. Hernán-
dez-Hernández and Marcus [10], Bielecki et al. [2],
Bielecki and Pliska [3], Di Massi and Stettner [17],
Stettner [25,26], and Nagai and Peng [19] provide
examples on risk-sensitive portfolio optimization
with observed, unobserved and partially observed
states in Markovian markets. Continuous-time Mar-
kov chains with a discrete state space are used in a
number of papers including, for example, Bäuerle
and Rieder [1], Yin and Zhou [29], and Zhang [31]
to modulate model parameters in portfolio selection
and stock trading problems. Zariphopoulou [30],
Fleming and Hernández-Hernández [7] use diffusion
processes for modulating purposes. There are also
models where only one of the parameters in modu-
lated. Models of stochastic interest rates with some
sort of a Markovian structure are also quite com-
mon as in Korn and Kraft [12] , Norberg [20], and
Elliott and Mamon [5], among others.

Research on portfolio management is quite exten-
sive; Steinbach [24] surveys single-period and multi-
period mean–variance models in financial portfolio
analysis and lists 208 references. Wang and Xia
[28] discuss recent developments on the portfolio
selection problem and asset pricing. The case where
the asset returns over the periods are statistically
dependent has received only limited attention due
to its apparent complexity. Hakansson and Liu [8],
Hernández-Hernández and Marcus [10] and Bie-
leceki et al. [2] consider models where asset returns
are serially correlated. Li and Ng [15] consider the
mean–variance formulation in multiperiod portfolio
selection and determine the optimal portfolio policy
and an analytical expression of the mean–variance
efficient frontier. Their model assumes independence
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of returns over time and an auxiliary problem is
solved using dynamic programming. The solution
to the auxiliary problem is then manipulated to
obtain the optimal mean–variance portfolio man-
agement policy and the corresponding efficient fron-
tier. The same approach is used by Li et al. [14] in a
multiperiod safety-first formulation, and Zhu et al.
[33] in a formulation involving risk control over
bankruptcy. Continuous-time version of dynamic
portfolio selection is provided by Zhou and Li [32].

Section 2 describes the stochastic structure of the
market. Equivalent mean–variance problem formu-
lations in generating efficient multiperiod portfolio
policies are given in Section 3. The solution of the
auxiliary problem found by dynamic programming
is given in Section 4. Section 5 gives the solution pro-
cedure of the multiperiod portfolio problem for an
arbitrary utility function like the coefficient of varia-
tion model. The quadratic utility model is analyzed in
detail in Section 6. Section 7 defines the safety-first
problem in the single-period setting and then pro-
vides the derivation of the analytical solution for it
in the multiperiod case. The multiperiod portfolio
problems are analyzed on a periodical basis in Sec-
tion 8. An illustrative case demonstrating the applica-
tion of the analytical solutions is given in Section 9.

2. The stochastic market

The returns of assets, except for the riskless one,
are random. The exact distributions of the returns
are not known, but their means, variances and
covariances with each other are assumed to be
known. These factors change randomly on a peri-
odic basis and form our stochastic market. They
constitute the states of a Markov chain which gen-
erates serial correlation among returns in different
periods. As the state of the market changes over
time, the returns also change accordingly. In short,
we have a model where asset returns are modulated
by the stochastic market.

We let Yn denote the state of the market at period
n so that Y = {Yn; n = 0,1,2, . . .} is a Markov chain
with a discrete state space E and transition matrix
Q. Modeling a stochastic financial market by a Mar-
kov chain is a reasonable approach and this idea
dates back to the paper written by Pye [21]. In the
continuous time setting, Norberg [20] considers an
interest rate model that is modulated by a Markov
process. Recently, Elliott and Mamon [5] provide
a yield curve description of a Markovian interest
rate model.
Let R(i) denote the random vector of asset returns
in any period given that the stochastic market is in
state i. The means, variances and covariances of
asset returns depend only on the current state of
the stochastic market. The market consists of one
riskless asset with known return rf(i) and standard
deviation rf(i) = 0 and m risky assets with random
returns R(i) = (R1(i),R2(i), . . . ,Rm(i)) in state i. We
let rk(i) = E[Rk(i)] denote the mean return of the
kth asset in state i and rkj(i) = Cov(Rk(i), Rj(i))
denote the covariance between kth and jth asset
returns in state i. The excess return of the kth asset
in state i is Re

kðiÞ ¼ RkðiÞ � rf ðiÞ. It follows that:

re
kðiÞ ¼ E½Re

kðiÞ� ¼ rkðiÞ � rf ðiÞ; ð1Þ
rkjðiÞ ¼ CovðRkðiÞ � rf ðiÞ;RjðiÞ � rf ðiÞÞ. ð2Þ
Our notation is such that rf(i) is a scalar and r(i) = (r1

(i),r2(i), . . . , rm(i)) and reðiÞ ¼ ðre
1ðiÞ; re

2ðiÞ; . . . ; re
mðiÞÞ

are column vectors for all i. For any column vector
z, z 0 denotes the row vector representing its transpose.

We define Xn as the amount of investor’s wealth
at period n and correspondingly XT denotes the final
wealth at the end of the investment horizon. The
vector u = (u1,u2, . . . ,um) gives the amounts invested
in risky assets (1,2, . . . ,m) in a given period. Given
any investment policy, the stochastic evolution of
the investor’s wealth follows the so-called wealth
dynamics equation:

X nþ1ðuÞ ¼ RðY nÞ0uþ ðX n � 10uÞrf ðY nÞ
¼ rf ðY nÞX n þ ReðY nÞ0u; ð3Þ

where 1 = (1, 1, . . . , 1) is the column vector consist-
ing of 1’s.

The assumptions regarding the model formula-
tion can be summarized as follows: (a) there is
unlimited borrowing and lending at the prevailing
return of the riskless asset in any period, (b) short
selling is allowed for all assets in all periods, (c)
no capital additions or withdrawals are allowed
throughout the investment horizon, and (d) transac-
tion costs and fees are negligible.
3. Mean–variance model formulations

We will use the notation Ei[Z] = E[ZjY0 = i]
and Vari(Z) = Ei[Z

2] � Ei[Z]2 to denote the condi-
tional expectation and variance of any random var-
iable Z given that the initial market state is i. In
the multiperiod setting, we obtain the following
two mean–variance formulations corresponding to
Markowitz’s [16] formulation:
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P1ðrÞ : max Ei½X T �
s:t: VariðX T Þ 6 r;

X nþ1ðuÞ ¼ rf ðY nÞX n þ ReðY nÞ0u; ð4Þ
P2ðlÞ : min VariðX T Þ

s:t: Ei½X T �P l;

X nþ1ðuÞ ¼ rf ðY nÞX n þ ReðY nÞ0u; ð5Þ

given that the initial market state is i.
The multiperiod mean–variance formulations

given in (4) and (5) do not have straightforward
solutions, and they cannot be solved using dynamic
programming due to their nonseparability. An
equivalent formulation to generate efficient multipe-
riod portfolio policies is

P3ðxÞ : max Ei½X T � � xVariðX T Þ
s:t: X nþ1ðuÞ ¼ rf ðY nÞX n þ ReðY nÞ0u; ð6Þ

where x > 0. Once P3(x) is solved parametrically
for x, it is sufficient to set Vari(XT) = r2 and
Ei[XT] = l to identify which x gives the optimal
solution of P1(r) and P2(l), respectively. The effi-
cient frontier on Ei[XT] versus

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VariðX T Þ

p
graph is

obtained by changing the value of x in the objective
function of problem (6).

Since P3(x) is still not separable in the sense of
dynamic programming, it is further embedded in
the tractable auxiliary problem

P4ðk;xÞ : max Ei½�xX 2
T þ kX T �

s:t: X nþ1ðuÞ ¼ rf ðY nÞX n þ ReðY nÞ0u;
ð7Þ

where x is a positive parameter. It turns out that
P4(k,x) is separable in the sense of dynamic pro-
gramming. The important relationship between
these four formulations is that the optimal solution
sets of former problems are included in the optimal
solution sets of later formulations so that the solu-
tions of former problems can be obtained from
P4(k,x). In other words, by solving P4(k,x) we also
solve P3(x) which, in turn, leads to solving both
P1(r) and P2(l).

4. Solution of the auxiliary problem

The stochastic market model that we consider in
this paper was introduced recently by Çakmak and
Özekici [4], where the primary focus is on mean–
variance formulations. They used dynamic program-
ming to find an explicit solution of the auxiliary
problem P4(k,x) where the utility function has a lin-
ear-quadratic structure. Using a recursive approach,
they identify the optimal policy explicitly at each
period and show that the optimal expected utility
also has a linear-quadratic structure. As a matter
of fact, this structure is exploited to obtain computa-
tionally tractable results. In this section, we summa-
rize the main results and refer the reader to Çakmak
and Özekici [4] for details and proofs. We will make
extensive use of their results to extend this line of
research by considering several utility functions of
the mean and variance that have sufficient interest
in portfolio optimization.

In order to solve P4(k,x), we define vn(i,x) as the
optimal expected utility using the optimal policy
given that the market state is i and the amount of
money available for investment is x at period n.
Then, the dynamic programming equation becomes

vnði; xÞ ¼ max
u

X
j2E

Qði; jÞE½vnþ1ðj; rf ðiÞxþ ReðiÞ0uÞ�

ð8Þ
for n = 0,1,2, . . . ,T � 1 with the boundary condi-
tion vT(i,x) = �xx2 + kx for all i. The solution for
this problem is found by solving the dynamic pro-
gramming equation recursively.

We need to introduce some terminology and
notation to give the optimal solution. We define
the matrix

V ðiÞ ¼ E½ReðiÞReðiÞ0� ð9Þ
for any state i. The covariance matrix r(i) is shown
to be positive definite for all i. This property of r(i)
is inherited by V(i) such that for any i, V(i) =
r(i) + re(i)re(i) 0 is a positive definite matrix. For
any state i, we set

f ðiÞ ¼ rf ðiÞ2½1� hðiÞ�; ð10Þ
gðiÞ ¼ rf ðiÞ½1� hðiÞ�; ð11Þ

where

hðiÞ ¼ reðiÞ0V �1ðiÞreðiÞ. ð12Þ
It turns out that for any i, f(i), g(i) > 0 and
0 < h(i) < 1.

For any matrix M and vector f, we define the
matrix Mf such that

Mf ði; jÞ ¼ Mði; jÞf ðjÞ ð13Þ
for i, j 2 E and the vector M such that

MðiÞ ¼
X
j2E

Mði; jÞ. ð14Þ

Using this notation Mn
f is the nth power of Mf, and

Mn
f is simply the vector obtained by adding the
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columns of the matrix Mn
f for n P 0. It follows that

M0
f ¼ 1 when n = 0 and Mf ¼ Mf when n = 1.
If a, b and c are three vectors, then (a/b) Æ c denotes

the vector where ((a/b) Æ c)(i) = (a(i)/b(i))c(i). Using
these notations, we finally define

hnðiÞ ¼
Qn

gðiÞ
Qn

f ðiÞ
hðiÞ; ð15Þ

hnðiÞ ¼
Qn

gðiÞ
Qn

f ðiÞ

 !2

hðiÞ. ð16Þ

We use x0 to denote the initial wealth which is
assumed to be known. The optimal solution of
P4(k,x) is of the form

vnði; xÞ ¼ �xnðiÞx2 þ knðiÞxþ anðiÞ ð17Þ
and the corresponding optimal policy maximizing
the objective function is

unði; xÞ ¼
1

2

k
x

� �
QT�n�1

g ðiÞ
QT�n�1

f ðiÞ
� rf ðiÞx

" #
V �1ðiÞreðiÞ;

ð18Þ
where

xnðiÞ ¼ xQT�n�1
f ðiÞf ðiÞ; ð19Þ

knðiÞ ¼ kQT�n�1
g ðiÞgðiÞ; ð20Þ

anðiÞ ¼
XT

k¼nþ2

Qk�n�2Q�ak ðiÞ þ �anþ1ðiÞ ð21Þ

and

�anðiÞ ¼
ðkQT�n

g ðiÞÞ2

4xQT�n
f ðiÞ

hðiÞ ð22Þ

for n = 0,1, . . . ,T � 1. In (21), the summation on
the right hand side vanishes if n = T � 1.

The optimal investment policy un(i,x) in (18)
gives the amount of money that should be invested
in each asset at period n given that the market state
is i and the current wealth is x. By substituting (18)
into the wealth dynamics equation given in (3) and
then taking expectations of Xn and X 2

n, we obtain

Ei½X n� ¼ Qn�1
g ðiÞgðiÞx0

þ k
2x

Xn

k¼1

Qk�1ðQn�k
g � hT�kÞðiÞ; ð23Þ

Ei½X 2
n� ¼ Qn�1

f ðiÞf ðiÞx2
0 þ

k
2x

� �2

�
Xn

k¼1

Qk�1ðQn�k
f � hT�kÞðiÞ ð24Þ

for n = 1, . . . ,T.
If we define

a1ðiÞ ¼ QT�1
g ðiÞgðiÞ; ð25Þ

a2ðiÞ ¼ QT�1
f ðiÞf ðiÞ; ð26Þ

bðiÞ ¼ 1

2

XT

k¼1

Qk�1
ðQT�k

g Þ2

QT�k
f

� h
 !

ðiÞ ð27Þ

then the optimal solution satisfies the simplified
expressions

Ei½X T � ¼ a1ðiÞx0 þ bðiÞc; ð28Þ

Ei½X 2
T � ¼ a2ðiÞx2

0 þ
1

2
bðiÞc2; ð29Þ

where c = k/x. Consequently, the variance of the
terminal wealth is

VariðX T Þ ¼ ða2ðiÞ � a1ðiÞ2Þx2
0 � 2a1ðiÞbðiÞx0c

þ 1

2
� bðiÞ

� �
bðiÞc2. ð30Þ

With respect to our multiperiod portfolio optimi-
zation problem, Ei[XT] is the expected wealth at the
end of the investment horizon and Vari(XT) mea-
sures the risk of the final wealth. Expectation versus
standard deviation of XT corresponds to an optimal
point on the mean–variance efficient frontier.

The mean–variance efficient frontier is given by

VariðX T Þ ¼ a2ðiÞ �
a1ðiÞ2

1� 2bðiÞ

 !
x2

0

þ ½ð1� 2bðiÞÞEi½X T � � a1ðiÞx0�2

2bðiÞð1� 2bðiÞÞ ð31Þ

defined for Ei[XT] P a1(i)x0/(1 � 2b(i)). Moreover,
at the minimum-variance point,

c ¼ 2a1ðiÞx0=ð1� 2bðiÞÞ ð32Þ

and

Ei X T½ � ¼
a1ðiÞx0

1� 2bðiÞ ; ð33Þ

VariðX T Þ ¼ a2ðiÞ �
a1ðiÞ2

1� 2bðiÞ

 !
x2

0. ð34Þ

To simplify the notation, a1, a2 and b are going to
be used in place of a1(i), a2(i) and b(i) from now on.
It must be remembered that a1, a2 and b are always
functions of the initial market state.
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5. General utility functions

All multiperiod portfolio selection problems that
are considered in this paper have objectives that are
functions of the mean and variance of the final
wealth. The multiperiod portfolio selection problem
then takes the form

U : max UðEi½X T �;VariðX T ÞÞ
s:t: X nþ1ðuÞ ¼ rf ðY nÞX n þ ReðY nÞ0u. ð35Þ

The solution procedure for general multiperiod
portfolio problems just involves the replacement of
the expressions for the mean and variance, given
in (28) and (30), into the objective function U(Ei[XT],
Vari(XT)) of the specific problem. The only restric-
tion regarding the use of this solution procedure
is that the utility function has to be increasing
with respect Ei[XT] and decreasing with respect to
Vari(XT) in order to assure that the auxiliary prob-
lem gives equivalent solutions on the efficient fron-
tier for the problem in consideration.

Investors in this paper are assumed to have an
objective of maximizing their final wealth while
keeping their risk as low as possible so that the util-
ity function satisfies

oUðEi½X T �;VariðX T ÞÞ
oEi½X T �

> 0 ð36Þ

and

oUðEi½X T �;VariðX T ÞÞ
oVariðX T Þ

< 0. ð37Þ

Li and Ng [15] prove that problem U given in
(35) can be embedded into problem P3(x) given in
(6) which further can be embedded into the auxiliary
problem P4(k,x) given in (7) implying that a multi-
period portfolio problem of maximizing U(Ei[XT],
Vari(XT)) can be embedded into P4(k,x).

The general solution procedure is rather straight-
forward. After replacing the optimal values of Ei[XT]
and Vari(XT) given in (28) and (30) into U(Ei[XT],
Vari(XT)), the objective function of the specific
problem U is obtained in terms of c. The next step
is then to obtain the derivative of U with respect
to c and solve for the maximum point that will be
reached at c*. In general

dU
dc
¼ oU

oEi½X T �
� 2Ei½X T �

oU
oVariðX T Þ

� �
dEi½X T �

dc

þ oU
oVariðX T Þ

dEi½X 2
T �

dc
;

ð38Þ
where

dEi½X T �
dc

¼ b and
dEi½X 2

T �
dc

¼ bc; ð39Þ

which are found from (28) and (29), respectively.
Setting dU/dc equal to zero, the necessary optimal-
ity condition for c is obtained

oU
oEi½X T �

� 2Ei½X T �
oU

oVariðX T Þ

� �
þ oU

oVariðX T Þ
c ¼ 0;

ð40Þ

which implies

c� ¼ 2Ei½X T � �
oU

oEi½X T �

�
oU

oVariðX T Þ

� �
. ð41Þ

Furthermore, it has to be verified that the utility
function is actually maximized at this point. The
optimal portfolio policy for the related problem is
obtained by substituting c = k/x in (18) with the
optimal c*. Finally, the expectation and variance
of the final wealth are calculated by substituting
the optimal c* into (28) and (30), respectively.

One utility function that satisfies conditions (36)
and (37) is the objective function of the coefficient
of variation model. The coefficient of variation is
a measure of relative dispersion and is defined
formally as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VariðX T Þ

p
=Ei½X T �. A logical objective

function for an investor dealing with the multipe-
riod portfolio optimization would be to minimize
the coefficient of variation of the final wealth which
can also be stated as

CV : max UðEi½X T �;VariðX T ÞÞ ¼
Ei½X T �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VariðX T Þ

p
s:t: X nþ1ðuÞ ¼ rf ðY nÞX n þ ReðY nÞ0u. ð42Þ

It is clear that both (36) and (37) are satisfied.
Replacing Ei[XT] and Vari(XT) given in (28) and

(30) into the objective function of problem (42),
we obtain

UðcÞ ¼ a1x0 þ bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � a2

1Þx2
0 þ b

2
� b2

� �
c2 � 2a1bx0c

q . ð43Þ

The first derivative of the objective function U(c)
with respect to c is

dU
dc
¼ a2bx2

0 � 0:5a1bx0c

½ða2 � a2
1Þx2 þ ð0:5b� b2Þc2 � 2a1bxc�

3
2

. ð44Þ

Equating the derivative in (44) to zero gives the sin-
gle optimum point to be
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c� ¼ 2a2x0

a1

. ð45Þ

The derivative in (44) reveals that the optimal c*

is a maximum point as required. This is obvious
from the fact that the derivative is positive for c val-
ues smaller than c* and negative for values greater
than c*.

The coefficient of variation problem has only one
single solution since the objective function does not
involve any parameter which could depend on the
investor’s preferences. This means that the solution
is the same for all investors and it gives a single
point on the efficient frontier. This point corre-
sponds to a single x value of problem P3(x). The
optimal c* of P3(x) in terms of x is given in Çak-
mak and Özekici [4] as

c� ¼ 1þ 2xa1x0

x� 2bx
. ð46Þ

The optimal x value can be found by equating the
optimal c* values of both problems given in (45)
and (46) to obtain

x ¼ a1

2x0ða2 � 2a2b� a2
1Þ

. ð47Þ

Finally, the optimal policy to this problem can be
obtained by replacing the optimal c* in place of
c = k/x in (18).

6. Quadratic utility model

The general quadratic function X T � AX 2
T , where

A is a positive coefficient, is the utility function that
has been used in the economics and finance litera-
ture to describe investor behavior. The problem of
maximizing the expectation of this utility function
corresponds to the auxiliary problem P4(k,x) with
k = 1 and x = A. This means that no initial condi-
tion is required to solve this problem since the solu-
tion obtained in Section 4 is also valid in this case.

By using the definition of the variance

E½X T � AX 2
T � ¼ E½X T � � AE½X 2

T �

¼ E½X T � � A½VarðX T Þ þ E½X T �2� ð48Þ

so that the multiperiod objective can be expressed as
a function of Ei[XT] and Vari(XT)

UðEi½X T �;VariðX T ÞÞ
¼ �AEi½X T �2 þ Ei½X T � � AVariðX T Þ. ð49Þ

The multiperiod portfolio problem of an investor
having this utility function is
QUðAÞ: max �AEi½X T �2þEi½X T ��AVariðX T Þ
s:t: X nþ1ðuÞ¼ rf ðY nÞX nþReðY nÞ0u. ð50Þ

Given the initial state i, the expectation and vari-
ance of the final wealth are already given in (28)
and (30). Putting these expressions into the objective
function given in (50), the objective in terms of c
turns out to be

UðcÞ ¼ � 1

2
Abc2 þ bcþ a1x0 � Aa2x2

0. ð51Þ

Taking the derivative of U(c) with respect to c and
equating it to zero reveals the extreme

c� ¼ 1

A
. ð52Þ

This optimal point is also a maximum point since
d2U/dc2 = �Ab < 0.

Investors having a quadratic utility function
become more risk averse as A increases since the
utility function has a higher curvature which can
be quantified in terms of its the second derivative.

The efficient frontier obtained in this problem
corresponds to the same efficient frontier obtained
from the mean–variance problem P3(x). To get
the same ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VariðX T Þ

p
;Ei½X T �Þ pair on the efficient

frontiers, the optimal c* values of both problems
are equated. Equating c* in (46) to c* in (52) reveals
the relationship between the parameter of P3(x)
and the parameter of QU(A) which is

x ¼ A
1� 2b� 2Aa1x0

. ð53Þ

By changing the value of parameter A, we obtain
the mean–variance efficient frontier.

Investors are assumed to prefer more wealth to
less wealth corresponding to the nonsatiation prop-
erty which means that the first derivative of the util-
ity function with respect to Ei[XT] should be positive,
i.e. the following condition must be placed on Ei[XT]

oU
oEi½X T �

¼ �2AEi½X T � þ 1 > 0; ð54Þ

which implies

Ei½X T � <
1

2A
. ð55Þ

An additional analysis for this problem is then to find
the range of A that will assure that Ei[XT] < 1/2A.
Given the expected final wealth Ei[XT] in (28), this
condition turns into the inequality a1x0 + bc <
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1/2A where c is taken to be the optimum one which is
1/A. Finally, the range for A turns out to be

A <
1� 2b
2a1x0

¼ A�. ð56Þ

The range A 2 (0,A*) will ensure that the investor
always prefers more to less.

Moreover, the first derivative of the utility func-
tion oU/oVari(XT) = �A is negative since A is taken
to be positive, and this assures that the investor
exhibits risk aversion.

The bounds of the range (0, A*) correspond to the
minimum-variance point for A approaching A* and
to the upper end of the efficient frontier for A

approaching 0 in the limit. For A = A*, the optimal
c*, which is 1/A as given in (52), is equal to the c
value of the minimum-variance portfolio given in
(32); and for A approaching 0, the optimal c*

approaches +1 which implies infinite Ei[XT] and
Vari(XT) from (28) and (30) respectively. For inter-
mediate values of the parameter A, the optimal
portfolios move upwards on the efficient frontier
as A is decreased from A* to 0. This result is
expected since a higher value of A implies higher
risk aversion so that less money is invested in the
risky assets which leads to lower expectation and
lower variance for the final wealth. If A is further
increased above A*, which is possible since the qua-
dratic utility problem does not require an initial
condition for the proposed solution procedure, the
portfolios obtained are on the minimum-variance
set but not on the efficient frontier anymore.

The quadratic utility problem on its own does
not have an explicit interpretation except for the
fact that it can satisfy the risk-averseness and the
nonsatiation property of the investor by putting
some constraints on its parameter A. However, it
is important to note here that there is a utility prob-
lem having an explicit interpretation that turns out
to have the same objective function as the quadratic
utility problem. The objective of this problem can
be attached a certain meaning and it is given as

min PfjX T � aj > �g. ð57Þ
This objective aims to get a final wealth XT which is
not significantly different from a specified value a,
which is logically assumed to be greater than zero.
That is, the investor is trying to maximize the prob-
ability that XT is in the vicinity of a. Using Mar-
kov’s inequality

PfðX T � aÞ2 > �2g 6 E½ðX T � aÞ2�
�2

ð58Þ
the objective function in (57) has the upper bound
E½X 2

T � 2aX T þ a2�=�2. Minimizing this upper bound
is the same as minimizing E½X 2

T � � 2aE½X T � since
both a2 and �2 are predetermined. Rearranging this
expression yields the objective

max 2a E½X T � �
1

2a
E½X 2

T �
� �

; ð59Þ

which is equivalent to

max E½X T � �
1

2a
E½X 2

T �
� �

. ð60Þ

Comparing (60) with (48) shows that this problem is
the same as the quadratic utility problem with
A = 1/2a, meaning that the same solution procedure
as given above can be used for this problem as
well. In order for the nonsatiation property to be
satisfied, the condition in (56) can be rearranged,
by putting 1/2a in place of A, to give a > (a1x0)/
(1 � 2b) = k*, where k* is constant for a given port-
folio problem and an important notation used in the
formulation of the safety-first problem.

7. Safety-first model

Elton and Gruber [6] introduce other criteria for
portfolio selection as an alternative to the classical
mean–variance approach. Telser [27] and Kataoka
[11] develop different versions of the safety-first
approach of Roy [23] by prespecifying the accept-
able probability of a bad outcome. Pyle and Tur-
novsky [22] discuss the relationship between the
three different safety-first criteria developed. Levy
and Sarnat [13] try to relate the safety-first principle
to the expected utility principle. Li et al. [14] and
Zhu et al. [33] extend the safety-first approach to
multiperiod portfolio selection problems. In a recent
paper, Haque et al. [9] discuss all approaches pro-
posed so far to solve the safety-first problem.

The objective of the safety-first model is to min-
imize the downside risk of an investor at the end
of the investment horizon. According to the defini-
tion given by Roy [23], it is the minimization of
the probability of a disaster which corresponds to
receiving an undesired return. More formally, the
safety-first problem deals with the minimization of
the probability that the final wealth XT is smaller
than a prespecified disaster level k given by the
investor (i.e., P{XT 6 k}). This minimization corre-
sponds to the maximization of 1 � P{XT 6 k}
which is also equivalent to maximizing P{XT > k}.
Therefore, the safety-first objective can be stated
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as maximizing the probability that the final wealth
XT is greater than a prespecified level k given by
the investor. In other words, this problem also tries
to maximize the upside potential.

Roy [23] and other researchers made use of
Chebyshev’s inequality to formulate the safety-first
problem. The reason for using this bound is that it
is very robust since it does not assume any distribu-
tion about the random variable considered. Cheby-
shev’s inequality states that

P ifjX T � Ei½X T �jP Ei½X T � � kg 6 VariðX T Þ
ðEi½X T � � kÞ2

;

ð61Þ
which leads to

P ifX T 6 kg 6 VariðX T Þ
ðEi½X T � � kÞ2

. ð62Þ

The objective is then to minimize the upper bound,
and the safety-first portfolio selection problem for a
disaster level k can be stated as

SF ðkÞ: max UðEi½X T �;VariðX T ÞÞ¼
Ei½X T �� kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VariðX T Þ
p

s:t: X nþ1ðuÞ¼ rf ðY nÞX nþReðY nÞ0u. ð63Þ

This utility has to be an increasing function of Ei[XT]
and a decreasing function of Vari(XT) in order to be
able to apply the auxiliary problem P4(k,x). The
derivative with respect to the expected final wealth
oU=oEi½X T � ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VariðX T Þ

p
is greater than zero,

whereas the derivative with respect to the variance

oU
oVariðX T Þ

¼ � 1

2

Ei½X T � � kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VariðX T Þ3

q ð64Þ

is smaller than zero for all values of the variance but
only for values of expected final wealth that are
greater than the disaster level. This means that the
solution procedure based on the auxiliary problem
P4(k,x) is applicable only if the expected final
wealth Ei[XT] is greater than the disaster level k,
implying that Ei[XT] > k is the primal condition of
the safety-first problem in order to be able to apply
the auxiliary problem. This condition is not only a
technical constraint but it is also a logical one since
the value of k should reflect a disaster which logi-
cally should be set smaller than the expected wealth.

After replacing the expressions for the expecta-
tion and the variance of the final wealth given in
(28) and (30) respectively into the safety-first objec-
tive function, the safety-first utility can be expressed
in terms of c as

UðcÞ ¼ a1x0 þ bc� kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � a2

1ð Þx2
0 þ b

2
� b2

� �
c2 � 2a1bx0c

q . ð65Þ

It turns out that there is a unique extreme point
that satisfies

dU
dc
¼ b½a2x2

0 � a1x0k � 0:5a1x0cþ 0:5kc� kbc�
½ða2 � a2

1Þx2
0 þ ð0:5b� b2Þc2 � 2a1bx0c�

3
2

¼ 0

ð66Þ
so that

c� ¼ 2a2x2
0 � 2a1kx0

a1x0 � k þ 2bk
. ð67Þ

The sign of the first derivative depends on disas-
ter level k. It turns out that the utility function has a
maximum point for k values smaller than

k� ¼ a1x0

1� 2b
ð68Þ

and a minimum point for k values greater than k*.
Analyzing c* reveals that it is an increasing func-

tion of k; implying that the higher the value of k is,
the higher the value of c* will be. Higher c*, on the
other hand, leads to higher mean and variance on
the efficient frontier for the final wealth. This result
is not unexpected since choosing a higher disaster
level requires a bigger portion of money to be
invested in risky assets so as not to fall below the
now-higher level and this causes both the mean
and the variance of the final wealth to increase. Fur-
thermore, as the disaster level increases, the proba-
bility of disaster also increases.

To find the allowable range of disaster level k

which will assure that Ei[XT] > k, the optimal c*

given in (67) is replaced into (28) so that Ei[XT] is
found in terms of the disaster level as

Ei½X T � ¼
x0½a1ða1x0 � kÞ þ 2a2bx0�

a1x0 � k þ 2bk
. ð69Þ

The next step is then to find the relationship between
Ei[XT] in (69) and the disaster level k. After some
calculations, it turns out that the primal condition
Ei[XT] > k of the safety-first problem is satisfied for
disaster levels k which are smaller than the critical
level k* defined in (68). The important feature of this
critical level k* is that if the condition k 2 (�1,k*) is
satisfied, the safety-first utility function in (65) has a
well-defined single optimal c* given in (67) that
maximizes investor’s utility at the end of the invest-
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ment horizon. The disaster level has an upper bound
so that the investor is advised to require only modest
returns for his investment since the main objective
should be minimizing the downside risk and not
maximizing the gain.

To solve the multiperiod safety-first problem, the
range of the disaster level k for which the auxiliary
problem is applicable is found first. Then, c* is cal-
culated for a given disaster level using (67) and the
optimal policy un(i,x) will follow directly from the
expression given in (18) by replacing c* in place of
c = k/x. The expected value and the variance of
the final wealth XT are found by replacing c* given
in (67) into (28) and (30), respectively.

The efficient frontier obtained in this problem
corresponds to the same efficient frontier obtained
from problem P3(x). To get the same efficient port-
folio, the optimal c* of P3(x) given in (46) and the
optimal c* of the safety-first problem given in (67)
are equated to obtain

x ¼ a1x0 � k þ 2bk
2x2

0ða2 � 2a2b� a2
1Þ
; ð70Þ

which shows that the selected disaster level corre-
sponds to a certain x value. This result implies that
solving the safety-first problem for different values
of the disaster level will lead to optimal portfolios
on the mean–variance efficient frontier.

The bounds of the allowable range (�1,k*) cor-
respond to the minimum-variance point for k

approaching �1 and to the upper end of the effi-
cient frontier for k approaching k* in the limit.
For k approaching �1, the optimal c* given in
(67) approaches to the c value of the minimum-var-
iance portfolio given in (32); and for k approaching
k*, the optimal c* approaches +1 which implies
infinite Ei[XT] and Vari(XT) from (28) and (30),
respectively. For intermediate values of the disaster
level, the optimal portfolios move upwards on the
efficient frontier as k is increased from �1 to k*.
This result is not unexpected since more money
has to be invested in the risky assets if a higher value
of k is required so as not to fall below this level. This
leads to higher expectation and higher variance for
the final wealth.

It is shown numerically that the critical level k* is
always greater than 1 for any multiperiod safety-
first problem solved so far. This implies that the
safety-first problem can be solved optimally for all
disaster levels smaller than 1. This result makes a
major contribution to our problem regarding the
original meaning given by Roy [23]. Since k levels
chosen above 1 cannot actually be thought as a
disaster in its real meaning, it is much more logical
to choose them to be below 1, which is really a
disaster since this implies a loss for the investor at
the end of the investment horizon.

From among the models considered in this paper,
the safety-first problem especially is of practical
importance. The following results are obtained for
the safety-first problem: The investor can avoid a
loss and, more importantly, secure a minimal return
with a high probability by following the optimal
safety-first investment policy. The realized final
wealth at the end of the investment horizon is
expected to be greater than the specified disaster
level. The efficient frontier obtained from safety-first
approach exactly matches the mean–variance effi-
cient frontier.

As a last remark to the safety-first problem, for
investors requiring a return higher than k*, the
safety-first problem is not appropriate since its main
aim is to minimize the downside risk. But instead,
another problem can be used for these types of
investors which is already discussed at the end of
Section 6 and the formulation of which is given in
(57). The condition a > k* implies that an investor
who wants his final wealth to be in the vicinity of
a, which should be higher than k*, can use this prob-
lem and apply the corresponding policy which will
better fit his objective of exceeding the critical disas-
ter level.

8. Periodic analysis of efficient frontiers

If the length of the investment horizons of given
problems are not equal, the expected value and the
variance of XT will be based on different scales and
therefore a logical comparison cannot be made.
Two approaches are considered in this paper that
are used to transform the final results depending
on T to a periodic basis. The periodic return is
defined as the return with constant mean and vari-
ance that will lead to the expected final wealth and
variance of the final wealth at the end of T periods
by investing the initial wealth periodically using that
return. More formally, we can write

X T ¼ X 0ð1þ r1Þð1þ r2Þ � � � ð1þ rT Þ; ð71Þ
where rj denotes the rate of return in period j. This
equality states that the final wealth XT at the end of
the investment horizon can be obtained by investing
the initial wealth X0 at a random rate of return rj in
period j.
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We can make an analysis by assuming that the
periodic rates of return rj are independent and iden-
tically distributed with the same mean r and the
same variance r2. The justification is that if the
investment horizon is taken to be long enough and
the stochastic market is an ergodic Markov chain,
then the market will reach its steady state. This
means that regardless of the initial state, the peri-
odic returns after reaching steady state will be inde-
pendent and identically distributed. Accordingly, r

and r2 denote the periodic mean and the periodic
variance that lead to the same E[XT] and Var(XT)
at the end of the investment horizon.

Assuming that X0 = 1 without loss of generality,
XT corresponds to the compound return over T

periods. Taking the expectation of (71) while
X0 = 1 leads to

E½X T � ¼ E½ð1þ r1Þð1þ r2Þ . . . ð1þ rT Þ�
¼ ð1þ rÞT ¼ RT ; ð72Þ

which gives the relationship between the expected
final wealth and the mean periodic rate of return r

or the mean periodic return R = 1 + r. Accordingly,
the mean periodic return R is E[XT]1/T.

Taking the variance of (71), we obtain

VarðX T Þ ¼ Varðð1þ r1Þð1þ r2Þ � � � ð1þ rT ÞÞ
¼ E½ð1þ r1Þ2 � � � ð1þ rT Þ2�
� ðE½ð1þ r1Þ � � � ð1þ rT Þ�Þ2

¼ ðE½ð1þ rjÞ2�ÞT � ðð1þ rÞT Þ2

¼ ðr2 þ R2ÞT � ðR2ÞT ð73Þ
since

E½ð1þ rjÞ2� ¼ Varð1þ rjÞ þ ðE½1þ rj�Þ2

¼ r2 þ ð1þ rÞ2. ð74Þ

After finding the mean and variance of the final
wealth in terms of R and r2 as given in (72) and
(73), respectively, a system of two equations with
two unknowns is obtained, where R and r2 are the
unknowns whereas E[XT] and Var(XT) are known
after solving the multiperiod portfolio problem.
Using these equations, the periodic standard devia-
tion r and the periodic mean return r are found to
be ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVarðX T Þ þ E½X T �2Þ1=T � E½X T �2=T

q
;E½X T �1=T

� �
;

ð75Þ
which then can be inserted into the mean–variance
graph to get the periodic frontiers.
A question that arises is whether the transformed
periodic frontiers will be efficient or not. In order
for the portfolios to be efficient, they have to be
solutions of the optimization problem

maxfE½X T �1=T �x½ðVarðX T ÞþE½X T �2Þ1=T �E½X T �2=T �g;
ð76Þ

where x is a positive coefficient. In order for the
solutions of the multiperiod portfolio optimization
problem to be efficient, the objective (76) has to be
an increasing function of E[XT] and a decreasing
function of Var(XT) which will also lead to its max-
imization. The derivative with respect to Var(XT)

�x
T
ðVarðX T Þ þ E½X T �2Þ1=T�1 ð77Þ

turns out to be negative whereas the sign of the
derivative with respect to E[XT]

1

T
E½X T �1=T�1 � 2xE½X T �ðVarðX T Þ
n
þE½X T �2Þ1=T�1 þ 2xE½X T �2=T�1

o
ð78Þ

is inconclusive which means that the periodic fron-
tiers obtained from this approach are not necessarily
efficient. By drawing the periodic frontiers obtained
from this approach, it is verified that they are not
efficient since they turn out to be convex rather than
concave.

A second approach for calculating the periodic
mean returns and variances uses the same equation
given in (71) for defining the wealth growth. Unlike
the previous one, this approach assumes that the
periodic returns rj are small so that we can take

X T ¼ X 0ð1þ r1 þ r2 þ � � � þ rT Þ. ð79Þ
Making the same assumption as in the previous ap-
proach and taking X0 = 1, we now obtain

E½X T � ¼ 1þ rT ; ð80Þ
VarðX T Þ ¼ r2T . ð81Þ

This implies that the mean and variance of the
periodic rate of return can be obtained as

r ¼ E½X T � � 1

T
ð82Þ

and

r2 ¼ VarðX T Þ
T

. ð83Þ

The periodic standard deviation and the periodic
mean return are



Table 1
Expected returns and variances for one risky asset case

State i rf (i) r(i) r(i)

1 1.05 1.11 0.15
2 1.06 1.09 0.12
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðX T Þ

T

r
; 1þ E½X T � � 1

T

 !
; ð84Þ

which can then be inserted into the mean–variance
graph to get the periodic frontiers.

As in the previous approach, the periodic fron-
tiers can be checked for whether they are efficient
or not. In order for the portfolios which are period-
ically invested at the random rate to be efficient, they
have to be solutions of the optimization problem

max 1þ E½X T � � 1

T
� x

VarðX T Þ
T

� 	
; ð85Þ

where x is a positive coefficient. After rearranging,
the objective function in (85) becomes

1

T
maxfE½X T � � xVarðX T Þg �

1

T
þ 1. ð86Þ

This last objective function finally leads to the same
form as the objective function of problem P3(x)
given in (6) since T is constant for a certain invest-
ment problem. This result shows that solutions
maximizing (85) will at the same time maximize
P3(x). A consequence of this result is that an inves-
tor will get the same optimal portfolios for both
problems provided that x is the same. Moreover,
optimal portfolios of the multiperiod problems will
also be efficient on the transformed periodic mean–
variance graph. Observing the periodic frontiers for
different T values, it turns out that it is more advan-
tageous for investors to invest their money for a
planning horizon that is as long as possible, since
in such a case they will get higher periodic return
for the same periodic risk and alternatively incur
lower periodic risk for the same periodic return.
The intuition behind this observation could be that
investors who are willing to tie up their money for a
longer time horizon obtain their reward by getting
higher periodic returns with the same periodic risk
compared to the investors who prefer to invest their
money for a shorter time horizon.

9. Numerical illustration

We assume that there is a stochastic market mod-
ulated by a Markov chain with only two states
E = {1,2} which consists of a single risky asset
and a riskless asset. The market is in state i = 1 ini-
tially, and we consider the problem of an investor
who has a unit wealth for investment at the begin-
ning of the investment horizon that is taken to be
T = 5 periods. The objective is to find the best allo-
cation of investor’s wealth among the two assets.
The return rf of the riskless asset, the expected value
r and the standard deviation r of the return of the
risky asset for each state are given in Table 1.

The transition matrix Q of the Markov chain is

Q ¼
1
2

1
2

1
3

2
3

" #
.

Given these input parameters, V(i) for each state i is
computed to be

V ð1Þ ¼ ½0:0261�; V ð2Þ ¼ ½0:0153�.
One can then calculate the vectors f(i), g(i) and h(i)
with i = 1,2 using the definitions given in (10)–(12)
as

f ðiÞ ¼
0:9504

1:0575


 �
; gðiÞ ¼

0:9052

0:9976


 �
;

hðiÞ ¼
0:1379

0:0588


 �
.

Once we have these vectors together with the transi-
tion probability matrix Q, we can use the definitions
of a1, a2 and b given in (25)–(27) to obtain

a1 ¼
0:7630

0:8572


 �
; a2 ¼

0:9963

1:1321


 �
; b ¼

0:2078

0:1754


 �
.

In order to keep track of the optimal investment
strategy proposed by each multiperiod problem, a
scenario is created in which it is assumed that the
Markovian market follows the path i = 1,1,2,1,1
at n = 0,1,2,3,4, and that the expected returns
given in Table 1 are realized in each period. The sce-
nario analysis includes the computation of the opti-
mal investment policy for each period by using (18)
where corresponding optimal c* values are going to
be used in place of k/x for each model. Moreover,
the investor’s wealth is calculated at the end of each
period by using the wealth dynamics equation given
in (3). The scenario analysis is performed for each
problem separately, and the results are compared.

The multiperiod problem is first solved by assum-
ing that the investor has a quadratic utility function.
The range of parameter A turns out to be between 0
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and 0.383, where A* = 0.383 as given in (56). For an
arbitrary A value such as A = 0.35, the utility
function

UðcÞ ¼ �0:0364c2 þ 0:2078cþ 0:4143

is obtained by using (51). The optimal c* given in
(52) turns out to be 2.857. The expectation and
the standard deviation of the final wealth are then
found to be 1.357 and 0.062, respectively, using
(28) and (30). According to the scenario given, the
optimal investment strategy proposed by the multi-
period quadratic utility model with A = 0.35 and
the related wealth at the end of each period are
given in Table 2 under QU (A = 0.35).

The next problem to solve is the coefficient of
variation problem with the utility function

UðcÞ ¼ 0:2078cþ 0:7630ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0607c2 � 0:3171cþ 0:4141

p
obtained using (43). The optimal c* given in (45)
turns out to be 2.611. The expected value of the final
wealth is then found to be 1.306 with a standard
deviation of 0.012 using (28) and (30). According
to the scenario given, the optimal investment strat-
egy proposed by the multiperiod coefficient of vari-
ation model and the related wealth at the end of
each period are given in Table 2 under CV. This
table shows that in order to minimize the relative
dispersion of the final wealth, which also corre-
sponds to the classical trade-off between minimizing
risk and maximizing return without specifying any
additional parameter, almost all of the current
wealth has to be invested in the risk-free asset in
each period.

The same input parameters are also used for the
safety-first problem. The objective of this problem is
to minimize the upper bound of the probability that
the final wealth is below a preselected disaster level.
It turns out that the problem can be solved opti-
mally for a safety-first investor requiring a minimal
return of up to k* = 1.306 at the end of five periods
Table 2
Comparison of optimal policies and investor’s wealth for one risky ass

n i QU (A = 0.35) CV

un(i,x) Xn+1 un(i,x) Xn+1

0 1 23% 1.06 0% 1.05
1 1 22% 1.13 2% 1.10
2 2 16% 1.20 0% 1.17
3 1 21% 1.28 2% 1.23
4 1 21% 1.35 3% 1.29
which is computed using (68). For different applica-
ble k values, the problem is solved and Ei[XT] andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VariðX T Þ
p

are put on a graph shown in Fig. 1.
Assuming a disaster level of 1.3 and using the for-

mula (65), the utility function is found to be

UðcÞ ¼ 0:2078cþ 0:7630� 1:3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0607c2 � 0:3171cþ 0:4141

p .

The k values in Fig. 1 are in the allowable range
which is smaller than k* so that the problem has an
explicit solution. For k = 1.3, the optimal c* given in
(67) is equal to 2.701. The expectation of XT turns
out to be 1.324 using (28) and the standard devia-
tion of XT is found to be 0.025 using (30). According
to the scenario given, the optimal investment strat-
egy proposed by the multiperiod safety-first model
with k = 1.3 and the related wealth at the end of
each period are given in Table 2 under SF
(k = 1.3). It can be seen that 6–10% of the available
money is periodically invested in the risky asset in
order to minimize the probability that the final
wealth is below the required return. The disaster
level was intentionally selected high so that it was
not possible for the investor to reach this wealth
level trivially by only investing in the risk-free asset.
Moreover, the final wealth is found to be 1.31 which
is greater than which was required.

Before comparing the results of the three types of
utility functions, a second disaster level for the
safety-first problem is selected for further analysis
of the proposed optimal policy. For k = 1.1, the
optimal c* given in (67) is equal to 2.613. The expec-
tation of XT turns out to be 1.306 and the standard
deviation of XT is 0.012 by using (28) and (30),
respectively. According to the scenario given, the
optimal investment strategy proposed by the multi-
period safety-first model with k = 1.1 and the
related wealth at the end of each period are given
in Table 2 under SF (k = 1.1). An important obser-
vation related to the results given in this table is that
some portion of the current wealth is still invested in
et case

SF (k = 1.3) SF (k = 1.1)

un(i,x) Xn+1 un(i,x) Xn+1

8% 1.05 0% 1.05
9% 1.11 2% 1.10
6% 1.18 0% 1.17
9% 1.25 2% 1.23

10% 1.31 3% 1.29
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Fig. 1. Efficient frontier for safety-first problem with one risky asset.
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the risky asset even when the required level 1.1 is
reached at the end of the second period. If all of this
money is invested in the risk-free asset for the
remaining three periods, the resulting terminal
wealth would be equal to 1.1(1.06)(1.05)2 = 1.286
under this scenario. Furthermore, this alternative
investment policy would eliminate all the uncer-
tainty coming from investing in the risky asset in
the remaining periods. This implies that investing
in the risk-free asset for the remaining periods is a
better policy than the one given in the table since
it reaches a higher return while not increasing the
risk at all. The reason for obtaining a policy which
does not lead to an optimal result according to our
proposed solution procedure is that we are minimiz-
ing the upper bound of the undesired probability
P{XT 6 1.1} and not the probability itself which
may have a different optimal policy as in this case.

Table 2 gives a comparison of the optimal poli-
cies of each problem. As mentioned in Section 6,
higher A value means higher risk aversion. There-
fore the parameter A of QU is chosen to be close
to the upper bound 0.383, i.e. 0.35, so that the inves-
tor with this utility is relatively more risk-averse
which is also assumed to be the case for investors
trying to minimize the coefficient of variation of
their final wealth and also for safety-first investors.
From Table 2 it can be easily seen that the highest
portion of available wealth is invested in the risky
asset for QU which logically leads to the highest
expected final wealth at the end of the investment
horizon.

CV having a single objective utility function
reveals an identical optimal policy as that of SF
with k = 1.1 investing very little in the risky asset.
Comparing the solutions of CV and SF (k = 1.1)
in detail reveals that these two problems yield iden-
tical values for the expectation and variance of the
final wealth as well. This result is not very unex-
pected if one compares the objective functions of
these problems given in (42) and (63). The objectives
differ from each other by the additional term
k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VariðX T Þ

p
which can be neglected as k becomes

smaller and smaller. A further analysis done by
decreasing the disaster level k until a value of zero
is reached shows that the optimal solution of the
safety-first problem converges to the optimal solu-
tion of the coefficient of variation problem as k goes
to zero.

SF with k = 1.3 suggests higher investment in the
risky asset. This is due to the fact that the required
level of the final wealth can only be reached when
the risky asset having a higher expected return than
that of the risk-free asset is used, although in small
quantities. The optimal policy of SF with k = 1.1 on
the other hand shows that almost all of the current
wealth is invested in the risk-free asset. This result is
logical since a final wealth of 1.1 can be reached
more easily compared to a final wealth of 1.3 when
money is lent at the risk-free rate.

As another illustration, the multiperiod safety-
first problem is solved for different T values using
the same input parameters for the means, variances
and the transition matrix. Assuming that the initial
state is i = 1, corresponding efficient frontiers given
in Fig. 2 are obtained.

As given in (47), (53) and (70), there exists a
one-to-one relationship between the solutions of
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Fig. 2. Efficient frontiers for different T values.
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all multiperiod problems discussed here since they
are derived from the same classical mean–variance
formulation. This means that same efficient fron-
tiers in Fig. 2 are obtained for every model consid-
ered, except for the case where there is only one
efficient point as the single solution of the coefficient
of variation problem or where there is some condi-
tion set on the input parameters. There are some
immediate conclusions that can be made about the
characteristics of the efficient frontiers in Fig. 2 with
respect to changes in T. As T increases, a much
higher return is expected for the same standard devi-
ation since there is more time to invest so that the
initial money will accumulate to a higher level with-
out increasing the risk. Moreover, to reach the same
level of expected return, a much smaller standard
deviation is needed for a longer investment horizon.
This is due to the fact that since there is more time
to invest, the investment in less risky assets with
smaller returns will be enough to reach the required
level, whereas more risky assets have to be used in
order to reach the same level in a shorter time per-
iod. One particular reason for analyzing the efficient
frontiers was to see whether they converge to a com-
mon frontier as T increases, which is not the case
here as can be seen in Fig. 2. If there were such a
common frontier, this would imply that there exists
a stationary policy that is used for large values of
the investment horizon T.

Since the safety-first problem is of practical
importance for some investors who want to avoid
a possible disaster level at the end of the planning
horizon, this problem is investigated more deeply
by making a sensitivity analysis. This sensitivity
analysis is accomplished by changing the mean
returns of both the risky and the risk-free asset one
by one, and then observing the changes in the opti-
mal policy u, which corresponds to the percentage
of available money to be invested in the risky asset.

Case 1 corresponds to the input parameters in
Table 1 with k = 1.2. Each case thereafter includes
an additional change compared to the previous case.
In Case 2, rf in state 1 is increased from 1.05 to 1.12.
In Case 3, rf in state 2 is increased from 1.06 to 1.1. In
Case 4, r in state 1 is decreased from 1.11 to 1.08. In
Case 5, r in state 2 is decreased from 1.09 to 1.07. The
aim of this analysis is to see how the optimal policy is
changing as the risk-free asset is made more advan-
tageous to investors in both states. The risk-free
asset has no risk and even a better return compared
to the risky asset after the input parameters are mod-
ified in different cases. The optimal policies for these
cases are given in Table 3.

The policy formula (18) depends on the current
state of the stochastic market. After the return of
the risk-free asset for state 1 is increased for all
cases, the amount invested in risky asset at the
beginning of the planning horizon decreases and it
even turns out to be negative, meaning that the risky
asset is sold short in order to invest more in the risk-
free asset. The same effect is also observed after
Case 3 where the return of the risk-free asset for
state 2 is increased. Since the state is 2 for n = 2,
the risky asset is again sold short to invest more in



Table 3
Optimal policies for one risky asset case

Case 1 Case 2 Case 3 Case 4 Case 5

u0 0.004007 �0.00662 �0.00050 �0.00205 �0.00216
E1[X1] 1.050240 1.120066 1.120005 1.120082 1.120086
u1 0.018909 0.009449 0.005316 0.020678 0.019903
E1[X2] 1.103887 1.25438 1.254352 1.253665 1.253701
u2 0.002544 0.049079 �0.00131 �0.00114 �0.00520
E1[X3] 1.170197 1.331115 1.379801 1.379043 1.379227
u3 0.024625 0.015009 0.008488 0.033098 0.03086
E1[X4] 1.230184 1.490699 1.545292 1.543204 1.543499
u4 0.037228 0.035001 0.016148 0.060467 0.057473
E1[X5] 1.293927 1.669232 1.730566 1.725970 1.726420
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the risk-free asset for all cases including and after
Case 3.

It is important to note here that the expected final
wealth E1[X5] at the end of the investment horizon is
much higher than the disaster level which was spec-
ified at the beginning of the planning horizon to be
1.2. This is due to the fact that while minimizing the
probability of falling below 1.2, the safety-first
problem at the same time aims to maximize the
probability of having a final wealth greater than
the prespecified level k given by the investor. Even
though the risk-free asset is more advantageous to
investors after the returns are modified, there is still
some investment in the risky asset. The reason is
that the proposed policy can reach the required level
of final wealth, 1.2 in this case, even when there is an
investment in the risky asset. Moreover, since the
risky asset can have a return higher than its
expected value in reality, this investment has the
potential of realizing a higher final wealth while still
satisfying the objective of not falling below the
disaster level.

The multiperiod portfolio optimization model
considered in this paper can be extended in several
directions. A natural extension is one where the
market state is not observable and there is imperfect
information flow. This requires the use of so-called
hidden Markov models to describe the stochastic
market. Another challenge would be to analyze
Bayesian models where the parameters used in our
analysis are not known with certainty, but they
are also random with some prior distribution which
should be updated as data becomes available in
time. In our paper, we analyzed multiperiod portfo-
lio optimization problems that do not include any
constraints. It may be necessary to put some con-
straints or include transaction costs, which could
have a significant effect on the optimal solution of
the problem. Another interesting issue to analyze
can be to find conditions, under which long-term
investment strategies having stationary optimal
portfolios will exist. Dealing with other utility func-
tions for the multiperiod portfolio optimization is
another future research topic. The extension of
our model to continuous time is also worth analyz-
ing, considering the fact that many investors change
their portfolios continuously rather than at discrete
points in time.
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