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Abstract

We are concerned with theoretical aspects of computer viruses.
For this, we suggest a new definition of viruses which is clearly based
on the iteration theorem and above all on Kleene’s recursion theorem.
We show that we capture in a natural way previous definitions, and in
particular the one of Adleman. We establish generic virus construc-
tions and we illustrate them by various examples. Lastly, we show
results on virus detection.

1 A short overview of computer virology

From an epistemological point of view, it is rightful to wonder why there
is only a few fundamental studies on computer viruses while it is one of
the important flaws in software engineering. The lack of theoretical studies
explains maybe the weakness in the anticipation of computer diseases and the
difficulty to improve defenses. For these reasons, we do think that it is worth
to explore fundamental aspects. We hope this paper is the first one of a series
whose aim is to define an abstract virology by exploring and understanding
relationships between computer infections and theoretical computer science.

The literature which explains and discusses about practical issues is quite
extensive, see for example Ludwig’s book [18] or Szor’s one [27]. Thompson
used the word ”Trojan horse” in his paper [28]. As we have already said and
as far as we know, there is only a dozen theoretical studies, which attempt
to give a model of computer viruses. This situation is even more amazing
because the word “computer virus” comes from the seminal theoretical works
of Cohen [6] and Adleman [1] in the mid-80’s. The book of Filiol [10] gives
a very nice survey, which deals with both the fundamental subjects and the
practical ones.

Before going further, the first question to ask is what is a computer virus.
In [7, 9], Cohen defines viruses with respect to Turing Machines. For this,
he considers viral sets. A viral set is a pair (M, V ) constituted of a Turing
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Machine M and a set of viruses V . When one runs on M a virus v of V , it
duplicates or mutates to another virus of V on M ’s tape.

Adleman [1] takes a more abstract formulation of computer viruses based
on computability theory in order to have a definition independent from a
particular computational model. Adleman’s attack scenario is based on a
computer environment which is made of a fixed number of programs and of
a fixed number of data. A virus is a computable function, which infects any
program. An infected program may perform three kinds of actions triggered
by the inputs :

1. Run the host program and propagate the infection.

2. Injure the system, that is compute some other function.

3. Or imitate the host program, with no infection.

Then, Adleman classifies viruses following their behaviors based on the three
schemas above.

There are other studies, which follow the stream open by Cohen and
Adleman. Chess and White [5] refine the definition of evolving virus. More
recently, Zuo and Zhou [31] continue Aldeman’s work with the same scenario.
In particular, they formalize polymorphic viruses.

The approaches mentioned define a virus as an entity that enslaves an
host to carry out replicating operations that brings new mutant copies into
being, which are then free to go off and enslave further hosts, and so on.

There are other definitions, like [8] and [2], which focus more on identity
program usurpations. The goal is to be closer to the practical issues than the
previous mentioned studies and to partially deal with some human aspects.
In the same vein, Thimbleby, Anderson and Cairns [13] suggest a virus rep-
resentation closer from daily programming practice. In particular, they cope
with the problem of distinguishing between friendly programs and infected
ones.

1.1 Paper organization

We begin in Section 2 by presenting the general framework. We define what
we mean by programming language and we particularly focus on the iteration
(Smn) property and Kleene’s recursion theorem.

In section 3, we suggest a definition of viruses by mean of recursion theory.
We end by a discussion on the differences with other models and on the
relevance of our definition.
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Then, we study three classes of viruses based on how viruses replicate.
The first duplication method in Section 4 considers a virus as a blueprint.
We illustrate this reproduction principle by giving examples of viruses, like
overwriting viruses, ecto-symbiotes (a kind of parasitic viruses), organisms,
and companion viruses. We make a full comparison with Adleman’s work in
part 4.7.

We describe a more complex reproduction mechanism in Section 5. Com-
pared with the previous method, the whole viral system is copied, that is the
virus blueprint and also the propagation function. It is worth noticing that
we establish an intriguing variant of recursion Theorem in order to establish
this reproduction mechanism.

Lastly, we show how to construct a generator of polymorphic viruses. We
make some comparison with Zuo and Zhou approaches 6.2.

The last Section is devoted to virus detection.

2 Iteration and Recursion Theorems

We are not taking a particular programming language but we are rather con-
sidering an abstract, and so simplified, definition of a programming language.
However, we shall illustrate all along the theoretical constructions by Bash

programs. The examples and analogies are there to help the reader having a
better understanding of the main ideas and also to show that the theoretical
constructions are applicable to any programming language. We refer to the
classical books of Rogers [22], of Odifreddi [20], and to the modern approach
of Jones [16].

Throughout, we fix a domain of computation D. It is convenient to think
of D as a set of words over some fixed alphabet. Note that D could also be
the natural numbers or any free algebra.

A programming language is a mapping ϕ from D → (D → D) such that
for each program p, ϕ(p) : D → D is the partial function computed by p.
Following the convention used in computability theory, we write ϕp instead
of ϕ(p). Notice that there is no distinction between programs and data; in
the present context, this is particulary relevant as both are potential virus
hosts.

We write f ≈ g to say that for each x, either f(x) and g(x) are defined
and f(x) = g(x) or both are undefined on x. If a function f is defined on
some input x, we note it f(x) ↓ otherwise, we write f(x) ↑.

A total function f is computable wrt ϕ if there is a program p such that
f ≈ ϕp. If f is a partial function, we shall say that f is semi-computable.
Similarly, a set is computable (resp. semi-computable) if its characteristic
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function is computable (semi-computable).
We also assume that there is a computable pairing function 〈 , 〉 such that

from two words x and y of D, we form a pair 〈x, y〉 ∈ D. A pair 〈x, y〉 can be
decomposed uniquely into x and y by two computable projection functions
π1 and π2. Next, a finite sequence 〈x1, . . . , xn〉 of words is built by repeatedly
applying the pairing function, that is 〈x1, . . . , xn〉 = 〈x1, 〈x2, 〈. . . , xn〉 . . .〉〉.
All along, we always deal with unary functions. We shall write f(x, y) as an
abbreviation of f(〈x, y〉). Hence we consider f as a unary function but we
keep the intuition that f takes two arguments.

Following Uspenskii [29] and Rogers [22], a programming language ϕ is
acceptable if

1. Turing Completeness. For any effectively computable partial function
f , there is a program p ∈ D such that ϕp ≈ f .

2. Universality. There is a effectively computable function U which sat-
isfies that for any p, x ∈ D, U(p, x) = ϕp(x).

3. Iteration property. There is a computable function S such that for any
p, x and y ∈ D

ϕp(x, y) = ϕS(p,x)(y) (1)

The Turing completeness asserts that we compute all functions which
are defined by mean of Turing machines. Conversely, by the universality
property, for each p, ϕp is effectively computable. The function U denotes
the quite familiar universal function, and by Turing completeness, there is
u such that U ≈ ϕu. The iteration property says that there is a function
S which specializes a program to an argument. A practical issue is that S
is a program transformation used in partial evaluation [15]. Kleene in [17]
constructed the function S also known as the S-m-n function.

We present now the cornerstone of the paper which is the second recur-
sion theorem of Kleene [17]. This theorem is one of the deepest result in
theory of recursive functions. Kleene’s recursion Theorem has several deep
consequences such as the existence of an isomorphism between two acceptable
programming languages due to Rogers [21], or Blum’s speed-up Theorem [3].
There are also various applications in learning Theory [14], or in program-
ming Theory [15].

Theorem 1 (Kleene’s Recursion Theorem). If g is a semi-computable
function, then there is a program e such that

ϕe(x) = g(e, x) (2)
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Proof. Let p be a program of the semi-computable function g(S(y, y), x). We
have

g(S(y, y), x) = ϕp(y, x)

= ϕS(p,y)(x)

By setting e = S(p,p), we have

g(e, x) = g(S(p,p), x)

= ϕS(p,p)(x)

= ϕe(x)

Kleene’s theorem is similar, in spirit, to von Neumann [30] self-reproduction
of cellular automata. It allows to compute a function using self-reference.
The fixed point e of the projection function π1(y, x) = y gives a self-reproducing
program, because we have ϕe(x) = π1(e, x) = e. A few words of explanation
could shed light on the intuition behind those constructions, which we shall
use throughout. The interpretation of S(p, x) is that S(p, x) is a program
p which contains the data x inside it. The self-application that is S(p,p)
corresponds to the construction of a program with its own code p stored
inside. In other words, the execution of S(p,p) computes the program p on
the input p.

3 A Viral Mechanism

We suggest an abstract formalization of viruses which reflects the fact that
a virus may be thought of as a program which reproduces and may execute
some actions. Our point of view in this study is that a virus is a program
which is defined by a propagation mechanism. The propagation mechanism
describes how a virus infects and replicates with possible mutations. The
propagation may end when a virus decides to do something else. We represent
the propagation mechanism as a computable function B, which is a vector
that infects, carries and transmits a viral code. For this, assume that v is a
program of a virus and that p is a program, or a data.

We are thinking of B(v,p) as a program which is the infected form of p
by v. So, the propagation function transforms a program p into another one.
When one runs the program B(v,p), the virus v is executed and it possibly
copies itself by selecting some targets. We see also that a propagation func-
tion describes the functional behavior of a class of viruses by describing the
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action of v wrt p. Thus a virus has a double interpretation. It is a program,
which is executable, but it is also a blueprint. Indeed, when we combines p
and v wrt B, we obtain a virus. In conclusion, a virus and its propagation
function B are intimately related.

Definition 2. Assume that B is a computable function. A virus wrt B is a
program v such that for each p and x in D,

ϕv(p, x) = ϕB(v,p)(x) (3)

The function B is called the propagation function of the virus v.

The existence of viruses wrt a propagation function B is a consequence
of recursion Theorem. Indeed, there is a program q such that ϕq(y,p, x) =
ϕB(y,p)(x) for all y,p, x ∈ D. By Kleene’s recursion theorem, there is a
program v such that ϕv(p, x) = ϕq(v,p, x). Therefore, we have ϕq(v,p, x) =
ϕB(v,p)(x). So, v is a virus wrt propagation function B.

We shall demonstrate that the virus definition that we propose embeds
and goes beyond Adleman’s one. It also formalizes most of the known prac-
tical cases of infections in smooth way thanks to recursion Theorem. Our
approach differs from the cited studies in several respects:

1. The programming language framework is closer to programming theory
than the purely functional point of view of Adleman or the Turing
machine formalism. Indeed, a virus is a program and the propagation
mechanism is explicit.

2. The scenarios, in which a virus infects a system and replicates itself, are
very wide. Indeed, the system environment may grow, which allows a
virus to copy itself in different files. Moreover both programs and data
can be contaminated.

3. We adopt a constructive point of view. We effectively produce viruses.
Whereas for Adleman, a virus is a function that satisfy some first order
equation, and so, he does not need to cope with the programs that
compute them. Notice that it is rarely established that such equations
have a solution, which would demonstrate the existence of the specified
virus.

4. Finally, it turns out that a virus reproduces in many ways, capturing
polymorphism for example. This means that it becomes possible to
make a wide range of new models of computer viruses.
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On the other hand, the proposed definition encompasses a number of
programs, for which we can hardly say that they are viruses. The reason
of this difficulty lies on the nature of the definition of real viruses, or of
computer infections in our every day life. Nevertheless, we think that this
recursion theoretic definition gives a general principal for virus constructions
and allows establishing properties on them, as we shall see in the rest of this
study.

Viruses might be defined by their ability for self-reproduction. They
can copy themselves in different ways. We present two kind of duplication
mechanisms in the next sections. This study suggests a virus classification
based on the reproduction strategy and the propagation function.

4 Blueprint duplication

4.1 Characterization of blueprint duplication

We begin by considering viruses which copy themselves leaving outside of
duplication process the propagation function. A blueprint duplication is a
replication in which the propagation function remains implicit.

Theorem 3 below provides a generic construction from which we base
blueprint reproduction. The idea behind blueprint duplication is that the
virus code v is copied. To keep the infection active after blueprint duplica-
tion, a virus should become an independent organism either by taking the
identity of an host or by being a new entity. Indeed, in both cases, one can
run the copied virus. Otherwise, the virus is glued, in a way or another, to an
host. The copied virus is dormant because there is, a priori, no mechanism
inside the infected host to wake up the virus.

Theorem 3. Given a semi-computable function f , there is a virus v such
that for any p and x in D, we have ϕv(p, x) = f(v,p, x).

Proof. Recursion Theorem provides a fixed point v of the semi-computable
function f . So we have

ϕv(p, x) = f(v,p, x)

Let e be a program computing f , that is f ≈ ϕe. Define B(v,p) =
S(e,v,p). We have

ϕB(v,p)(x) = ϕS(e,v,p)(x) by definition of B
= ϕe(v,p, x) by Iteration theorem

= f(v,p, x) by definition of e

= ϕv(p, x) by (4)
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for FName in ∗ ; do # for a l l f i l e s
cp $0 $FName # Overwrite a l l t he f i l e s
done

Figure 1: An overwriting virus

So, v is a virus wrt the propagation function B which completes the proof.

We are now illustrating the applications of Theorem 3 and see examples
of blueprint duplications.

4.2 Overwriting viruses

An overwriting virus replaces a program or several ones by a copy of itself.
An example of overwriting virus is displayed in Figure 1.

The files are represented by a list of programs (p1, . . . ,pn). A virus v,
which corresponds to the above example, satisfies the equation ϕv(p1, . . . ,pn) =
(v, . . . ,v). Theorem 3 guarantees the existence of v and provides a propa-
gation function. For this, we apply Theorem 3 to the function f defined by
f(y,p1, . . . ,pn) = (y, . . . , y). We then obtain a virus v wrt a propagation
function B(p, x) = S(e,p, x) where e is a program of f .

4.3 Ecto-symbiotes

A virus is an ecto-symbiote if it lives on the body surface of programs, that is
it keeps quite intact the program structure and copies itself at the beginning
or the end of a program host. A typical example of ecto-symbiotic is a virus
v which satisfies

ϕv(p1, . . . ,pn) = (δ(v,p1), . . . , δ(v,pn))

where δ is a duplication function like δ(v,p) = v · p where · is the word
concatenation. Figure 2 gives an example of an ecto-symbiote. Again, The-
orem 3 constructs an ecto-symbiote v.

4.4 Organisms

An organism duplicates itself without modifying programs. It satisfies an
equation of the form

ϕv(p) = (v,p)
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# for each f i l e FName in the curren t path
for FName in ∗ ;do
# i f FName i s not me
i f [ $FName != $0 ] ; then
# add myse l f a t the end o f FName
cat $0 >> $FName
f i

done

Figure 2: An example of ecto-symbiote

We see that by iterating this virus, it will make copies of itself until the
system runs out of memory.

The word “organism” comes from the terminology of Adleman in [1].
There, he proposed to study such viruses, which was not captured by his
formalization, as we shall see shortly. Organisms were a concern of Adleman.
Let us cite him [1], “It may be appropriate to study ‘computer organisms’ and
treat ‘computer viruses’ as a special case”. Our formalism allows a uniform
study of both concepts.

4.5 Companion viruses

A companion virus is an entity which does not modify the functional be-
havior of the target program at first glance. When one executes the target
program, the companion virus runs first, and then calls the target program.
An example of a companion virus is presented in Figure 3.

A companion virus satisfies an equation of the form

ϕv(p) = v′ where ∀x ∈ D, ϕv′(x) = ϕp(ϕv(x))

Again, Theorem 3 gives solutions to this construction. Indeed, let q be a
program for the (composition) function comp(a, b, x) = ϕa(ϕb(x)). Solutions
of the above equation are the ones of the following equation.

ϕv(p) = S(q,p,v)

Indeed, ϕS(q,p,v)(x) = ϕp(ϕv(x)).

4.6 Implicit virus Theorem

We establish a virus construction which performs several actions depending
on some conditions on its arguments. This construction of trigger viruses is
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# for each f i l e FName in the curren t path
for FName in ∗ ;do
# i f FName i s not a companion

i f [ ! − e . $FName ] ; then
# move FName to .FName
mv $FName . $FName
# copy myse l f to FName
cat $0 > $FName
# add the command ” launch .FName”
echo ”bash . $FName” >> $FName
# al l ow .FName to be executed
chmod 5 4 4 . $FName

f i
done

Figure 3: An example of companion virus

very general and embeds a lot of practical cases.

Theorem 4. Let C1, . . . , Ck be k semi-computable disjoint subsets of D and
V1, . . . , Vk be k semi-computable functions There is a virus v which satisfies
the equation for all p and x

ϕv(p, x) =


V1(v,p, x) (p, x) ∈ C1

...

Vk(v,p, x) (p, x) ∈ Ck

(4)

Proof. Define

F (y,p, x) =


V1(y,p, x) (p, x) ∈ C1

...

Vk(y,p, x) (p, x) ∈ Ck

(5)

The function F is semi-computable and there is a code e such that F ≈ ϕe.
Again, recursion Theorem yields a fixed point v of F which satisfies the
Theorem equation. The induced propagation function is B(v,p) = S(e,v,p)

4.7 Comparison with Adleman’s Viruses

Adleman’s modeling is based on the following scenario. The system is de-
termined by a number n of programs and a number m of data. A sys-

10

in
ria

-0
01

15
19

9,
 v

er
si

on
 1

 - 
20

 N
ov

 2
00

6



tem environment is a pair (r,d) of n programs r = r1, . . . , rn and m data
d = d1, . . . ,dm. Now, a virus A in the sense of Adleman is a computable
function that we call A-viral function. For every program ri, A(ri) is the
“infected” form of the program ri wrt A.

An infected program has several behaviors which depend on the inputs.
Adleman lists three actions. In the first (6) the infected program ignores the
intended task and executes some code. That is why it is called injure. In the
second (7), the infected program infects the others, that is it performs the
intended task of the original, a priori sane program, and then it contaminates
other programs. In the third and last one (8), the infected program imitates
the original program and stays quiescent.

We translate Adleman’s original definition into our formalism.

Definition 5 (Adleman’s viruses). A total computable function A is said
to be a A-viral function (virus in the sense of Adleman) if for each system
environment (r,d) one of the three following properties holds:

Injure

∀p,q ∈ D ϕA(p)(r,d) = ϕA(q)(r,d) (6)

This first kind of behavior corresponds to the execution of some viral
functions independently from the infected program.

Infect

∀p ∈ D ϕA(p)(r,d) = 〈εA(r′1), . . . , εA(r′n),d′〉 (7)

where ϕp(r,d) = 〈r′,d′〉 and εA is a computable selection function
defined by

εA(p) =

{
p or
A(p)

The second item corresponds to the case of infection. One sees that
any program is potentially rewritten according to A. But, data are left
unchanged.

Imitate

∀p ∈ D ϕA(p)(r,d) = ϕp(r,d) (8)

The last item corresponds to mimic the original program.

Theorem 6. Assume that A is a A-virus. Then there is a virus wrt a
propagation function B, which performs the same actions as A. That is
ϕB(v,p) ≈ ϕA(p).
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Proof. Let e be the code of A, that is ϕe ≈ A. There is a semi-computable
function App such that App(x, y, z) = ϕϕx(y)(z). Suppose that q is the code
of App. Take v = S(q, e). We have

ϕA(p)(r,d) = ϕϕe(p)(r,d)

= App(e,p, 〈r,d〉)
= ϕq(e,p, 〈r,d〉)
= ϕS(q,e)(p, 〈r,d〉)
= ϕv(p, 〈r,d〉)

We conclude that the propagation function is B(v,p) = A(p).

Adleman defines many kinds of viruses based on the properties they sat-
isfy. These classes of viruses are captured here by using the implicit virus
theorem 4.

Adleman’s framework has some limitations because the propagation mech-
anism is fixed. This implies that some classes of virus are not captured.

• Organisms are not captured because the number of programs increases
which violates the condition on the system environment.

• It does not take into account viruses that modify data.

• A virus which does not terminate on some inputs, is not considered.

But even if we restrict ourselves to viruses that do not change the number
of programs, nor modify data, nor loop on some inputs, some of them do not
find any corresponding A-viruses. This is shown in the next Theorem, which
constructs a virus that we name wagger virus. It permutes programs inside
the system environment. Thus, when a user runs a program, another one is
run instead, which may cause some trouble.

Theorem 7 (The wagger virus). There are viruses with no corresponding
A-viruses. That is, there is a virus v wrt a propagation function B such that
there is no A-virus A verifying ϕB(v,p) ≈ ϕA(p).

Proof. We consider, without loss of generality, that the number of programs
is 2. Theorem 3 proves the existence of v and defines its propagation function
B such that

ϕB(v,p)(r1, r2,d) = 〈r′2, r′1,d′〉 where ϕp(r1, r2,d) = 〈r′1, r′2,d′〉

We see that the virus permutes its program arguments.
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We show by contradiction that Adleman’s formalization does not capture
the above virus. For this, suppose the existence of an A-viral function A
such that ϕB(v,p) ≈ ϕA(p) for all p.

Take id a program that computes the identity, that is ϕid(r1, r2,d) =
〈r1, r2,d〉. We have ϕA(id)(r1, r2,d) = 〈r2, r1,d〉.

Next, let inc be a program such that ϕinc(r1, r2,d) = 〈r1, r2,d+1〉. Now,
we have ϕA(inc)(r1, r2,d) = 〈r2, r1,d+1〉. Clearly, there is no input (r1, r2,d)
for which A verifies the injure property, just because ϕA(id)(r1, r2,d) 6=
ϕA(inc)(r1, r2,d).

Next, the imitate properties does not hold, because ϕid(r1, r2,d) always
differs from ϕA(id)(r1, r2,d) for any inputs (r1, r2,d), because r1 and r2 are
switched by the virus.

So, the infection property should hold. Therefore for any input (r1, r2,d),
ϕA(id)(r1, r2,d) = 〈εA(r1), εA(r2),d〉. However, it suffices to take r2 6= εA(r1)
to see that 〈εA(r1), εA(r2),d〉 6= 〈r2, r1,d〉. This leads to a contradiction. We
conclude that A does not exist.

5 The Smith

We now turn to another reproduction method that we call “reproduction
through vector” where the vector corresponds to the propagation function.
Unlike blueprint duplication, it is the propagation function with the virus
blueprint which is copied. The infection can be passed from host to host
through a vector which is the propagation function. The consequence is that
if one runs an infected program, the virus will be automatically activated.

Constructions are more involved than in the previous section. The repro-
duction through vector methods is based on a double fixed point obtained
from Theorem 1 and Theorem 8.

5.1 An explicit recursion theorem

Theorem 8. Let f be a semi-computable function. There exists a computable
function Φ such that

ϕΦ(y)(x) = f(e, y, x) where e is a program for Φ

Proof. Let q be a program for f . By applying Theorem 1 to the computable
function S(q, z, y), we find an e such that for any y

ϕe(y) = S(q, e, y)

13

in
ria

-0
01

15
19

9,
 v

er
si

on
 1

 - 
20

 N
ov

 2
00

6



Setting Φ(y) = S(q, e, y), we have for any x and y

ϕΦ(y)(x) = ϕS(q,e,y)(x)

= ϕq(e, y, x)

= f(e, y, x)

Theorem above states that the program e computes a function Φ which
generates fixed points of f . Those fixed points are uniformly computed
from f ’s arguments. In fact, Theorem 8 strengthens Myhill’s recursion the-
orem [19], as well as extended (or strong) recursion theorems that are com-
monly presented in textbooks as one can read it in [24] or in a more abstract,
but in a fascinating way in [25].

Theorem 9 (Extended recursion [24]). For any semi-computable func-
tion h and any semi-computable functions g1, . . . , gn, there is a function Φ
such that for all x, y

ϕΦ(y)(x) = h(y, Φ(g1(y)), . . . , Φ(gn(y)), x)

Proof. Set f(z, y, x) = h(y, ϕz(g1(y)), . . . , ϕz(gn(y)), x) and apply Theorem 8.

5.2 Reproduction through vectors

We suggest a general construction method to perform reproduction through
vector, which is the analogous of Theorem 3 but based on double fixed point
methods.

Theorem 10. If f is a semi-computable function, then there is a propagation
function B and a virus v such that

ϕv(p, x) = f(e,v,p, x) where e is a program for B

Proof. By applying Theorem 8, we get a computable function B such that

ϕB(y,p)(x) = f(e, y,p, x) where e is a program for B

Next, we use Kleene’s recursion Theorem 1 on f(e, y,p, x) in order to
have a virus v which satisfies

ϕv(p, x) = f(e,v,p, x)

14

in
ria

-0
01

15
19

9,
 v

er
si

on
 1

 - 
20

 N
ov

 2
00

6



By combining both equations, we have

ϕv(p, x) = ϕB(v,p)(x)

We conclude that B is the propagation function of the virus v.

Theorem’s demonstration uses a double recursion property, which is based
on Kleene’s theorem 1 and on the above theorem 8. There are various double
fixed point recursion theorems for whom Smullyan in [23] was one of the
pioneer. As we have previously said about Theorem 8, the difference lies on
the fact that a code of the propagation function is an argument of f . That is,
we do not define a function which produces fixed points from f arguments,
but we build a program that computes such a function.

Theorem 10 is stronger than Theorem 3 in that it allows to replicate not
only a virus v but also to apply the propagation function B anywhere. To
illustrate this, we consider again companion like viruses, but this time we
define it by the following equation.

ϕB(v,p)(q) = ϕp(B(v,q))

The scenario behind the equation is the following. The virus v infects a
program p. The infected form is B(v,p). When we run the infected program
B(v,p), it runs p on the contaminated form of q which is B(v,q). Now, if
we execute B(v,q), then the virus v is run, which propagates the infection.

The construction is immediate by applying Theorem 10. For this, let
f(z, y,p,q) = ϕp(ϕz(y,q)). We get a virus v and a propagation function
which satisfy

ϕB(v,p)(q) = f(e,v,p,q)

= ϕp(ϕe(v,q))

= ϕv(p,q)

Theorem 10 characterizes a class of viruses that we call “the Smith”.
Similarly, Theorem 3 defines another class of viruses based on blueprint du-
plications. Therefore, we suggest to study the virus taxonomy from both the
reproduction methods and recursion theoretic characterization.

6 Polymorphic viruses

Until now, we have considered viruses which duplicate themselves without
modifying their code. Now, we consider viruses which mutate when they
duplicate. Such viruses are called polymorphic.
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6.1 On polymorphic generators

The previous sections have showed that a virus is essentially a fixed point of
a semi-computable function.

The set of solutions of an equation like ϕe(x) = f(e, x) is infinite but it
is not semi-computable, see Rogers [22]. In fact, it is Π2-complete. So we
can not enumerate all fixed points but we can generate an infinite number of
fixed points using a padding argument.

Definition 11. A virus generator Gen is a bijective computable function
such that for each i, Gen(i) is a virus wrt some propagation function.

The construction of a virus generator necessitates the use of a padding
function. The computable function Pad is a padding function if

1. Pad is an injective function.

2. For each program q and each y, ϕq ≈ ϕPad(q,y).

Lemma 12 ([22]). There is a computable padding function Pad.

Theorem 13. Let f be a semi-computable function. There is a virus gen-
erator Gen such that for any i, Gen(i) is a virus such that for all p and
x

ϕGen(i)(p, x) = f(r, i,p, x) where r is a program for Gen

There is a uniformly computable family (Bi) of computable functions such
that Bi is the propagation function of Gen(i).

Proof. The demonstration follows closely the line of the proof of Theorem 8,
but unlike the previous ones, fixed points are now padded.

Let q be a program for f . By applying Theorem 1 to the computable
function Pad(S(q, y, i), i), we find an r such that for any i

ϕr(i) = Pad(S(q, r, i), i)

Let Gen be the function computed by the program r, that is Gen(i) =
Pad(S(q, r, i), i). For any i,p and x

ϕGen(i)(p, x) = ϕPad(S(q,r,i),i)(p, x)

= ϕS(q,r,i)(p, x)

= ϕq(r, i,p, x)

= f(r, i,p, x)
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We see that Gen(i) is a virus wrt the iteration function S. The function Gen
is bijective because Pad is bijective.

Finally, we associate to Gen(i) the propagation function Bi that we define
by Bi(Gen(i),p) = S(q, r, i,p).

Remark 14. Each virus Gen(i) does not behave in the same way, because
there is no reason that ϕGen(i) = ϕGen(i+1) holds. Note that if f(z, y, x) is a
computable and injective as a function of y, that is if f(z, y, x) 6= f(z, y′, x)
when y 6= y′, so the function Φ of Theorem 8 is injective. This suggests
another construction for polymorphic viruses.

From Theorem 13, we can build various kind viruses which perform repro-
ductions with mutations. To illustrate this, consider a virus which outputs
a new viral code each time it is run. We specify it as follows :

ϕGen(i)(p, x) = Gen(i + 1)

It is just obtained by applying Theorem 13 to f(z, i,p, x) = ϕz(i + 1)

6.2 Zuo and Zhou’s viral functions

Polymorphic viruses were foreseen by Cohen and Adleman. As far as we
know, Zuo and Zhou’s are the first in [31] to propose a formal definition of
the virus mutation process. They discuss on viruses that evolve into at most
n forms, and then they consider polymorphism with an infinite number of
possible mutations.

Definition 15 (Zuo and Zhou viruses). Assume that T and I are two
disjoint computable sets. A total computable function ZZ is a ZZ-viral
polymorphic function if for all i and p,

ϕZZ(i,p)(x) =


D(x) x ∈ T Injure

ZZ(i + 1, ϕp(x)) x ∈ I Infect

ϕp(x) Imitate

(9)

This definition is closed to the one of Adleman, where T corresponds to
a set of arguments for which the virus injures and I is a set of arguments for
which the virus infects. The last case corresponds to the imitation behavior
of a virus. So, the difference stands on the argument i which is used to
mutate the virus in the infect case. Hence, a given program p has an infinite
set of infected forms which are {ZZ(i,p) | i ∈ D}. (Technically, i is an
encoding of natural numbers into D.)
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Theorem 16. Assume that ZZ is a ZZ-viral polymorphic function. Then
there is a virus generator Gen such that for any i,p, ϕZZ(p,i) ≈ ϕBi(Gen(i),p).

Proof. Suppose that ZZ is computable. Define the semi-computable func-
tion f following the ZZ definition template as follows

f(y, i,p, x) =


D(x) x ∈ T Injure

ZZ(i + 1, ϕp(x)) x ∈ I Infect

ϕp(x) Imitate

(10)

By applying Theorem 13, we have a virus generator Gen satisfying ϕGen(i)(p, x) =
f(r, i,p, x), where r is a program of Gen. It is not difficult to check that
ϕGen(i)(p, x) = ϕZZ(p,i)(x) for each x. The virus definition states that ϕGen(i)(p, x) =
ϕBi(Gen(i),p)(x). So, the proof is complete since ϕGen(i)(p, x) = ϕZZ(p,i)(x)

Remark 17. In the above proof, we can substitute ZZ by any other function,
which would lead to more complex polymorphic viruses.

7 Detection

7.1 Viral Code Detection

By detection, we mean that we have a procedure to recognize viruses or
variants of them. Our techniques are not based on some file scanning, but
rather try to detect viruses wrt their definition, or their behavior. We propose
first a direct detection of programs that are viruses.

Definition 18 (Set of viral codes). Given a propagation function B, let
its associated set of viral codes

VB = {v | ∀p, x : ϕB(v,p)(x) = ϕv(p, x)} .

Unfortunately the following holds.

Theorem 19. There are some functions B such that VB is Π2-complete, that
is not computable neither semi-computable.

Proof. Let t a computable function. It is well known that the set T =
{i | ϕi = t} is Π2-complete. Now, let q be a program computing t and
B(y,p) = S(q,p). We show that VB = T . First observe that a virus v wrt
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B verifies ϕv(p, x) = t(p, x). Since the pairing function is surjective, v is a
code for t. So, VB ⊆ T . Conversely, take i ∈ T , one may observe that

ϕi(p, x) = t(p, x)

= ϕq(p, x)

= ϕS(q,p)(x)

= ϕB(i,p)(x)

So, T ⊆ VB. We end by noting that VB is in any case Π2 wrt its definition.

So, we have a similar result to that of Adleman in [1]. Nevertheless, next
two Theorems show that the sets VB may be computable. It means that the
detection is decidable in some cases. As far as we know, this is one of very
rare positive results for detection.

Notice also that, as sets of viruses may take various forms, it may be a
good way to characterize/distinguish the propagation functions. Given a set
V , what are the functions for which VB = V . What happens if V is finite,
computable, Σ1, etc?

Theorem 20. There is some function B such that it is decidable whether p
is a virus or not, in other words, VB is computable.

Proof. Let the semi-computable function f(y,p, x) = ϕy(p, x), let q be a
program computing f and the propagation function B(v,p) = S(q,v,p).
We have for all v ∈ D

ϕv(p, x) = f(v,p, x) by definition of f

= ϕq(v,p, x) by definition of q

= ϕS(q,v,p)(x) by Iteration Theorem

ϕv(p, x) = ϕB(v,p)(x) by definition of B .

Thus VB = D which is computable.

It is worth to mention that the S-m-n function plays a key role in the
definition of the propagation function. Thus, it could be promising to in-
vestigate restriction of partial evaluation. This could lead to an execution
environment where any virus would be detectable.

Theorem 21. For all computable set C which contains all programs of the
empty domain function, there is a propagation function B such that VB = C.
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Proof. Let comp be the (computable) composition of programs, that is
∀p,q, x : ϕcomp(p,q)(x) = ϕp(ϕq(x)). Let f be the computable function
f(x) = x + 1 and e be a program computing f . Now, define

B(y,p) =

{
S(y,p) if y ∈ C

comp(e, S(y,p)) otherwise
(11)

• Suppose v ∈ C, we have for all p and x

ϕB(v,p)(x) = ϕS(v,p)(x) since v ∈ C (12)

ϕB(v,p)(x) = ϕv(p, x) by Iteration Theorem (13)

Then v is a virus wrt B.

• Suppose v 6∈ C, then ϕv has a not empty domain then there exists p
and x such that ϕv(p, x) is defined. We have

ϕB(v,p)(x) = ϕcomp(e,S(v,p))(x) since v ∈ C (14)

ϕB(v,p)(x) = ϕv(p, x) + 1 by Iteration Theorem (15)

Since ϕv(p, x) is defined, ϕv(p, x) 6= ϕv(p, x) + 1 = ϕB(v,p)(x) =
ϕv(p, x). Then v is not a virus wrt B.

We conclude VB = C.

7.2 Detection of Infected Programs

An other strategy for virus detection is the following. We call Hypothesis (I)
the assumption that the attacker make the user run only infected forms of the
programs (which will play the role of the virus), not the virus itself. In that
case, the problem is to detect infected forms rather than viruses themselves.

This notion of detection is very closed to that of Cohen [6]. Indeed, a
viral set V of viral codes of Cohen for a Turing Machine M can be seen as
our sets of infected forms, the virus v playing the role of the machine.

Definition 22 (Infected Set). Given a virus v wrt B, let its infected set

IB,v = {B(v,p) | p ∈ D} . (16)

Theorem 23. There is a virus v wrt B such that IB,v is Σ1-complete, that
is recursively enumerable but not decidable.
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Proof. Let K = {p | ϕp(p) ↓}. It is well known to be a Σ1-complete set. As
a consequence, there is a computable function f whose image is K, that is
K = {f(x) | x ∈ D}.

Let us define the function B(y,p) = f(p). First, notice that for all y, we
have {B(y, x) | x ∈ D} = K. So, it remains to see that B is a propagation
function for some virus. Take the program v computing ϕv(p, x) = ϕf(p)(x).
We have

ϕv(p, x) = ϕf(p)(x) by definition of v

ϕv(p, x) = ϕB(v,p)(x) by definition of B .

It follows v is a virus for B and its infected set is IB,v = {B(v, x) | x ∈ D} =
K which is Σ1-complete. We end by noting that IB,v is in any case Σ1 wrt
its definition.

This theorem, analogous to the one of Adleman [1], states the existence
of a virus such that the set of its infected forms cannot be decided.

Let us try to enlarge even more the notion of detection. One may try
not to detect infected forms themselves but programs with an equivalent
behavior.

Definition 24 (Germ). Given a virus v wrt to some function B, let its
germ

GB,v = {q | ∃p : ϕq ≈ ϕB(v,p)} . (17)

As GB,v is a non-trivial extensional set, Rice’s Theorem [22] shows that it
can not be decided. However, there is a clever detection strategy associated
with this set.

A virus v is said to be isolable within its germ if there is a decidable set
R such that IB,v ⊂ R ⊂ GB,v.

The existence of such a set R provides a defense strategy. Recall Hypoth-
esis (I), then the attacker makes the user run only infected forms B(v,p) of
a virus, not programs with an equivalent behavior.

In that case, before he fires a program q, the user sees if it is in R. If
q ∈ R, the user knows that q behaves like a virus (and should stop at that
point). If q 6∈ R, q could behave like a virus, but Hypothesis (I) contradicts
that fact. So, q is a sane program.

Unfortunately, the following theorem holds.

Theorem 25. There is a virus v which is not isolable within its germ.
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Proof. Consider the virus v wrt the propagation function B of the proof of
Theorem 23.

Suppose that v is isolable within its germ, then there exists a computable
set R such that IB,v ⊂ R ⊂ GB,v. Let Rc be the computable complementary
set of R. Let r be a program such that ϕr has domain Rc. It follows

∀x : ϕr(x) ↓⇔ x ∈ Rc . (18)

Notice that K ⊂ R, thus K and Rc are disjoint.

• Suppose that ϕr(r) ↓, so r ∈ K. By definition of r, ϕr(r) ↓⇔ r ∈ Rc.
As a result r ∈ K and r ∈ Rc, which is absurd.

• Suppose that ϕr(r) ↑, so r 6∈ Rc then r ∈ R. But R ⊂ GB,v, thus
r ∈ GB,v. By definition of GB,v there exists p such that

ϕB(v,p) ≈ ϕr . (19)

As B(v,p) ∈ K = IB,v, we have ϕB(v,p)(B(v,p)) ↓.
Now, (19) provides ϕB(v,p)(B(v,p)) = ϕr(B(v,p)) ↓ and (18) gives
B(v,p) ∈ Rc. This is absurd because K and Rc are disjoint.

8 Conclusion

Our every day life shows that we need protection against computer viruses.
This becomes more and more crucial as our society depends more and more on
computers. Even if practical approaches consider very clever techniques, they
do not bring answers for a strong reliable defense. Second, as technical details
become more and more complex, it is less and less clear that a protection can
be transposed from one system onto another. For these reasons, we think a
theory of computer viruses should be developed.

In this paper, we propose a virus representation, which captures the for-
mer definitions in a natural way and offers several other advantages, like a
construction of polymorphic viruses. Here, a virus is a program which is
the solution of a fixed point equation with a function which describes the
propagation and the mutation of the virus in the system. In this definition,
the implication of Kleene’s recursion Theorem is well clarified. Moreover, we
exhibit the fact that the iteration Theorem explains, at least partially, the
propagation of the infection.

There are several questions which naturally arise from this work:
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1. A key property is the virus duplication mechanism, which is based
on recursion Theorem. But, infection models are defined in the vast
framework of acceptable enumeration of semi-computable functions.
We think that it is interesting to reduce this framework and to concen-
trate only on both the iteration theorem and recursion theorem.

2. To survive and to protect, a virus must hide itself and have tools against
anti-virus. In the general case, virus detection is undecidable. In the
paper [4], we have introduced a notion of viral entropy, see also [12].
The idea is that the entropy of a virus should stay as small as possible
with respect to the host system in order to stay “invisible”. And,
inversely, it should be possible to design a system which protects itself
from computer infections by controlling its own entropy.

3. Constraints on resources like time or memory used are not yet taken
into account in the existing virus models. One of our objectives is to
take resources into consideration. We can expect to obtain results on
the complexity of virus detection for example.
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