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Summary: This article presents new results on the problem of selecting (on-
line) a monotone subsequence of maximum expected length from a sequence of
i.i.d. random variables. We study the case where the variables are observed
sequentially at the occurence times of a Poisson process with known rate. Our
approach is a detailed study of the integral equation which determines v(t), the
maximum expected number of selected points Lt up to time t . We first show
that v(t), v′(t) and v′′(t) exist everywhere on IR+ . Then, in particular, we prove
that v′′(t) < 0 for all t ∈ [0,∞[ , implying that v is strictly concave on IR+ . This
settles a conjecture of Gnedin and opens the way to stronger bounds for v and
its derivatives. We can show that v′(t)

√
2t ∼ 1 and, in particular, that

√
2t− log(1 +

√
2t) + c < v(t) <

√
2t.

Also, using a martingale approach, we show

1
3
v(t) ≤ Var(Lt) ≤ 1

3
v(t) + c1 log(t) + c2.

Further we obtain several results on the process (Ltu)0≤u≤t , where Ltu denotes
the number of selected points up to time u when applying the optimal rule with
respect to time t .

Due to the on-line requirement of selection, we are also interested quick
selection rules and their performance, and so we study the class of convenient
graph-rules. Results by Deuschel and Zeitouni on the concentration measure
of record values suggest that the asymptotically best graph rule should be the
”diagonal line rule”, and we prove this intuition to be correct. Our last short
section compares the performance of the optimal rule and the optimal graph
rule.

Keywords: Poisson process, on-line selection, patience sorting, Ulam’s prob-
lem, optimality principle, asymptotic optimality, integral equation, concavity,
martingale, squared variation, predictable process, f -record rules, concentration
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1. Introduction. Let (N(s))s≥0 be a Poisson process with rate 1 on the
interval [0, t] and occurrence times T1 < T2 < · · · a.s. Set T0 = 0. Further
let (Xk)k=1,2,··· be a sequence of i.i.d. uniform random variables on [0, 1], in-
dependent of the Tj ’s. We suppose that the bivariate variables (Tk, Xk)k=1,2,···
can be observed sequentially. The objective is to select ”on-line” a subsequence
(Tk1 , Xk1), (Tk2 , Xk2), · · · of maximal length, satisfying Xk1 ≤ Xk2 ≤ · · · for
k1 < k2 < · · · . Here on-line means in sequential order, without recall on preced-
ing observations.

This problem is closely related with the problems studied by Samuels and
Steele (1981), and Gnedin (1998), of selecting on-line a monotone subsequence
of maximal length. Dropping the on-line requirement leads to quite a different
problem as we shall shortly outline:

Conditioning on N(t) = n , the natural question is now: What is the distri-
bution of the length of the longest subsequence in a random permutation of n dif-
ferent real numbers? This question, seemingly first asked by Ulam (see Critchlow
(1988) and Ulam (1972)), has attracted a great deal of scientific attention. A nice
way of getting acquainted with this problem is reading the recent survey article
by Aldous and Diaconis (1999), which shows the major steps provided by Ham-
mersley (1972), Vers̀ik and Kerov (1977), Logan and Shepp (1977) and the recent
detailed study of Baik, Deift and Johansson (1999) and Baik and Rains(1999),
and also draws attention to interesting analogies with sorting problems and other
problems.

To contrast the on-line problem of maximizing the expected length of the
selected subsequence with the above problem we recall the ”prophet” comparison
of Samuels and Steele (1981): A prophet with complete foresight of the sequence
achieves the maximal length, whereas a sequential decision maker without fore-
seeing abilities must be satisfied with what an optimal selection strategy can
achieve. ”Patience sorting” (see Aldous and Diaconis) provides an interesting
complementary comparison, because that algorithm is on-line. Patience sorting,
of n mixed cards, say, requires at each step a comparison of the currently held
card with the top cards on the existing piles (from left to right). Interestingly, this
algorithm determines (by touching each card once) the length which a prophet
is able to achieve (see Aldous and Diaconis, Lemma 1.) However, it does note
produce a pile containing this longest subsequence. For our on-line problem in
this setting, we are confined to work with two piles: A left pile of discarded cards
without specified structure, and a right pile of selected increasing cards which we
would like to make as big as possible. The top card of the right pile is now the
only legal point of reference, and the goal is to produce the largest possible pile of
increasing cards by touching each card exactly once. (In ”on-line” life we cannot
insert new items into the history, as the patience sorting algorithm does.)
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Our Poisson model may be seen as a card game in which we receive cards at
the occurrence times of the Poisson process, and the k th card shows Xk , where
the X1, X2, · · · are i.i.d. The time is fixed, and the total number of cards is
now random. If the Xj ’s follow some continuous distribution function F , then
the transformation (X ′

j) := (F (Xj)) brings us back to the uniform case, so that
solving one of these problems solves the general problem of selecting monotone
subsequences from a sample of i.i.d. continuous random variables. The problem
of selecting decreasing Xkj

’s is of course equivalent, since Xkj
and 1−Xkj

follow
the same distribution.

We became interested in the problem of selecting monotone subsequences
when Gnedin (private communication,1997) asked the following analytical ques-
tion:

Gnedin’s problem: Let v : IR+ → IR+ be formally defined by

v(0) = 0; v′(t) =
∫ 1

0

[v(tx) + 1 − v(t)]+dx, (1.1)

where y+ = max{0, y} . Is v(t) concave on IR+ ?

We shall show in this paper that the answer to this question is affirmative.
As Gnedin noticed before, this question of concavity is different from the question
studied by Samuels and Steele (1981) and needs a different approach. Moreover,
we shall study other questions concerning (1.1) in detail and point out properties
of v which seem important to us. These are, in particular, the existence and
the behavior of the derivative v′(t) and tight bounds for the solution v . Apart
from mathematical curiosity our motivation herefore is the interpretation of v

in the context of the problem: The solution of equation (1.1) determines in fact
the value v(t) of the problem, i.e. the maximum expected length of the selected
subsequence with increasing Xkj .

Also, equation (1.1) can be adapted to similar problems. For example, if we
replace the sequence (Xk) by a i.i.d. random vectors Yk uniform on the unit
m-cube [0, 1]m then the optimal selection equation for increasing (in all compo-
nents) subsequences Ykj is the same in t if integration is replaced by multiple
integration. This problem was studied by Baryshnikov and Gnedin (1998). Such
links with similar problems add to the motivation to get the maximum informa-
tion from (1.1) itself without having to depend on specific information from the
probabilistic model.

The paper is organized as follows.

Section 2. is devoted to the study of v(t), to the form of the optimal selection
rule producing Lt , and to the study of fluctuations of Lt. The major steps are the
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following: v is continuous and increasing (Lemma 2.2), continuously differentiable
(Theorem 2.1) and, in particular, v is a strictly concave function on R+ (Theorem
2.2). New important bounds for v , v′ and v′′ as well as for an intrinsically
connected function (called φ(t)) are provided in Theorems 2.3 through 2.5.

We then turn to the problem of fluctuations of Lt. Theorem 2.6 establishes
a uniform lower bound for the variance of Lt . Lemma 2.5 is used to find a close
upper bound given by Theorem 2.7.

Section 3 addresses the ”on-line” requirement of the problem by trying to
find the best simple rule. Here a simple rule is defined as the rule to select
”greedily” any selectable observation which is below the graph of a deterministic
function f (graph-rule). The main result (Theorem 3.1) shows that the choice of
f(s) = s/t is asymptotically optimal in the class of graph-rules. This confirms
the authors’ conjecture instigated by results of Deuschel and Zeitouni (1995), on
the concentration of measure (see also Goldie and Resnick (1996)). We also show
that the asymptotic value of this rule is

√
tπ/2.

The short Section 4 collects some conclusions from the comparison between
graph-rules and asymptotically optimal rules, and draws attention to an Open
Problem.

2. Form and Behavior of the Optimal Rule.

Recall that (N(t)) is a Poisson process on IR+ of rate 1 with occurrence
times 0 = T0 < T1 < T2, · · · a.s., and (Xk) a sequence of i.i.d. r.v.’s uniform on
[0, 1], independent of the Tk ’s. Let (Ω,A, P ) be a probability space large enough
to host (Tk)k=1,2,··· and (Xk)k=1,2,··· , and let Ak = σ(T1, · · · , Tk;X1, · · · , Xk)
denote the sigma-field generated by T1, T2, · · · , Tk and X1, X2, · · · , Xk simulta-
neously. The history of the process at time t is denoted by Ft , i.e. Ft is the
collection of sets which satisfies, for t ≥ 0, Ft ∩ {N(t) = k} = Ak ∩ {N(t) = k}
for all k = 0, 1, · · · .

Definition 2.1 A strategy is a function ψ : IN × Ω → {0, 1} such that, for
all n , ψ(n, ·) is An -measurable. We say that ψ is acceptable for on-line decisions
if n ≤ m implies that Xn ≤ Xm on the set {ψ(n, ω) = 1} ∩ {ψ(m,ω) = 1} . The
set of acceptable strategies will be denoted by Ψa . For ease of notation we write
ψn for ψ(n, ·).

Let
Zt(ψ) =

∑
Tn≤t

ψn; v(t) = sup
ψ∈Ψa

E(Zt(ψ)). (2.1)
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More generally we define

v(t, x) = sup
ψ∈Ψa(x)

E(Zt(ψ)), (2.2)

where Ψa(x) denotes the class of acceptable strategies confined to selections of
values Xkj

≥ x . Note that, by definition of v , v(t) = v(t, 0), and by definition
of our on-line problem, ψn = ψm = 1 implies Xm ≥ Xn for m ≥ n . Thus, given
Xn = x and ψn = 1, the tail sequence (ψm)m≥n must automatically belong to
Ψa(x). This will be used throughout.

Lemma 2.1 For all t ≥ 0 and 0 ≤ x ≤ 1, v(t, x) = v((1 − x)t).

Proof. Let X ′
n = Xn1{Xn≥x} . Remove all Tn with X ′

n = 0, and renumerate
the remaining Tn ’s by T ′

1, T
′
2, · · · . The T ′

n ’s are now the occurrence times of a
thinned process (N ′(t))t≥0 . Since the Xn are i.i.d. on [0, 1], this thinning is
independent-binomial, so that (N ′(t))t≥0 is again a Poisson process, but now
with rate 1 − x . But this determines uniquely the distribution of the process
(N ′(t))t≥0 , which is the same as the distribution of the process (N(t(1−x)))t≥0 .
Since Ψa(x) satisfies, by definition, the acceptability property, (2.2) becomes
(2.1) with t being replaced by t(1 − x), and the Lemma is proved.

Lemma 2.2 The optimal value v(t) is increasing and continuous on IR+.

(It is Lipschitz with constant 1.)

Proof. Since, for any strategy ψ , all ψn are non-negative, and since N(t) is
increasing in t , the expected value of the sum in (2.1) is increasing for any ψ ∈ Ψa .
Hence v(t) is increasing in t . To prove the continuity of v(t), we will show that
|v(t + δ)− v(t)| ≤ |δ|. We suppose, w. l. o. g., δ ≥ 0. Choose ε > 0 and let ṽ(t)
denote the expected number of Xj being selected up to time t under a strategy
ψε ∈ Ψa , which is ε -optimal with respect to the time t + δ . Then,

v(t + δ) − v(t) = (v(t + δ) − ṽ(t + δ)) + (ṽ(t + δ) − ṽ(t)) (2.3)

+ (ṽ(t) − v(t))

≤ ε + |ṽ(t + δ) − ṽ(t)|,

since ṽ is ε -optimal with respect to time t+δ , and ṽ(t)−v(t) ≤ 0 ≤ v(t+δ)−v(t).
Of course, no strategy can select more points in the interval [t, t+ δ] , than there
are points in this interval. The expected number of such points equals δ . Hence
the last term |ṽ(t+δ)−ṽ(t)| in (2.3) is smaller than δ . This implies the continuity
of v with Lipschitz constant 1, since ε > 0 is arbitrary.
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The next result characterizes the optimal rule.

Lemma 2.3. Let ψ be defined by (ψn)n=1,2,··· satisfying

a) ψn = 1 if Xn ≥ maxk≤n−1{ψkXk} and

v(t− Tn, Xn) + 1 ≥ v(t− Tn,maxk≤n−1{ψkXk}) for all Tn ≤ t,

b) ψn = 0, otherwise.

Then ψ is optimal for time t .

Proof. The condition Xn ≥ max{ψkXk} in the definition of ψ assures that
ψ ∈ Ψa . Now suppose that at some Tn ≤ t , Xn can be selected, i.e. Xn is
larger than any other selected Xj with j < n . If ψ selects Xn , then the optimal
expected post-Tn−1 number of selections equals 1 plus the expected number of
future selections, which equals v(t − Tn, Xn) for an optimal ψ . If ψ refuses
Xn then the optimal post Tn number of selections equals v(t− Tn,max{ψkXk :
k ≤ n}). By the optimality principle, ψ must achieve the maximum of both.
Conversely, if ψ does so, then ψ is optimal.

Theorem 2.1 v′(t) = dv(t)/dt exists and is continuous on IR+ satisfying
equation (1.1) with v′(0) = 1. Moreover, v′(t) > 0 for all t ≥ 0.

Proof. We first prove that v′(t) exists everywhere on IR+ . This proof is similar
to the proof given for a fixed number of variables (see Samuels and Steele (1981),
section 2). In our case it is more convenient, however, to condition on what
happens on an initial time interval [0, δ] .

We confine our interest to one arrival or no arrival in [0, δ] , because more than
one arrival has probability o(δ). If we have an arrival at time T1 ∈ [0, δ], which
happens with probability δ+o(δ), then we gain v(t−T1), if we refuse it and apply
the optimal rule thereafter. If we accept it, then we gain 1 + v((1 − x)(t− T1)),
where x is its observed value. By the optimality principle we must opt for
whatever is better, i.e. for max{1 + v((1 − x)(t− T1)), v(t− T1)} . If we have no
arrival up to time δ , then the optimal gain is v(t− δ). Hence v must satisfy the
optimality equation

v(t) = (δ + o(δ))E
( ∫ 1

0

max{1 + v((1 − x)(t− T1)), v(t− T1)}dx
∣∣∣ 0 ≤ T1 ≤ δ

)

+(1 − δ + o(δ))v(t− δ),
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since the value of the observation is uniform on [0, 1]. Subtracting v(t − δ) on
both sides and dividing by δ yields

v(t) − v(t− δ)
δ

=

−v(t− δ) + E
( ∫ 1

0

max{1 + v((1 − x)(t− T1)), v(t− T1)}dx | 0 ≤ T1 ≤ δ
)
.

Here all terms multiplied by o(δ) sum clearly up to o(δ), because v is bounded
by v(u) ≤ u for all u . Taking the limit for δ → 0, and thus T1 → 0, the rhs
limit exists, since v is continuous. Hence the lhs limit exists as well and equals
v′(t). This yields

v′(t) = −v(t) +
∫ 1

0

max{1 + v(1 − x)t, v(t)}dx

=
∫ 1

0

[v(t(1 − x)) + 1 − v(t)]+dx.

Since v(0) = 0 and since the integration with respect to 1 − x or x is the same,
we obtain

v′(t) =
∫ 1

0

[v(tx) + 1 − v(t)]+dx, (2.4)

which is equation (1.1) and satisfies v′(0) = 1. Also, since v(t) > 0 for all t > 0,
we immediatley get v′(t) > 0 for all t ≥ 0.

Finally, the continuity of v′ on IR+ follows immediately from the continuity of
v on IR+ , since it implies the continuity of the integrand of (2.4) on IR+ . This
proves Theorem 2.1.

We will use two other equations involving v′(t) which we now derive. With the
change of variables u := xt , equation (2.4) is equivalent to

tv′(t) =
∫ t

0

[1 + v(u) − v(t)]+du, t ≥ 0.

We define
α = inf{t ∈ IR+ : v(t) = 1}. (2.5)

Using definition (2.5) we can drop the positive-part function up to time α so that

tv′(t) =
∫ t

0

(1 + v(u) − v(t))du, 0 ≤ t ≤ α. (2.6)
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For t ≥ α we now define the function φ as the unique solution of

v(φ(t)) + 1 = v(t), t ≥ α. (2.7)

Moreover, we set φ(t) = 0 for all t < α . By the implicit function theorem we
have for t > α

v′(φ(t))φ′(t) = v′(t). (2.8)

We also note that φ is in C1 on ]α,∞[ , and continuous and strictly increasing
on the half-closed interval [α,∞[ .

We can write equation (1.1) in the form

tv′(t) =
∫ t

φ(t)

(1 − v(t) + v(u))du =
∫ t

φ(t)

(v(u) − v(φ(t)))du, (2.9)

where we used (2.7) in the second equality. Finally, by Fubini’s theorem,

tv′(t) =
∫ t

φ(t)

∫ u

φ(t)

v′(s)dsdu =
∫ t

φ(t)

∫ t

s

v′(s)duds

=
∫ t

φ(t)

v′(s)(t− s)ds,

so that (2.9) is equivalent to

tv′(t) =
∫ t

φ(t)

v′(s)(t− s)ds. (2.10)

Before we prove the concavity of v let us first see what happens for t ≤ α .

Lemma 2.4 The (unique) solution v(t) of equation (1.1) on [0, α] is given
by

v(t) =
∫ t

0

1 − e−s

s
ds, 0 ≤ t ≤ α, (2.11)

where α = 1.34501 · · · .

Proof. We use the equivalent equation (2.6). Since v is continuous, (2.6) implies
that tv′(t) is continuous on [0, α] , and so v′(t) is continuous on [0, α] . Deriving
(2.6) with respect to t yields then d(tv′(t))/dt = 1 −

∫ t
0
v′(t)du = 1 − tv′(t). It

is easy to verify that this equation has the unique solution (2.11). We then solve
v(t) = 1 which yields α = 1.34501 · · · .
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Corollary 2.4 v′′(t) < 0 for 0 ≤ t ≤ α (which implies, in particular, that
v is strictly concave on [0, α]).

Proof. From (2.11) we obtain v′′(t) = (e−t(t + 1) − 1)/t2 and v′′(0) = −1/2.
The numerator of v′′(t), g(t) say,satisfies g(0) = 0 and g′(t) < 0 for t > 0,
which implies the statement.

We have now sufficient material to show that v is concave on IR+ .

Theorem 2.2 The function v defined by equation (1.1) is strictly concave
on IR+ . In fact a stronger property holds: v is twice continuously differentiable
on IR+ with v′′(t) < 0 for all t > 0.

Proof. Equation (2.9) tells us that tv′(t) =
∫ t
φ(t)

(1 + v(u) − v(t))du and from
(2.8) and (2.10) we deduce that tv′(t) is in C1 on ]α,∞[ . This means that v′′(t)
is continuous on ]α,∞[ . Also, a direct calculation shows that tv′′(t) + v′(t) =
1 − (t− φ(t))v′(t), and hence

tv′′(t) = 1 − (1 + t− φ(t))v′(t), t > α. (2.12)

This equation also implies that

lim
t→α+

tv′′(t) = 1 − (1 + α)v′(α).

If we compare this expression with the expression of Lemma 2.4 we see that

lim
t→α+

v′′(t) = lim
t→α−

v′′(t) > −∞.

This implies that the function v′ is continuously differentiable on ]0,∞[ . But
then (2.12) also implies that, for t > α , the function tv′′(t) is continuously
differentiable.

We now turn to the proof of v′′(t) < 0 on ]0,∞[ . We already know that
v′′(t) < 0 for t ≤ α , and hence, if we define

T = inf{t : v′′(t) = 0}, (2.13)

we necessarily have α < T ≤ ∞ . Of course, the aim is to show that T = ∞ .

Let us suppose on the contrary that T < ∞ . Since tv′′(t) < 0 for t < T we
must have

d

dt
(tv′′(t))

∣∣
t=T

≥ 0. (2.14)
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Moreover, since v′′(t) < 0 for t < T we have also that on [0, T ] the function v′

is strictly decreasing, and the implicit function theorem shows that φ′(t) < 1 for
all α < t ≤ T . Then we get

d(tv′′(t))
dt

= −(1 − φ′(t))v′(t) + (1 + t− φ(t))v′′(t). (2.15)

But for t = T (2.15) implies

d

dt
(tv′′(t))

∣∣
t=T

= −(1 − φ′(T ))v′(T ) < 0,

which contradicts inequality (2.14).

This shows T = ∞ and completes the proof of the Theorem.

Corollary 2.5

(i) v′(t) > 0, for all t ≥ 0,

(ii) v′′(t) < 0, for all t ≥ 0,

(iii) tv′′(t) = 1 − v′(t)(1 + t− φ(t)) for t ≥ α .

(iv) v′(t)(t− φ(t)) ≤ 1 ≤ v′(t)(1 + t− φ(t)) for t ≥ α .

Proof. Except for property (iv) all other properties were obtained before. To
prove property (iv) we observe that the first inequality follows immediately from
the concavity of v whereas the second one follows from v′′(t) < 0, and from
property (iii).

Theorem 2.3 The functions v and φ satisfy

(i) t− φ(t) ≤
√

2t for t ≥ α,

(ii) v′(t) ≥ 1
1+

√
2t

for t ≥ α,

(iii) v(t) ≥
√

2t− log(1 +
√

(2t)) + 1 −
√

2α + log(1 +
√

2α) for t ≥ α .

Proof. Since the function v is concave, v′ is decreasing, and therefore (2.10)
implies

v′(t)t =
∫ t

φ(t)

v′(s)(t− s)ds ≥ v′(t)
∫ t

φ(t)

(t− s)ds = v′(t)
1
2
(t− φ(t))2.
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Since v′(t) > 0 this yields (t−φ(t))2 ≤ 2t , which proves statement (i). But then
Corollary 2.5 (iv) implies that v′(t) ≥ 1/(1 +

√
2t) for t ≥ α , proving statement

(ii).

Finally, integrating this inequality from α to t yields, using v(α) = 1,

v(t) = v(α) +
∫ t

α

v′(s)ds ≥ v(α) +
∫ t

α

ds

1 +
√

2s

=
√

2t− log(1 +
√

2t) + 1 −
√

2α + log(1 +
√

2α).

This proves statement (iii) and completes the proof.

Theorem 2.4 The functions v and φ satisfy

(i) v′(t) ≤ 1√
2t

for t ≥ α,

(ii) v(t) ≤
√

2t + 1 −
√

2α <
√

2t for t ≥ α,

(iii) t− φ(t) ≥
√

2t− 1 for t ≥ α.

(iv) |v′′(t)| ≤ 1
t
√

2t
for t ≥ α.

Proof. To prove (i) we first note that, from the concavity of v ,

v′(t)t =
∫ t

φ(t)

(v(u) − v(φ(t)))du ≤
∫ t

φ(t)

(1 + v′(t)(u− t))du,

and therefore
v′(t)t ≤ t− φ(t) − v′(t)

1
2
(t− φ(t))2.

This we rewrite as

v′(t) ≤ t− φ(t)
t + 1

2 (t− φ(t))2
.

But since the function x → x/(t + x2/2) is increasing for x ≤
√

2t , we get from
this

v′(t) ≤
√

2t
t + 1

2 (
√

2t)2
=

1√
2t

.

Secondly, direct integration of (i) form a to t yields

v(t) ≤ v(α) +
∫ t

α

ds√
2s

= 1 +
√

2t−
√

2α,
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which proves (ii).

To prove (iii) we use Corollary 2.5 (iv). This implies

t− φ(t) + 1 ≥ 1
v′(t)

≥
√

2t,

or equivalently,
t− φ(t) ≥

√
2t− 1,

which proves (iii).

Finally, to prove (iv), we note that

|v′′(t)| =
v′(t)(1 + t− φ(t)) − 1

t
, (from Corollary 2.5 (iii))

≤ 1 + t− φ(t) −
√

2t
t
√

2t
, (from Theorem 2.4 (i))

≤ 1 +
√

2t−
√

2t
t
√

2t
, (from Theorem 2.3 (i))

=
1

t
√

2t
.

This completes the proof.

Theorem 2.5 The function φ satisfies

(i) φ(t)
t → 1 as t → ∞,

and

(ii) φ′(t) → 1 as t → ∞.

Proof. Since t− φ(t) ≤
√

2t we immediately get (i) from

1 − φ(t)
t

≤
√

2t
t

→ 0, as t → ∞.

The second statement follows from φ′(t) = v′(t)/v′(φ(t)) since

1 ≥ φ′(t) ≥
√

2φ(t)√
2t + 1

→ 1, as t → ∞.
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This concludes the study of v(t) = E(Lt). We now turn to the study of the
variance of Lt.

Fluctuations of the number of selected points.

We now address the problem of finding estimates for the random fluctuation
of the number of points which are selected by the optimal rule. Our first concern
is the variance of this number. Recall that, for fixed t ≥ 0, Lt denotes the
number of points selected up to time t under this rule.

The idea is to write Lt as the final value of a martingale and to use stopping
time techniques to estimate Var(Lt).

Let Lt(u) be the number of selected points up to time u under the rule which
is optimal for time t (which we call the ”t -optimal” rule). Thus Lt(t) = Lt and
E(Lt) = v(t). Further we define

Yu = Lt(u) + v((t− u)(1 −Mu)), 0 ≤ u ≤ t, (2.16)

where Mu denotes the largest selected value up to time u under the t -optimal
rule. Clearly

Y0 = v(t) = E(Lt) a.s.,

and
Yt = Lt a.s. (2.17)

According to the optimality principle, the process (Yu) 0≤u≤t is a (Fu)0≤u≤t
martingale. The next step is to find the characteristics of Y . Intuitively this is
done as follows. If an observation X arrives at time u then it will be accepted if
and only if

X ≥ Mu−

and
v((t− u)(1 −X)) + 1 ≥ v((t− u)(1 −Mu−)) (2.18)

In order to describe this we introduce the process (Hu)0≤u≤t , where H(u) is the
maximal acceptable observation at time u , i.e.

Hu = sup{0 ≤ s ≤ 1 : v((t− u)(1 − s)) + 1 ≥ v((t− u)(1 −Mu−))}. (2.19)

By using the function φ , this can be written as

(t− u)(1 −Hu) = φ((t− u)(1 −Mu−)). (2.20)

13
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In particular, the process (Hu)0≤u≤t is predictable. ¿From this it follows that

(t− u)(Hu −Mu−) = (t− u)(1 −Mu−) − φ((t− u)(1 −Mu−)). (2.21)

In case there is an acceptable observation X at time u , the jump ∆Yu = Yu−Yu−
is given by

∆Yu = 1 + v((t− u)(1 −X)) − v((t− u)(1 −Mu−)).

¿From this it follows that the characteristics (see Jacod and Shiryayev, (1980) p.
76) are given by the measure

λudu = Ku(dx),

where λu = Hu − Mu and Ku(dx) represents the distribution of the random
variable

1 + v((t− u)(1 −X)) − v((t− u)(1 −Mu−)), (2.22)

with X being uniformly distributed on [Mu−, Hu] .

Before we give an upper and a lower bound for Var(Lt), let us recall the
following result from martingale theory (see Protter (1995), squared variation
process in Ch. 2, and also Brémaud (19 ?? ), p. 235, T3):

Var(Lt) = E
( ∫ t

0

(∆u)2dLt(u)
)

= E
( ∫ t

0

duλu

∫ 1

0

y2Ku(dy)
)

= E
( ∫ t

0

du(Hu −Mu−)× (2.23)

∫ Hu

Mu−

1
(Hu −Mu−)

(
v((t− u)(1 − x)) + 1 − v((t− u)(1 −Mu−)

)2
dx

)
.

Theorem 2.6

Var(Lt) ≥ v(t)
3

, ∀t ≥ 0.

Proof. Since v is concave we have that, for each jump time u , the random
variable defined in (2.22)

1 + v((t− u)(1 −X)) − v((t− u)(1 −Mu−))

14
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is stochastically larger than a uniformly distributed random variable on [0, 1] .
Hence, from (2.23),

Var(Lt) ≥ E
( ∫ t

0

du(Hu −Mu−)
∫ 1

0

x2dx
)

≥ 1
3
E

( ∫ t

0

du(Hu −Mu−)
)

≥ 1
3
E

( ∫ t

0

dLt(u)
)

=
1
3
v(t).

We now turn to the problem of finding an upper bound for Var(Lt) . Clearly,
in order to understand the behavior of Lt sufficiently well, our goal is to find an
upper bound which is close to the lower bound so that we can obtain strong limit
results. Contrarily to the problem of finding a lower bound where we were able to
minorize (stochastically) jump sizes, independently of the jump locations, by i.i.d.
uniform random variables, a similar approach is now too coarse. Thus we face
the additional problem of majorizing, in a suitable way, jump-location-dependent
jump sizes.

We will need, among other tools, an elementary Lemma which we state and
prove first.

Lemma 2.5 Let a, b ∈ IR with a < b and let ϕ : IR → IR be a twice
differentiable concave function on [a, b] with ϕ(a) = ϕ(b) = 0. Suppose that, for
some γ ≥ 0,

ϕ′′(x) ≥ −γ, for all x ∈ [a, b]. (2.24)

Then ∫ b

a

ϕ(x)dx ≤ γ

12
(b− a)3.

Proof. Define
h(x) =

γ

2
(x− a)(b− x) − ϕ(x). (2.25)

Then, from (2.24), for x ∈ [a, b] ,

h′′(x) = −γ − ϕ′′(x) ≤ 0,

15
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and hence h(x) is concave on [a, b] . Also, ϕ(a) = ϕ(b) = 0, and so from (2.25),
h(a) = h(b) = 0. Concavity of h on [a, b] implies then that h is nonnegative on
[a, b] . Hence 0 ≤ ϕ(x) ≤ (γ/2)(x− a)(b− x), x ∈ [a, b], and thus

∫ b

a

ϕ(x)dx ≤
∫ b

a

γ

2
(x− a)(b− x)dx =

γ

12
(b− a)3. [ ]

Theorem 2.7
Var(Lt) ≤ 1

3
v(t) + c1 log(t) + c2.

Proof. Let β be defined by v(β) = 2. Since v−1 exists on IR+ , we have
v−1(1) = α and v−1(2) = β so that

1 < α < 2 < v−1(2) = β, (2.26)

where the third inequality follows from v(t) < t, t > 0. Now note that, according
to Theorem 2.3 (i), x/φ(x) ≤ x/(x−

√
2x), and thus from β > 2 in (2.26) we get

x

φ(x)
≤ x

x−
√

2x
≤ β

β −
√

2β
, x ≥ β, (2.27)

because the function x/(x −
√

2x) is decreasing for x > 2. We also note that
0 < β/(β −

√
2β) < ∞ , since β > 2.

Let τ be the the stopping time

τ = inf{0 ≤ u ≤ t : (t− u)(1 −Mu) ≤ β}. (2.29)

The time u = t− β clearly satisfies the set prescription underlying τ so that

τ ≤ t− β, (2.30)

and, since τ is the infimum of this set,

(t− u)(1 −Mu−) > β, for u ∈ [0, τ [. (2.31)

Now, by the martingale property,

E
(
Yτ (Yt − Yτ )

)
= 0,

16
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and hence
Var(Lt) = Var(Yt) = Var(Yτ ) + Var(Yt − Yτ ).

Both summands are estimated in a different way. We start with the easier one.

Let F∫ denote the sigma-field generated by all arrival time points up to time
s and their corresponding values. Then

Var(Yt − Yτ ) ≤ E
( ∑
τ≤u≤t

(Yu − Yu−)2
)

≤ E
(
Lt − Lt(τ)

)
= E

(
E(Lt − Lt(τ)|Fτ )

)
.

By the martingale property, the latter equals

E
(
v((t− τ)(1 −Mτ ))

)
= E(v(β)) = 2,

where the second line follows fom the definitions of τ and β (see (2.26) and
(2.29), and the continuity of v .

The variance of Yτ requires more work.

Recall that

Var(Yτ ) = E
( ∫ τ

0

du

∫ Hu

Mu

(
J(s, u)

)2
ds

)
,

where J(s, u) = 1 + v((t − u)(1 − s)) − v((t − u)(1 −Mu−) for Mu− ≤ s ≤ Hu.

Since v is concave, we have ∂2J(s, u)/∂s2 ≤ 0, and thus J(s, u) is a concave
function of s. Hence

J(s, u) ≥ l(s) :=
Hu − s

Hu −Mu−
, Mu− ≤ s ≤ Hu. (2.32)

Also J2 − l2 ≤ 2(J − l), since 0 ≤ l ≤ J ≤ 1, Mu− ≤ s ≤ Hu , and hence

(J(s, u))2 ≤ (l(s))2 + 2(J(s, u) − l(s)), Mu− ≤ s ≤ Hu (2.33)

So we get
Var(Yτ )

≤ E
( ∫ τ

0

du

∫ Hu

Mu−

(l(s))2ds
)

+ 2 E
( ∫ τ

0

du

∫ Hu

Mu−

(J(s, u) − l(s))ds
)
. (2.34)

17
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For the first term in (2.34) we obtain from (2.32) and (2.30)

E
( ∫ τ

0

1
3
(Hu −Mu−)du

≤ E
( ∫ t

0

1
3
(Hu −Mu−)du

)
=

1
3
E(Lt) =

1
3
v(t), (2.35)

since the intensity of Lt(u)0≤u≤t is exactly (Hu −Mu−)du.

To estimate the second term we first note that the function ϕ(s, u) := J(s, u)−l(s)
vanishes in s = Mu− and in s = Hu and is concave in s on [Mu−, Hu] . Thus
ϕ(s, u) satisfies the hypotheses of Lemma 2.5 with a = Mu− and b = Hu .
Therefore we obtain for the second term of (2.34)

2 E
( ∫ τ

0

du

∫ Hu

Mu−

(J(s, u) − l(s))ds
)

≤ 1
6
E

( ∫ τ

0

du(Hu −Mu−)3 sup
s∈[Mu−,Hu]

|v′′((t− u)(1 − s))|(t− u)2
)
. (2.36)

Since (t− u)(1 −Mu−) > β (see (2.31)) we obtain from (iv) of Theorem 2.4

|v′′((t− u)(1 − s))| ≤ 1√
2
((t− u)(1 −Hu))−3/2.

Therefore, from (2.36),
Var(Yτ )

≤ 1
6
√

2
E

( ∫ τ

0

(Hu −Mu−)3(t− u)2 ((t− u)(1 −Hu))−3/2du
)

=
1

6
√

2
E

( ∫ τ

0

(
(Hu −Mu−)(t− u)

)3 du

(t− u)5/2(1 −Hu)3/2

)
, (2.37)

which is, according to (2.21), smaller than

1
6
√

2
E

( ∫ τ

0

(
(t− u)(1 −Mu−) − φ((t− u)(1 −Mu−))

)3

× du

(t− u)5/2(1 −Hu)3/2

)
. (2.38)

By inequality (2.27) the last expectation is smaller than

1
6
√

2
E

( ∫ τ

0

du

t− u

β

(β −
√

2β)

)

18
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and thus from (2.30)

≤ β

(β −
√

2β)
1

6
√

2

∫ t−β

0

du

t− u

≤ β

(β −
√

2β)
6
√

2 log
( t

β

)
.

Thus from (2.37) , (2.38) and (2.39),

Var(Lt) ≤ 1
3
v(t) +

β

(β −
√

2β)6
√

2
log

( t

β

)
+ 2,

and the proof is complete.

Corollary 2.6

Lt

v(t)
→ 1 i.p. and

Lt√
2t

→ 1 i.p. as t → ∞.

Proof. This is straightforward from Theorems 2.6 and 2.7 and Chebychev’s
inequality.

For t fix, let (Y t
u) 0≤u≤t be the martingale

Y t
u = Ltu + v((t− u)(1 −M t

u)).

Further let < , > denote the skew bracket (predictable quadratic variation) for
martingales. Then we know already from Theorem 2.6 and Theorem 2.7 that

E
(
(
1
3

√
2t)−1

(
< Y t, Y t >t −(Y t

0 )2
))

→ 1

as t → ∞. To prove the convergence in probability, we need the following lemma
on the intensity λtu of the process (Ltu) 0≤u≤t.

Lemma 2.6

1√
2t

Var
( ∫ t

0

λtudu
)
→ 4

3
, as t → ∞.

Proof.

E
[( ∫ t

0

λtudu
)2]

= 2E
[ ∫ t

0

( ∫ t

s

λtudu
)
λtsds

]
= 2E

[ ∫ t

0

(
Ltt − Lts

)
λtsds

]
, (2.40)
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where the second equality holds since (Lts−
∫ s
0
λtudu) 0≤s≤t is a martingale. Since

Y t
t = Ltt and (Y t

s )s is a martingale, the rhs of (2.40) yields

2E
[ ∫ t

0

(
Y t
t − Lts

)
λtsds

]
= 2E

[ ∫ t

0

(
Y t
s − Lts

)
λtsds

]
= 2E

[ ∫ t

0

(
Y t
s− − Lts−

)
λtsds

]
,

and so, since (Y t
s− − Lts−) is predictable,

= 2E
[ ∫ t

0

(
Y t
s− − Lts−

)
dLts

]
= 2E

( ∫ t

0

Y t
s−dLts

)
− 2E

( ∫ t

0

Lts−dLts

)
(2.41)

For the first integral in (2.41) we use

Y t
s−dLts = d(Y t

sL
t
s) − LtsdY

t
s = d(Y t

sL
t
s) − (Lts− + 1)dY t

s ,

since Lts = Lts− + 1 holds dY -a.s. So we get

E
[ ∫ t

0

Y t
s−dLts

]
= E

[
Y t
t L

t
t

]
− E

[ ∫ t

0

(Lts− + 1)dY t
s

]
.

Since the second term equals zero by the martingale property of (Y t
s ) 0≤s≤t , we

get

E
[ ∫ t

0

Y t
s−dLts

]
= E

[(
Ltt

)2
]
. (2.42)

The second integral in (2.41) can be computed using

2Lts−dLts = d
(
Lts)

2
)
− dLts,

and hence

2E
[ ∫ t

0

Lts−dLts

]
= E

[(
Ltt

)2
]
− E(Ltt).

Putting things together ((2.40) through (2.43)) gives

E
[( ∫ t

0

λtudu
)2]

= E
[(

Ltt

)2]
+ E(Ltt).

¿From this we deduce

Var
( ∫ t

0

λtudu
)

= Var(Ltt) + E(Ltt),

and hence, as t → ∞ ,

1√
2t

Var
( ∫ t

0

λtudu
)
→ 1

3
+ 1 =

4
3
,
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which completes the proof.

Corollary 2.7

1√
2t

( ∫ t

0

λtudu
)
→ 1, i. p. as t → ∞.

Proof. We know that

E
[ ∫ t

0

λtudu
]

= E
(
Ltt

)
∼

√
2t,

and from the preceding Lemma,

Var
[ 1√

2t

∫ t

0

λtudu
]

=
1
2t

Var
[ ∫ t

0

λtudu
]
→ 0.

This proves the statement.

Lemma 2.7

3√
2t

(
< Y t, Y t > −(Y t

0 )2
)
→ 1 i. p. as t → ∞.

Proof. The previous section showed that

< Y t, Y t > −(Y t
0 )2 =

∫ t

0

duλtu

∫
[0,1]

y2νtud(y)

=
1
3

∫ t

0

λtudu + O
(
log(t)

)
.

Hence the statement follows from∥∥∥ 3√
2t

(
< Y t, Y t > −(Y t

0 )2
)
− 1

∥∥∥2

2

≤ 1
2t

Var
( ∫ t

0

λtudu
)

+ C
(log(t))2

2t
→ 0, as t → ∞.

Conjecture. We believe that the preceding results can be strengthened to a

functional Central Limit Theorem, namely that
(
Lt

t−
√

2t√
2t

1/2 ,
Lt

t−
∫ t

0
λt

udu
√

2t
1/2

)
tends to a
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two-dimensional normal random variable with mean zero and variance-covariance
matrix (

1
3

1
2

1
2 1

)
.

Indeed, one can see that the preceding results are close to such a result. To
prove the above we have repeatedly tried to relate our results to known results
(see Billingsley (1995), Jacod and Shiryayev (1980), and others on this topic.
However, so far, we must leave this question open.

We now turn to the last objective of this paper, namely to the study of very
simple rules.

3. The simplest graph-rule.

We recall that the optimal selection rule is of the following form: Select the
first observation (Tτ , Xτ ) (if any) satisfying 1 + v((1−Xτ )(t− Tτ )) ≥ v(t− Tτ ),
and, recursively, if (Tk, Xk) was the last selected observation, select the first sub-
sequent observation (Tτ(k), Xτ(k)) (if any) satisfying 1+v((1−Xτ(k))(t−Tτ(k))) ≥
v(t − Tτ(k)). The optimal rule is thus a rule defined by v itself. However, the
recursive definition of the rule is of limited value. Given that the ”on-line” re-
quirement means, in practice, ”without delay”, this raises the question of finding
simpler rules which perform well. We focus our interest on the simplest rules we
can imagine, i.e. on drawing a (fixed) graph through [0, t] × [0, 1] and select-
ing sequentially all points below the graph which form an increasing sequence.
And the goal is, as we should point out, to choose the best graph, and not an
asymptotically optimal rule. (Asymptotically optimal rules are given in Section
4.)

It is interesting to put this goal into a parallel with known results about
the concentration of measure of i.i.d. random variables under the condition that
they form a record. Deuschel and Zeitouni (1995) have studied limiting curves of
concentration of records independently of the question of the existence of good on-
line strategies to select them (for the background see Goldie and Resnick (1996)).
The Poisson process model we consider can then easily be compared with the case
of t (t ∈ IN) uniform [0, 1] random variables. In this case this curve (on [0, 1]2 ) is
the diagonal line, as Deuschel and Zeitouni have shown. They also establish the
link with the monotone subsequence problem (Lemma 8, p. 874), and this shows
that a prophet would select the longest subsequence, with expected length in the
order of 2

√
t , essentially along this line. It is intuitive that a ”lazy” decision

maker who wants to use a convenient f -record rule cannot do better than just
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trying to mimic a prophet on-line. And it is nice to see that, as we shall prove,
this intuition is indeed true.

The proof consists of several parts which we prepare first.

Definition 3.1 Let f : [0, t] → [0, 1] and let Sf = {(s, x) : 0 ≤ s ≤ t, 0 ≤ x ≤
f(s). We say that (Tk, Xk) is a f -record on [0, t]× [0, 1] , if Xk is a record among
(Tj , XjI(Xj ≤ f(Tj)), j = 1, 2, · · · , k , where I denotes the indicator function.

Note that if Yj := XjI(Xj ≤ f(Tj)) = 0, then Yj cannot be a record. Hence
f -records are simply records in the planar Poisson process with unit rate confined
to the region bounded above by the graph of f .

Definition 3.2 The rule of selecting sequentially all f-records, and only these,
will be called f -record rule. Further, f∗ is called optimal, if it maximizes the
expected number of f -records for all f : [0, t] → [0, 1]. (We do not affirm here yet
that such a f∗ exists, in which case the definition is understood to be weakened
to ε-optimality.)

Lemma 3.1 For a given function f : [0, t] → [0, 1] let rf (t) denote the
expected number of f -records. Then

rf (t) =
∫ t

0

∫ f(s)

0

e−Λf (s,x) dx ds, (3.1)

where Λf (s, x) denotes the Lebesgue measure of the intersection of Sf and the
North-West region of the plane with respect to the point (s, x).

Proof. The probability of finding exactly one f -record in a rectangle con-
taining (s, x) with area ds× dx equals, according to the Poisson hypothesis,

(dx ds + o(dx ds)) exp{−Λf (x, s)},

because it is necessary and sufficient that the rectangle contains at least one
observation, and that this observation is not preceded by a f -record with a
larger X -value. Further, more than one arrival time in ds has probability o(ds)
(more than one X -value in dx has probability o(dx)) so that summing over
the probabilities, respectively expectations, are here asymptotically equivalent.
Letting ds → 0 and dx → 0, the limiting sum exists and yields then the above
double integral, because the integrand is continuous in both s and x .

Maximizing (3.1) over all f is in general a difficult problem of calculus of
variations, but we can reduce the range of functions containing f∗ . For sufficiently
small t , we have f∗ ≡ 1 on [0, t] , as we can see easily. Indeed, we know from
the definition of α (see (2.5)-(2.6)) that v(t) ≤ 1 for t ≤ α , so that it is optimal
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to select any record if t < α . But this simple picture changes quickly, even for
moderate t . Further, it will become clear that, as t becomes larger, we can
confine our interest to increasing functions f . Therefore we first note that

Corollary 3.1 If f is strictly increasing, then equation (3.1) becomes

rf (t) =
∫ t

0

∫ f(s)

0

exp
{
−

∫ s

f−1(x)

(f(u) − x)du
}
dx ds, (3.2)

where f−1(x) := inf{s : f(s) = x} .

rf (t) in (3.2) can be computed conveniently for f(s) = s/t , and this will give
us immediately a lower bound for supf rf (t). If f(s) = s/t then we denote the
corresponding expected number of f -records by rd(t) (d being mnemonic for
”diagonal line”).

Lemma 3.2

sup
f

rf (t) ≥ rd(t) =
√

π

2
t− 1 + o

(1
t

)
. (3.3)

Proof: The inequality in (3.3) is obvious. Further, for f(s) = s/t we have
f−1(s) = ts and so from (3.2)

rd(t) =
∫ t

0

∫ s/t

0

exp
{
−

∫ s

tx

(u

t
− x

)
du

}
dxds. (3.4)

With the change of variable s := s/t , (3.4) becomes

rd(t)/t =
∫ 1

0

∫ s

0

exp
{
−(t/2)(s− x)2

}
dxds. (3.5)

We now use

∫ s

0

exp
{
−(t/2)(s− x)2

}
dx =

∫ s

0

exp
{
−(t/2)x2

}
dx =

1√
t

∫ √
ts

0

e−w
2/2dw.

Plugging this into (3.5) we see that

rd(t) =
√
t

∫ 1

0

(G(
√
ts) −G(0))ds, (3.6)

where G denotes the Gaussian error-integral. (3.6) can be straightforwardly
integrated which yields the rhs of (3.3).
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Asymptotically optimal f -record rules. To tackle the question of an asymp-
totically optimal performance, we transform the time by s := s/t , so that we have
now a planar Poisson process with rate t on [0, 1]2 . Consequently, we may and
will confine our interest to those functions f which satisfy 0 ≤ f(s) ≤ 1 for all
s ∈ [0, 1] .

We first need two preliminary easy estimates.

Corollary 3.2 Let 0 < m < ∞ and let f(s) = ms on [0, t1] , and let
rf (t1, t) denote the expected number of f -records up to time t1 . Then there
exists a constant c1 > 1 such that

c1
√

t1f(t1)t ≤ rf (t1, t) ≤ 2
√

t1f(t1)t, 0 < t1 ≤ max{1, 1/m} (3.7)

for all t sufficiently large.

Proof. The first inequality in (3.7) is obvious from the proof of Lemma
3.2 (by time scale transformation). The second inequality holds since rf (t1, t) ≤
v(t1f(t1)t) ∼

√
2t1f(t1)t < 2

√
t1f(t1)t.

Lemma 3.3 Let 0 < a ≤ 1, and let f(s) ≡ a on [0, t1] for some 0 < t1 ≤ 1.
Then, for all constants c2 > 1,

ra(t1, t) < c2 log(t) (3.8)

for all t sufficiently large.

Proof. It is easy to check (and well-known) that the expected number of
records from n i.i.d. continuous random variables equals µ(n) = 1 + 1/2 + · · · +
1/(n − 1) + 1/n (see e.g. Arnold et al. (1998), p. 23). Since µ(n) ≤ 1 + log(n)
we have ra(t1, t) ≤ E(1 + log(N)), where N is a Poisson-distributed random
variable with mean at1t). Since log is a concave function, Jensen’s inequality
yields E(log(N)) ≤ log(E(N)) , and thus

ra(t1, t) ≤ 1 + log(E(N)) = 1 + log(at1) + log(t) ≤ 1 + log(t) < c2 log(t),

where the last inequality holds for all t sufficiently large.

We are now ready for the essential Lemma of this section.

Lemma 3.4 To find an asymptotically optimal function f on [0, 1] as t →
∞ , it suffices to study the class of functions f which are increasing and satisfy
f(0) = 0 and f(1) = 1.
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Proof (i) We first show that we can confine to the class of increasing functions
f . Recall (3.1), which becomes (in time scale s := s/t)

rf (t) =
∫ 1

0

∫ f(s)

0

te−tΛf (s,x) dx ds. (3.9)

Suppose now that f is not increasing on [0, 1] . We will see then that the choice
f̃(s) := max{0≤u≤s} f(s) is asymptotically at least as good as f . Clearly, f̃

is well-defined since f is continuous. Since f is not increasing on [0, 1], there
exists a largest point, s1 < 1 say, such that f is increasing on [0, s1] (where
s1 = 0 is defined to signify that f decreases in a neigborhood of 0). Again
from continuity of f , we can find an ε > 0, a δ := δ(ε) > 0 and a largest time
s2 := s2(ε) (truncated at 1) such that f(u) ≤ f(s1) − ε for s1 + δ ≤ u ≤ s2 .
But then Λf (u, x) is positive and bounded away from 0 on the set U = {(u, x) :
s1 + δ ≤ u ≤ s, 0 ≤ x ≤ f(u)} . Therefore t exp{τ Λf (u, x)} → 0 on U as t → ∞ ,
and thus ∫ s2

s1+δ

∫ f(s)

0

te−tΛf (s,x) dx ds → 0 as t → ∞ (3.10)

This is true for 0 < ε′ < ε as well, and then, having chosen a corresponding
δ > 0, also for all δ′ with 0 < δ′ < δ , since s1 is maximal. Extending the outer
integral in (3.10) to

∫ s2
s1

adds at most δ to the value of the integral, and hence,
as t → ∞ , the limiting contribution of the time interval [s1, s2] to the expected
number of f records is zero. The same argument holds for all subsequent intervals
(if any) on which f drops below f(s1). Thus replacing f by f̃ for s ≥ s1 cannot
but improve on f , since the integrand is positive. (Note also that Nf̃ (s, x) does
not stay bounded away from zero.) This implies that we can focus on increasing
functions f .

(ii). We now show that an asymptotically optimal f must satisfy f(0) = 0.
According to (i), we suppose f is increasing. Suppose f(0) = a > 0. Let, as
before, rf (ε, t) be the expected number of f -records on [0, ε] . The number of
f -records which are not a-records is the number of those f -records which lie in
the region bounded by the graphs of f and a . Since the Poisson arrival rate is
constant everywhere, it has the same distribution as the number of f −a-records
(where f − a is shorthand for g(s) := f(s) − a). Hence its expectation is the
same as rf−a(t, ε). Counting f -records and a-records separately yields the upper
bound

rf (t, ε) ≤ ra(t, ε) + rf−a(t, ε), (3.11)

because all those a-records which are preceded by f -records do not contribute
to the number of f -records.
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Now note that rf−a(t, ε) ≤ v(ε(f(ε) − a)t). Indeed, v(εf(ε)) yields the
expected number of selectable points on the box [0, ε] × [0, f(ε) − a)] under the
(overall) optimal selection rule, and the class of all selection rules contains the
class of f -record rules. Also recall that v(t) ∼

√
2t . Using this and Lemma 3.3

yields then from (3.11)

rf (t, ε)/
√
εt ≤ 2

√
f(ε) − a + ηt, (3.12)

where 0 < ηt < c2 log(t)/
√
εt → 0 as t → ∞ . Since f is continuous, the rhs

tends to zero as ε tends to zero. Replace f on [0, ε] (only) by the line joining
the origin and the point (ε, f(ε)) , i.e. by g(s) = sf(ε)/ε > 0. Since f(0) = a > 0
and f is increasing, this line has a finite strictly positive slope for all ε > 0. Thus
from Corollary 3.2, for t sufficiently large,

rg(t, ε)√
εt

≥ c1
√

tεf(ε)√
εt

= c1
√

f(ε).

The rhs stays now bounded away from 0, since f(0) = a > 0. Thus there exists
ε > 0 such that rf (t, ε) < rg(t, ε) for t sufficiently large, which proves that f is
asymptotically suboptimal unless f(0) = 0.

(iii) Finally, suppose that f(1) = b < 1. Replace f on [1 − ε, 1] by the
line-segment joining (1− ε, b) and (1, 1), which has again a strictly positive finite
slope for each 0 < ε ≤ 1. Similarly to the proof of (ii) we see then that, for some
ε > 0 this replacement improves on f as t becomes large.

This completes the proof.

We are now ready for the main result.

Theorem 3.1 The f -record rule using the diagonal line f(s) = s is asymp-
totically optimal in the class of differentiable functions f : [0, 1] → [0, 1].

Proof. According to Lemma 3.4 we may and do suppose that f(0) = 0, f(1) = 1
and f ′(s) ≥ 0 on [0, 1]. The latter implies that Λf (s, f(s)) = 0 and that each
point (s, x) with 0 ≤ x < f(s) has a single connected North-West region below
f attached to it. For 0 ≤ β ≤ 1 let

B(β) = {(s, x) ∈ [0, 1]2 : 0 ≤ x ≤ f(s),Λf (x, s) ≤ β}. (3.13)

Note that B(β) is bounded above by B(0), i.e. the graph of f , and below by the
curve c(s, β) := cf (s, β) defined by Λf (s, x) = β , both being well defined and
continuous in β since f is increasing and continuous. Therefore the Lebesgue
measure of B(β) denoted by L(B(β)) is (right)-continuous in β = 0.
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Recall the intergral in (3.9). As t increases, t exp{−tΛf (s, c(s, β))} → 0 for
each β > 0, so that integration on the complement of B(β) is asymptotically
negligible for any fixed β > 0. This means that the asymptotic behavior of the
double integral (3.9) is solely determined by the behavior of the integrand on
B(β) as β → 0+. Now interpret (3.9) as t times the Laplace transform of Λf .
This opens the way to applying an Abelian Theorem ( Feller, Vol. II, Chapter
XIII, section 5, Theorem 4). This shows that maximizing (3.9) over the set of
f is equivalent to maximizing tρL(B(β)) for some factor ρ > 0. Moreover, we
see that ρ must be equal to 1/2, because sup{f} rf (t) ≤ v(t) ∼

√
2t , and, from

Lemma 3.2 sup{f} rf (t) ≥ c
√
t , for each c <

√
2π and t sufficiently large.

Now, to study the limiting behavior of

√
tL(B(β)) =

√
t

∫ 1

0

(f(s) − c(s, β))ds, (3.14)

as β → o+ we use the differentiability of f . Note that

Λf (s, c(s, β)) =
1
2
(s− f−1(c(s, β))(f(s) − c(s, β)) + o(β)

=
1
2

(f(s) − c(s, β))2

f ′s)
+ o(β).

Since Λf (s, c(s, β)) = β , this implies

f(s) − c(s, β) =
√

2β
√

f ′(s) + o(β). (3.15)

Therefore

L(B(β)) =
∫ 1

0

(f(s) − c(s, β))ds =
∫ 1

0

√
f ′(s)ds + o(β).

The Cauchy-Schwarz inequality implies, however, that

∫ 1

0

√
f ′(s)ds ≤

√∫ 1

0

ds

√∫ 1

0

f ′(s)ds =
√

f(1) − f(0) = 1,

and that equality holds if and only if f ′(s) is proportonal to 1 on [0, 1]. With
the border conditions this implies that only f(s) = s is asymptotically optimal,
and the proof is complete.

4. Conclusions and comparisons. One practical solution of the problem
is thus to graph the line f(s) = s/t through the ribbon [0, t] × [0, 1] and to
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select greedily all f -records. This is the ”laziest” f -record rule. Note that any
monotone increasing function f whose horizontal projection into [0, 1]2 is the
main diagonal is an asymptotically optimal f -record rule as t tends to infinity.

For finite (even large) t the projection argument is for on-line strategies of
limited value, of course, and there are strategies other than the optimal one which
perform better. According to the optimality conditions implied by Lemma 2.1,
for instance, we can do better by replacing after each selection the old diagonal
line by a new one passing through the presently selected point and the point
(t, 1). A little reflection shows that this rule is indeed always strictly better.

However, this rule of drawing new lines after each selection is more compli-
cated, so that a convenient approximation of the optimal rule by ”close-to-opimal”
rules become comparable with respect to on-line speed, and, due to their asymp-
totic optimality, clearly preferable. (Here we mean by an asymptotically optimal
rule a rule whose value w(t) satisfies w(t)/v(t) → 1 as t → ∞ .)

Such close-to-optimal rules are easy to obtain. According to Theorem 2.3
(iii) and Theorem 2.4 (ii) we have close lower and upper bounds for v . Using for
instance an approximation v̂ of v in Lemma 2.3 between these bounds ( v̂(t) =√

2t − 1
4 log(t), say) will yield close-to-optimal asymptotically optimal results,

because both v(t) and v̂(t) are continuous.

Open problems. An analytic challenge for this problem is to know whether
the logarithmic gap between the lower and the upper bound for v(t) can be
tightened to a gap of lower order. The second open problem is to know whther
the conjecture of the functional CLT for (Ltu)0≤u≤t , stated at the end of Section
3, is true.
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