
A Cryptographic F'de System for Unix

Mat t Blaze

AT&T Bell Laboratories
101 Crawfords Corner Road, Room 4(3-634

Holmdel , NJ 07733

mab@research, att. com

Abstract

Although cryptographic techniques are playing an increas-
ingly important role in moder~ computing system security, user-
level tools for encrypting file data are cumbersome and suffer
from a number o f inherent vulnerabilities. The Cryptographic
File System (CFS) pushes encryption services into the file system
itself. CFS supports secure storage at the system level through a
standard Unix file system interface to encrypted files. Users
associate a cryptographic key with the directories they wish to
protect. Files in these directories (as well as their pathname
components) are transparently encrypted and decrypted with the
specified key without further user intervention; cleartext is never
stored on a disk or sent to a remote file server. CFS can use any
available file system for its underlying storage without modifica-
tion, including remote file servers such as NFS. System manage-
ment functions, such as file backup, work in a normal manner
and without knowledge of the key.

This paper describes the design and implementation of
CFS under Unix. Encryption techniques for file system-level
encryption are described, and general issues of cryptographic
system interfaces to support routine secure computing are dis-
cussed.

1. Introduction

Data security in modem distributed computing systems is a
difficult problem. Network connections and remote file system
services, while convenient, often make it possible for an intruder
to gain access to sensitive data by compromising only a single
component of a large system. Because of the difficulty of reli-
ably protecting information, sensitive files are often not stored on
networked computers, making access to them by authorized users
inconvenient and putting them out of the reach of useful system
services such as backup. (Of course, off line backups axe them-
selves a security risk, since they make it difficult to destroy all
copies of confidential data when they are no longer needed.) In
effect, the (often well founded) fear that computer data are not
terribly private has led to a situation where conventional wisdom
warns us not to entrust our most important information to our
most modem computers.

Cryptographic techniques offer a promising approach for
protecting files against unauthorized access. When properly
implemented and appropriately applied, modem cipher

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantllge, the ACM copyright notice end the
title of the publication end itll date appear, and notice is given
that copying ill by permisllion of the AllsoeietJon for Computing
Machinery. To copy otherwise, or to republish, requirlls a fee
end/or specific permission.

1st Conf.- Computer & Comm. Security '93-11/93 -VA,USA
© 1993 ACM 0-89791-629-8/93/0011...$1.50

algorithms (such as the Data Encryption Standard (DES)[5] and
the more recent IDEA cipher[4]) are widely believed sufficiently
strong to render encrypted data unavailable to virtually any
adversary who cannot supply the correct key. However, routine
use of these algorithms to protect file data is uncommon in cur-
rent systems. This is partly because file encryption tools, to the
extent they are available at all, axe often poorly integrated, diffi-
cult to use, and vulnerable to non-cryptoanalytic system level
attacks. We believe that file encryption is better handled by the
file system itself. This paper investigates the implications of
cryptographic protection as a basic feature of the file system
interface.

1.1. User.Level Cryptography Is Cumbersome

The simplest approach for file encryption is through a tool,
such as the Unix crypt program, that enciphers (or deciphers) a
file or data stream with a specified key. Encryption and decryp-
tion are under the user's direct control. Depending on the partic-
ular software, the program may or may not automatically delete
the cleartext when encrypting, and such programs can usually
also be used as cryptographic ,filters" in a command pipeline.

Another approach is integrated encryption in application
software, where each program that is to manipulate sensitive cl~tu
has built-in cryptographic facilities. For example, a text editor
could ask for a key when a file is opened and automatically
encrypt and decrypt the file's data as they axe written and read.
All applications that are to operate on the same data must, of
course, include the same encryption engine. An encryption filter,
such as c r y p t , might also be provided to allow data to be
imported into and exported out of other software.

Unfortunately, neither approach is entirely satisfactory in
terms of security, generality, or convenience. The former
approach, while allowing great flexibility in its application,
invites mistakes; the user could inadvertently fail to encrypt a
file, leaving it in the clear, or could forget to delete the cleartext
version after encryption. The manual nature of the encryption
and the need to supply the key several times whenever a file is
used make encryption too cumbersome for all but the most sensi-
tive of files. More seriously, even when used properly, manual
encryption programs open a window of vulnerability while the
file is in clear form. It is almost impossible to avoid occasionally
storing cleartext on the disk and, in the case of remote file
servers, sending it over the network. Some applications simply
expect to be able to read and write ordinary files.

In the application-based approach, each program must have
built-in encryption functionality. Although encryption takes
place automatically, the user still must supply a key to each appli-
cation, typically when it is invoked or when a file is first opened.
Software without encryption capability cannot operate on secure

9

data without the use of a separate encryption program, making it
hard to avoid all the problems outlined in the previous paragraph.
Furthermore, rather than being confined to a single program,
encryption is spread among multiple applications, each of which
must be trusted to interoperate securely and correctly with the
others. A single poorly designed component can introduce a sig-
nificant and difficuR to detect window of vulnerability. (For
example, some versions of the Unix editor v± can encrypt files
but still leave temporary data in the clear.) Changing the encryp-
tion algorithm entails modification of every program that uses it,
creating many opportunities for implementation errors. Finally,
multiple copies of user-level cryptographic code can introduce a
significant performance penalty

1.2. System-Level Cryptography Is Often Insufficient
One way to avoid many of the pitfalls of user-level encryp-

tion is to make cryptographic services a basic part of the underly-
ing system. In designing such a system, it is important to identify
exactly what is to be trusted with cleartext and what requires
cryptographic protection. In other words, we must understand
what components of the system are vulnerable to compromise.

In general, the user has little choice but to trust s o m e com-
ponents of the system, since the whole point of storing data on a
computer is to perform various operations on the cleartext. Ide-
ally, however, required trust should be limited to those parts of a
system that are under the user's direct control.

For files, we are usually interested in protecting the physi-
cal media on which sensitive data are stored. This includes on-
line disks as well as backup copies (which may persist long after
the on-line versions have been deleted). In distributed file server-
based systems, it is often also desirable to protect the network
connection between client and server since these links may be
very easy for an eavesdropper to monitor. Finally, it is possible
that the user may not trust the file server itself, especially when it
is physically or administratively remote.

Physical media can be protected by specialized hardware.
Disk controllers are commercially available with embedded
encryption hardware that can be used to encipher entire disks or
individual file blocks with a specified key. Once the key is pro-
vided to the controller hardware, encryption is completely trans-
parent. This approach has a number of disadvantages for general
use, however. The granularity of encryption keys must be com-
patible with the hardware; often, the entire disk must be thought
of as a single protected entity. It is difficult to share resources
among users who are not willing to trust one another with the
same key. Obviously, this approach is only applicable when the
required hardware is available. Backups remain a difficult prob-
lem. If the backups are taken of the raw, undecrypted disk, it
may be difficult to restore files reliably should the disk controller
hardware become unavailable, even when the keys are known. If
the backup is taken of the cleartext data the backup itself will
require separate cryptographic protection. Finally, this approach
does not protect data going into and out of the disk controller
itself, and therefore may not be sufficient for protecting data in
remote file servers.

Network connections between client machines and file
servers can be protected with end-to-end encryption and crypto-
graphic authentication. Again, specialized hardware may be
employed for this purpose, depending on the particular network
involved, or it may be implemented in software. Not all net-
works support encryption, however, and among those that do, not
all system vendors supply working implementations of enoryp-
tion as a standard product.

Even when the various problems with media and network
level encryption are ignored, the combination of the two

10

approaches may not be adequate for the protection of data in
modem distributed systems. In particular, even though cleartext
may never be stored on a disk or sent "over the wire", sensitive
data can be leaked if the file server itself is compromised. The
file server must maintain, at some point, the keys used to enci-
pher both the disk and the network. Even if the server can be
completely trusted, direct media encryption on top of network
encryption has a number of shortcomings from the point of view
of efficient distributed system design. Observe that each file
access requires two cryptographic operations by the server, once
for the network and once for the disk, even though the server
itself never makes use of cleartext data. Such a design violates
the principle that work should be shifted from the (shared, heav-
ily loaded) file server to the (unshared, lightly loaded) client
machine whenever possible[l]. Even if the cryptographic opera-
tions are themselves implemented in hardware, additional server
software complexity is still required to support them.

Several commercial and research systems incorporate cryp-
tographic techniques for protecting file data against various kinds
of attack. In the personal computer (e.g., MS-DOS, Macintosh)
world, there are file encryption systems that can create an
"encrypted area" on a disk. These packages generally require the
preallocation of storage space to a given key, and often support
only a particular kind of storage media (such as a local hard
disk). Encrypted files typically appear outside the system as a
single large file and therefore cannot be readily managed by con-
ventional administration tools or moved to arbitrary storage
devices. In larger-scale systems, cryptographic techniques are
even less widely used, although a few systems do use encryption
for protecting certain vulnerable interfaces. The Truffles sys-
tem[7], for example, uses a combination of cryptographic authen-
tication and secret-key encryption to protect network access to
widely distributed shared files. The files themselves, however,
are stored at the server in clear form.

In the following sections, we describe the alternative
approach taken by the Cryptographic File System (CFS). CFS
pushes file encryption entirely into the client file system interface,
and therefore does not suffer from many of the difficulties inher-
ent in nser-level and disk and network based system-level encryp-
tion.

2. CFS: Cryptographic Services in the File System
CFS investigates the question of where in a system respon-

sibility for file encryption properly belongs. As discussed in the
previous section, if encryption is performed at too low a level, we
introduce vulnerability by requiring trust in components that may
be far removed from the user's control. On the other hand, if
encryption is too close to the user, the high degree of human
interaction required invites errors as well as the perception that
cryptographic protection is not worth the trouble for practical,
day-to-day use. CFS is designed on the principle that the trusted
components of a system should encrypt immediately before send-
ing data to untmsted components.

2.1. M i g n Goals

CFS occupies something of a middle ground between low-
level and user-level cryptography. It aims to protect exactly those
aspects of file storage that are vulnerable to attack in a way that is
convenient enough to use routinely. In particular, we are guided
by the following specific goals:

• Rational key management. Cryptographic systems restrict
access to sensitive information through knowledge of the
keys used to encrypt the data. Clearly, to be of any use at
all, a system must have some way of obtaining the key
from the user. But this need not be intrusive; encryption
keys should not have to be supplied more than once per

session. Once a key has been entered and authenticated,
the user should not be asked to supply it again on subse-
quent operations that can be reliably associated with it
(e.g., originating from the same keyboard). Of course,
there should also be some way to manually destroy or
remove from the system a supplied key when it is not in
active use.

Transparent access semantics. Encrypted files should
behave no differently from other files, except in that they
are useless without the key. Encrypted files should support
the same access methods available on the underlying stor-
age system. All system calls should work normally, and it
should be possible to compile and execute in a completely
encrypted environment.

Transparent performance. Although cryptographic algo-
rithms are often somewhat computationally intensive, the
performance penalty associated with encrypted files should
not be so high that it discourages their use. In particular,
interactive response time should not be noticeably
degraded.

Protection of file contents. Clearly, the data in files should
be protected, as should structural data related to a file's
contents. For example, it should not be possible to deter-
mine that a particular sequence of bytes occurs several
times within a file, or how two encrypted files differ.

Protection of sensitive meta-data. Considerable informa-
tion can often be derived from a file system's structural
data; these should be protected to the extent possible. In
particular, file names should not be discernible without the
key.

Protection of network connections. Distributed file sys-
tems make the network an attractive target for obtaining
sensitive file data; no information that is encrypted in the
file system itself should be discernible by observation of
network traffic.

Natural key granularity. The grouping of what is protected
under a particular key should mirror the structural con-
streets presented to the user by the underlying system. It
should be easy to protect related files under the same key,
and it should be easy to create new keys for other files.
The Unix directory structure is a flexible, natural way to
group files.

Compatibility with underlying system services. Encrypted
files and directories should be stored and managed in the
same manner as other files. In particular, administrators
should be able to backup and restore individual encrypted
files without the use of special tools and without knowing
the key. In general, untrusted parts of the system should
not require modification.

Portability. The encryption system should exploit existing
interfaces wherever possible and should not rely on
unusual or special-purpose system features. Furthermore,
encrypted files should be portable between implementa-
tions; files should be usable wherever the key is supplied.

Scale. The encryption engine should not place an unusual
load on any shared component of the system. File servers
in particular should not be required to perform any special
additional processing for clients who require cryptographic
protection.

Concurrent access. It should be possible for several users
(or processes) to have access to the same encrypted files
simultaneously. Sharing semantics should be similar to
those of the underlying storage system.

11

Limited trust. In general, the user should be required to
trust only those components under his or her direct control
and whose integrity can be independently verified. It
should not, for example, be necessarily to trust the file
servers from which storage services are obtained. This is
especially important in large-scale environments where
administrative control is spread among several entities.

Compatibility with future technology. Several emerging
technologies have potential applicability for protecting
data. In particular, keys could be contained in or managed
by "smart cards" that would remain in the physical posses-
sion of authorized users. An encryption system should
support, but not require, novel hardware of this sort.

2.2. CFS Functionality and User Interface

An important goal of CFS is to present the user with a
secure file service that works in a seamless manner, without any
notion that encrypted files are somehow "special", and without
the need to type in the same key several times in a single session.
Most interaction with CFS is through standard file system calls,
with no prominent distinction between files that happen to be
under CFS and those that are not.

CFS provides a transparent Unix file system interface to
directory hierarchies that are automatically encrypted with user
supplied keys. Users issue a simple command to "attach" a cryp-
tographic key to a directory. Attached directories are then avail-
able to the user with all the usual system calls and tools, but the
files are automatically encrypted as they are written and
decrypted as they are read. No modifications of the file systems
on which the encrypted files axe stored are required. File system
services such as backup, restore, usaage accounting, and archival
work normally on encrypted files and directories without the key.
CFS ensures that cleartext file contents and name data are never
stored on a disk or transmitted over a network.

CFS presents a '%irtual" file system on the client's
machine, typically mounted o n / c r y p t , through which users
access their encrypted files. The attach command creates entries
in CFS (which appear i n / c r y p t) that associate cryptographic
keys with directories elsewhere in the system name space. Files
are stored in encrypted form and with encrypted path names in
the associated standard directories, although they appear to the
user who issued the attach command in clear form under
/ c r y p t . The underlying encrypted directories can reside on any
accessible file system, including remote file servers such as Sun
NFS[8] and AFS[I]. No space needs to be preallocated to CFS
directories. Users control CFS through a small suite of tools that
create, attach, detach, and otherwise administer encrypted direc-
tories.

Each directory is protected by set of cryptographic keys.
These keys can be supplied by user entry via the keyboard or, if
hardware is available, through removable "smart cards" con-
nected to the client computer. When entered from the keyboard,
keys take the form of arbitrary-langth "passphrases" which are
used to generate the set of internal cryptographic keys used by
CFS's encryption routines. Passphrases must be of sufficient
length to allow the creation of several independent keys; the cur-
rent implementation requires at least 16 characters. Phrases may
include any printable ASCII characters, and ideally consist of
easily remembered nonsense sentences with unusual punctuation,
capitalization and spelling (e.g., "if you have nothing 2
hide you Have nothing too fear!"). In the smart
card-based system, the keys are copied directly from the card
interface to the client computer after user entry of a card access
password that is checked on the card itself. Section 3 describes
the algorithms used to encrypt file contents and file names with
the keys.

The cmkdir command is used to create encrypted directo-
ries and assign their keys. Its operation is similar to that of the
Unix m k d i r command with the addition that it asks for a key. In
the examples that follow, we show dialogs for the '~assphrase"
version; the smart card version is similar but with prompts to the
user to insert a card and enter its password. The following dialog
creates an encrypted directory c a l l e d / u s r / m a b / s e c r e t s :

$ emkdir/usr/nmb/secrets
Key : (user enters passphrase, which does not echo)
Again : (same phrase entered again to prevent errors)
$

To use an encrypted directory, its key must be supplied to
CFS with the c a t t a c h command, c a t t a c h takes three
parameters: an encryption key (which is prompted for), the name
of a directory previously created with c m k d i r , and a name that
will be used to access the directory under the CFS mount point
For example, to attach the directory created above to the name
/crypt/matt :

$ cattaeh/usr/maldsecrets matt
Key : (same key used in the cmlalir command)
$

If the key is supplied correctly, the user "sees"
/ c r y p t / m a t t as a normal directory; all standard operations
(creating, reading, writing, compiling, executing, cd , m k d i r ,
etc.) work as expected. The actual files are stored under
/ u s r / m a b / s e c r e t s , which would not ordinarily be used
directly. Consider the following dialog, which creates a single
encrypted file:

$ Is -I/crypt
total 1

drwx 2 mab 512 Apr 1 15:56 matt

$ echo "murder" >/erypthnat~crimes
$ is -i]crypOmafl
total I

-rw-rw-r-- 1 mab 7 Apr 1 15:57 crimes

$ eat/crypt/marl/crimes
murder
$ is -i/usr/nmb/secrets
total 1

-rw-rw-r-- 1 mab 15 Apr 1 15:57 8b06e85687091124

$ cat -v/usr/nmb/secrets~b06¢85b87091124
M-Z, k ̂] ~B~VM-VM - 6A~uM-LM- M-DM -^ [

S

When the user is finished with an encrypted directory, its

entry under/crypt can be deleted with the cdetach com-

mand. Of course, the underlying encrypted directory remains and

may be attached again at some future time.

$ cdetach matt
$ b -I/crypt
total 0

$ is -!/~sr/nmWsecrets
total 1

-rw-rw-r-- 1 mab 15 Apr 1 15:57 8b06e85b87091124
$

File names are encrypted and encoded in an ASCII repre-
sentation of their binary encrypted value padded out to the cipher
block size of eight bytes. Note that this reduces by approxi-
mately half the maximum path component and file name size,
since names stored on the disk are twice as long as their clear
counterparts. Encrypted files may themselves be expanded to
accommodate cipher block boundaries, and therefore can occupy
up to one eight byte encryption block of extra storage.

12

Otherwise, encrypted files place no special requirements on the
underlying file system.

Encrypted directories can be backed up along with the rest
of the file system. The cname program translates back and forth
between cleartext names and their encrypted counterparts for a
particular key, allowing the appropriate file name to be located
from backups if needed. If the system on which CFS is running
should become unavailable, encrypted files can be decrypted
individually, given a key, using the c c a t program. Neither
c n a m e nor c c a t require that the rest of CFS be running or be
installed, and both run without modification under most Unix
platforms. This helps ensure that encrypted file contents will
always be recoverable, even if no machine is available on which
to run the full CFS system.

2.3. Security and Trust Model

Most security mechanisms in computer systems are aimed
at authenticating the users and cfients of services and resources.
Servers typically mistrust those who request services from them,
and the protocols for obtaining access typically reflect the secu-
rity needs of the server. In the case of a file system, the converse
relationship is true as well; the user must be sure that the file sys-
tem will not reveal private data without authorization. File
encryption can be viewed as a mechanism for enforcing mistrust
of servers by their clients.

CFS protects file contents and file names by guaranteeing
that they are never sent in clear form to the file system. When
run on a client machine in a distributed file system, this protec-
tion extends to file system traffic sent over the network. In effect,
it provides end-to-end encryption between the client and the
server without any actual encryption required at the server side.
The server need only be trusted to actually store (and eventually
return) the bits that were originally sent to it. Of course, the user
must still trust the client system on which CFS is running, since
that system manages the keys and cleartext for the currently
attached encrypted directories.

Some data are not protected, however. File sizes, access
times, and the structure of the directory hierarchy are all kept in
the clear. (Symbolic link pointers are, however, encrypted.) This
makes CFS vulnerable to traffic analysis from both real-time
observation and snapshots of the underlying files; whether this is
acceptable must be evaluated for each application.

It is important to emphasize that CFS protects data only in
the context of the file system. It is not, in itself, a complete, gen-
eral purpose cryptographic security system. Once bits have been
returned to a user program, they are beyond the reach of CFS's
protection. This means that even with CFS, sensitive data might
be written to a paging device when a program is swapped out or
revealed in a trace of a program's address space. Systems where
the paging device is on a remote file system are especially vulner-
able to this sort of attack. (It is theoretically possible to use CFS
as a paging file system, although the current implementation does
not readily support this in practice.) Note also that CFS does not
protect the links between users and the client machines on which
CFS nms; users connected via networked terminals remain vul-
nerable if these links are not otherwise secured.

Access to attached directories is controlled by restricting
the virtual directories created u n d e r / c r y p t USing the standard
Unix file protection mechanism. Only the user who issued the
c a t t a c h command is permitted to see or use the cleartext files.
This is based on the uid of the user; an attacker who can obtain
access to a client machine and compromise a user account can
use any of that user's currently attached directories. If this is a
concern, the attached name can be marked obscure, which pre-
vents it from appearing in a listing o f / c r y p t . When an attach

is made obscure, the attacker must guess its current name, which
can be randomly chosen by the real user. Of course, attackers
who can become the "superuser" on the client machine can thwart
any protection scheme, including this; such an intruder has access
to the entire address space of the kernel and can read (or modify)
any data anywhere in the system.

The security of the system is largely dependent on the
secrecy of the encryption keys and the inability of an attacker to
guess them. Although an exhaustive search of the key space is
probably computationally infeasible to all but the most deter-
mined and well funded adversary, poorly chosen keys can make
the attacker's job much easier. This risk is especially great when
keys are chosen directly by the user. To reduce the risk of dictio-
nary-based attacks, and to provide enough entropy to generate
several independent subkeys, passphrase-based keys must be
fairly lengthy. The cmkdir program can be easily modified to
enforce passphrase selection rules, such as minimum length and
alphabetical variety, that promote the use of good keys.
Passphrase-based keys also carry a risk of compromise through
user carelessness or "social engineering"; these risks can be
reduced somewhat with user training.

The smart card bused system uses the cards themselves to
generate and store the actual encryption keys; here the user
passphrase is used only to control access to the card. Note that it
is theoretically possible to design a system in which the keys
never leave the smart card and all cryptographic operations are
performed on the card itself; CFS, however, transfers the keys
from the card to the client machine and performs file encryption
there, since the bandwidth to generally available card interfaces is
too low for file system use.

We discuss possible attacks against our prototype imple-
mentation in Section 4, below.

3. File Encryption
CFS uses DES to encrypt file data. DES has a number of

standard modes of operation[6], none of which is completely suit-
able for encrypting files on-line in a file system. In the simplest
DES mode, ECB (electronic code book), each 8 byte block of a
file is independently encrypted with the given key. Encryptlon
and decryption can be performed randomly on any block bound-
ary. Although this protects the data itself, it can reveal a great
deal about a file's structure - a given block of cleartext always
encrypts to the same ciphertext, and so repeated blocks can be
easily identified as such. Other modes of DES operation include
various chainin 8 ciphers that base the encryption of a block on
the data that preceded it. These defeat the kinds of strucfural
analysis possible with ECB mode, but make it difficult to ran-
domly read or write in constant time. For example, a write to the
middle of a file could require reading the data that preceded it and
reenciphering and rewriting the data that follow it. Unix file sys-
tem semantics, however, require approximately uniform access
time for random blocks of the file.

Compounding this difficulty are concerns that the 56 bit
key size of DES is vulnerable to exhaustive search of the key
space. DES keys can be made effectively longer by multiple
encryption with independently chosen 56 bit keys. Unfortu-
nately, DES is computationaUy rather expensive, especially when
implemented in software. It is likely that multiple on-line itera-
tions of the DES algorithm would be prohibitively slow for file
system applications.

To allow random access to files but still discourage struc-
tural analysis and provide greater protection than a single itera-
tion ECB mode cipher, CFS encrypts file contents in two ways.
Recall that CFS keys are long "passphrases". When the phrase is
provided at attach time, it is "crunched" into two separate 56 bit

13

DES keys. The first key is used to pro-compute a long (half
megabyte) pseudo-random bit mask with DES's OFB (output
feed back) mode. This mask is stored for the fife of the attach.
When a file block is to be written, it is first exclusive-or'd (XOR)
with the part of the mask corresponding to its byte offset in the
file modulo the precomputed mask length. The result is then
encrypted with the second key using standard ECB mode. When
reading, the cipher is reversed in the obvious manner:, first
decrypt in ECB mode, then XOR with the positional mask.
Observe that this allows uniform random access time across the
entire size of the pre-computed mask (but not insertion or dele-
tion of text). File block boundaries are preserved as long as the
cipher block size is a multiple of the block size, as it is in most
systems. Applications that optimize their file I/O to fall on file
system block boundaries (including programs using the Unix
stdio library) therefore maintain their expected performance
characteristics without modification.

This combination of DES modes guarantees that ideatical
blocks will encrypt to different ciphertext depending upon their
positions in a file. It does admit some kinds of structural analysis
across files, however. It is possible to determine which blocks
are identical (and in the same place) in two files encrypted under
the same key (e.g., in the same directory hierarchy).

The strength of the ECB+OFB scheme is not well analyzed
in the literature (it may be new - there appear to be no previous
references to this technique), and such an analysis is beyond the
scope of this paper. However, at a minimum, it is clear that the
protection against attack is at least as strong as a single DES pass
in ECB mode and may be as strong as two passes with DES
stream mode ciphers. It is likely that the scheme is weakened, in
that the attacker might be able to search for the two DES subkeys
independently, if there are several known plaintext files encrypted
under the same keys.

To thwart analysis of identical blocks in the same positions
of different files, each file encrypted under the same key can be
perturbed with a unique "initial vector" (IV). Standard block-
chaining eucryption modes (such as CBC) prepend the IV to the
data stream (e.g. the be#nning of the file) and XOR successive
blocks with the ciphertext of the previous block, s ~ g with the
IV. As long as each file has a different IV, identical blocks will
encrypt differently. Unfortunately, the chaining modes do not
permit random update within a file, so an encrypting file system
cannot use them directly. Instead, CFS simply XORs each cipher
block with the same IV throughout the file prior to the final ECB
mode encryption or after the ECB decryption, just as with the
OFB mask.

File IVs are generated from the inode number of the under-
lying file at creation time, which generally remains unique for a
file's lifetime. Since the IV is required for decryption, it must be
stored along with the file. Inode numbers may not be preserved
after a file system backup/restore operation, so it is not sufficient
to rely on the inode number remaining constant over time. The
IV could be stored at the beginning of each file, but that would
shift file contents away from block boundaries or, if padded out
to an entire block, waste space. The natural place to store the IV
would be in the inode itself, along with the file's other attributes.
However, because CFS sits above the file system used for actual
storage and uses system calls for all its I/O, it has no direct access
to inode fields and cannot therefore add new file attributes. To
store the IV, CFS must co-opt an existing inode field.

Since all of the inode fields are used for some purpose and
can be changed outside of CFS's control, using an existing field is
a rather treacherous proposition. CFS therefore offers two modes
of encryption that are selected at the time an encrypted directory
is created. In the standard mode, no IV is used and files are
therefore subject to analysis of identical blocks. In the second,

'~igh security" mode, the IV is stored in the group id (g id) field
of each file's inede. In this mode, CFS reports the group owner-
ship of the root directory of the encrypted hierarchy as the group
for each file within it; it is not possible to have different files with
different group ownership in the same directory. Note that a file's
group could be changed outside CFS, so this mode does carry a
small risk of unrecoverable data if both the inode number and
group of a file change. Standard backup and restore procedures,
however, do ordinarily preserve the group.

Encryption of pathname components uses a similar
scheme, with the addition that the high order bits of the cleartext
name (which are normally zero) are set to a simple checksum
computed over the entire name string. This fmstrates structural
analysis of long names that differ only in the last few characters.
The same method is used to encrypt symbolic link pointers.

4. Prototype Implementation

Of considerable practical significance is whether the per-
formance penalty of on-line file system encryption is too great for
routine use. The prototype CFS implementation is intended to
help answer this question as well as provide some experience
with practical applications of secure file storage.

4.1. Architecture

The CFS prototype is implemented entirely at user level,
communicating with the Unix kernel via the NFS interface. Each
client machine runs a special NFS server, c f s d (CFS Daemon),
on its localhost interface, that interprets CFS file system requests.
At boot time, the system invokes c f s d and issues an NFS
moun t of its locaihost interface on the CFS directory
(/ c r y p t) to start CFS. (To allow the client to also work as a
regular NFS server, CFS runs on a different port number from
standard NFS.)

The NFS protocol is designed for remote file servers, and
so assumes that the file system is very loosely coupled to the
client (even though, in CFS's case, they are actually the same
machine). The client kernel communicates with the file system
through 17 remote procedure calls (RPCs) that implement vari-
ous file system-related primitives (read, write, etc.). The server is
stateless, in that it is not required to maintain any state data
between individual client cars.

NFS clients cache file blocks to enhance file system perfor-
mance (reducing the need to issue requests to the server); a sim-
ple protocol managed by the client maintains some degree of
cache consistency. All communication is initiated by the client,
and the server can simply process each RPC as it is received and
then wait for the next. Most of the complexity of an NFS imple-
mentation is in the generic client side of the interface, and it is
therefore often possible to implement new file system services
entirely by adding a simple NFS server.

cfsd is implemented as an RPC server for an extended
version of the NFS protocol. Additional RPCs attach, detach,
and otherwise control encrypted directories. Initially, the root of
the CFS file system appears as an empty directory. The c a t -
t a c h cotnmand sends an RPC to c f s d with arguments contain-
ing the full path name of a directory (mounted elsewhere), the
name of the "attach point", and the key. If the key is correct (as
verified by a special file in the directory encrypted with a hash of
the supplied key), c f s d computes the cryptographic mask
(described in the previous section) and creates an entry in its root
directory under the specified attach point name. The attach point
entry appears as a directory owned by the user who issued the
attach request, with a protection mode of 700 to prevent others
from seeing its contents. (Attachs marked as obscure, as
described in Section 2, do not appear in the directory, however).

1 4

File system operations in the attached directory are sent as regu-
lar NFS RPCs to c f s d via the standard NFS client interface.

For each encrypted file accessed through an attach point,
c f s d generates a unique file handle that is used by the client
NFS interface to refer to the file. For each attach point, the CFS
daemon maintains a table of handles and their corresponding
underlying encrypted names. When a read or write operation
occurs, the handle is used as an index into this table to find the
underlying file name. c f s d uses regular Unix system calls to
read and write the file contents, which are encrypted before writ-
ing and decrypted after reading, as appropriate. To avoid
repeated open and close calls, c f s d also maintains a small cache
of file descriptors for files on which there have been recent opera-
tions. Directory and symbolic link operations, such as readdir,
readlink, and lookup are similarly translated into appropriate sys-
tem calls and encrypted and decrypted as needed.

To prevent intruders from issuing RPC calls to CFS
directly (and thereby thwarting the protection mechanism), c f s d
only accepts RPCs that originate from a privileged port on the
local machine. Responses to the RPCs are also returned only to
the localhost port, and file handles include a cryptographic com-
ponent selected at attach time to prevent an attacker on a different
machine from spoofing one side of a transaction with the server.

It is instructive to compare the flow of data under CFS with
that taken under the standard, unencrypted file system interface.
Figure 1 shows the architecture of the interfaces between an
application program and the ordinary Sun 'Nmode-based" Unix
file system[2]. Each arrow between boxes represents data cross-
ing a kernel, hardware, or network boundary; the diagram shows
that data written from an application are first copied to the kernel
and then to the (local or remote) file system` Figure 2 shows the
architecture of the user-level CFS prototype. Data are copied
several extra times; from the application, to the kernel, to the
CFS daemon, back to the kernel, and finally to the underlying file
system. Since CFS uses user-level system calls to communicate
with the underlying file system, each file is cached twice, once by
CFS in clear form and once by the underlying system in
encrypted form. This effectively reduces the available file buffer
cache space by a factor of two.

4.2. Performance

c f s d is considerably simpler than a full file system. In
particular, it knows nothing about the actual storage of files on
disks, relying on the underlying file systems to take care of this.
This simplicity can come at the expense of performance.
Because it runs at user level, using system calls to store data, and
because it communicates with its cfient through an RPC interface,
CFS must perform several extraneous data copies for each client
request. Each copy carries with it considerable potential copying
and context switch overhead. The DES encryption code itself,
which is implemented in software[3], dominates the cost of each
file system request (although it is the fastest software DES imple-
mentation of which we are aware). CFS access could, based on
worst case analysis of its components, take several times as long
as the underlying storage.

We measured CFS under a variety of workloads. For com-
parison, we also ran each workload on the underlying cleartext
file system and again on the underlying system through a user-
level encryption filter tool that implements a multimode DES-
based cipher similar to that in CFS. All measurements were
taken on an unloaded Sun Spare IPX workstation running SunOS
4.1.2 with 32 MB of memory and a locally connected SCSI Sea-
gate model Elite 16000 disk drive. Each benchmark was also run
a second time on similar hardware but with the underlying files
on an NFS file system connected over a lightly-loaded network.
In the tables below, CFS-LOCAL and CFS-NFS indicate the

r - -1 i - "3

User-Level J Any
Application Program

$
L - -~J

System Calls
I - - -

I

I I Unix [Sys'CaJJJnterfeceJ
,

Kernel
!

',(local) I FS Client I

I
L J

File System Inteface
Cleartext
(local or remote)

.3

File I FS Svr" Interface J
System
(local or remote)

Figure 1 - Data Flow in Standard Vnode Pile System

CFS measurements for the local and NFS file systems, respec-
tively, CLEAR-LOCAL and CLEAR-NFS indicate measure-
ments of the tmderlying file systems, and USERTOOL-LOCAL
and USERTOOL-NFS indicate measurements of the user-level
encryption tool under the two file systems. All numbers repre-
sent the mean of three runs; variances between rims were low
enough to be virtually insignificant. All times are given in sec-
onds of elapsed real time used by each of the various bench-
marks.

The first benchmark simply copied in and read back a sin-
gle large (I.6MB) file. This measured the cost of both writing
and reading, including the effects of whatever caching was per-
formed by the file systems. Because CFS is mounted via the NFS
interface, it does not perform any write caching, and this limita-
tion was most dramatically reflected in the performance results
against the underlying local file system: CFS was roughly a factor
of 22 slower. The manual encryption tool, however, fared even
more poorly, since its output is uncached on both reading and
writing: it was slower than the underlying file system by a factor
of more than 200. With NFS as the underlying storage, CFS per-
formance was much more reasonable, less than a factor of four
slower than the underlying system. The manual tool slowed per-
formance by a factor of more than 11. These measurements are
summarized in Figure 3.

Changing the benchmark to magnify read performance
under the cache narrows the performance gap between CFS and
the underlying storage. Figure 4 gives the results of copying the
same file once but then reading it fifty times. Note the especially
poor performance of nser-level encryption under this workload,
since the encrypted results are never cached.

The cost of creation of small encrypted files is bound pri-
marily to the actual storage system and the system call and con-
text-switch overhead rather than the actual encryption. We

15

User-Level
Application

Any
Program

System Calls

Unix [S~. Ca,,,nterface J
Kernel
(local) [FS Client (NFS) J

File System Inteface
Cleartext
(internal - Iocalhost)

+ + * H * * = * H H . * H * * . O * * * O e * e , * H * * . . . , 0 , , H + *+++* * ° .+ .= ,OeH|

I-- - 1 ;

I NFS Svr. Interface J

CFS I
Daemon

Encryption/
Decryption Engine

. .~ . ..J.i

System Calls

Unix I Sys. Call Interface J
Kernel
(local) I FSClient J

1

File System Inteface
Encrypted
(local or remote)

File J FS Svr. Interface

System
(local or remote)

. - I

Figure 2 - Data Flow in CFS Prototype

measured the cost of creating an eight byte file one thousand
times. On a local system, both CFS and the user-level system
added about one third to total latency. Under NFS, CFS
increased latency by roughly a factor of two, while the user
encryption tool added only about 13%. Figure 5 gives the results
of these measurements.

These results suggest that encryptinn is expensive,
although the caching performed by CFS makes it less expensive

File I Elapsed Tune
System I~ (seconds)

I

CLEAR-LOCAL 1
USERTOOL-LOCAL 217
CFS-LOCAL 22
CLEAR-NFS 20
USERTOOL-NFS 234
CFS-NFS 74

Figure 3 - Large File Copy + One Read

File Elapsed Time
System (seconds) i

i C L E A R . L O C A L i 4
USERTOOL-I_£)CAL 5348
CFS-LOCAL 27
CLEAR-NFS 22

i USERTOOL-NFS 5371
i CFS-NFS 77
i

Figure 4 - Large File Copy + 50 Reads

File Elapsed Time
System (seconds)

CLEAR-LOCAL 141
USERTOOL-LOCAL 201
CFS-LOCAL 203
CLEAR-NFS 247
USERTOOL-NFS 276
CFS-NFS 496

Figure 5 - Small File Creation

than user-level encryption tools. CFS performance is much better
under practical workloads, however. Informal benchmarks (such
as compiling itself), with underlying files on both local and
remotely mounted file systems, suggest a fairly consistent factor
of approximately 1.3 using CFS compared with the underlying
file system. In day-to-day operation, where there is a mix of
CPU- and I/O- bound processing, the performance impact of CFS
is minimal. For example, Figure 6 gives the results of compila-
tion (make) of the CFS system itself (a mostly I/O-bound oper-
ation) under the various systems. Note that under both local and
remote storage CFS adds about one third to the total latency;
user-level encryption adds about two thirds. Furthermore, CFS is
operationally transparent, while user-level encryption requires
manual operation of the encryption software and is therefore
likely to introduce considerable user interface delay in practice.

5. Conclusions

CFS provides a simple mechanism to protect data written
to disks and sent to networked file servers. Although experience
with CFS and with user interaction is still limited to the research
environment, performance on modern workstations appears to be
within a range that allows its routine use, despite the obvious
shortcomings of a user-level NFS-server-based implementation.

The client file system interface appears to be the right place
to protect file data. Consider the alternatives. Encrypting at the
application layer (the traditional approach) is inconvenient.

16

File Elapsed Tmae
System (seconds)

CLEAR-LOCAL 63
USERTOOL-LOCAL 110
CFS-LOCAL 86
CLEAR-NFS i 75
USERTOOL-NFS 122
CFS-NFS 106

Figure 6 - Compilat ion

Application based encryption leaves windows of vulnerability
while files are in the clear or requires the exclusive use of special-
purpose "crypto-aware" applications on all encrypted files. At
the disk level, the granularity of eneryption may not match the
users' security requirements, especially if different files are to be
encrypted under different keys. Encrypting the network in dis-
tributed file systems, while useful in general against network-
based attack, does not protect the actual media and therefore still
requires trust in the server not to disclose file data.

6. Acknowledgments

The author would like to express his thanks to Don
Mitchell and Jack Lacy for their help in using their excellent
CryptoLib software. Steve Bellovin made a number of helpful
suggestions on lines of attack against CFS. Howard Katseff and
Tom Reingold entrusted CFS with real data and cheerfully suf-
fered through each new (and incompatible) release. Tom London
is owed a particular debt of gratitude for creating the supportive
environment in which this work was done. We also thank the
anonymous referees for their helpful comments.

7. References

[1] Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A.,
Satyanaryanan, M. & Sidebotham, R.N. "Scale and Per-
formanee in Distributed File Systems." ACM Trans. Com-
puting Systems, Vol. 6, No. 1, (February), 1988.

[2] Kleiman, S.R., "Vnodes: An Architecture for Multiple File
System Types in Sun UNIX." Prec. USENIX, Summer,
1986.

[3] Lacy, J., Mitchell, D., and Schell, W., "CryptoLib: A C
Library of Routines for Cryptosystems." Prec. Fourth
USENIX Security Workshop, October, 1993.

[4] Lai, X. and Massey, J. "A Proposal for a New Block
Encryption Standard." Prec. EUROCRYPT 90, 389-404,
1990.

[5] National Bureau of Standards, 'T)ata Encryption Standard."
FIPS Publication #46, NTIS, Apr. 1977.

[6] National Bureau of Standards, "Data Encryption Standard
Modes of Operation." FIPS Publication #81, NTIS, Dec.
1980.

[7] Reiher, P. et. al., "Security Issues in the Truffles File Sys-
tem." Prec. PSRG Workshop on Network and Distributed
System Security, 1993.

[8] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., &
Lyon, B. "Design and Implementation of the Sun Network
File System." Prec. USENIX, Summer, 1985.

