
Draft of June 19, 2013

Efficient Divide-and-Conquer Parsing
of Practical Context-Free Languages

Long Version

Jean-Philippe Bernardy Koen Claessen
Chalmers University of Technology and University of Gothenburg

{bernardy,koen}@chalmers.se

Abstract
We present a divide-and-conquer algorithm for parsing context-
free languages efficiently. Our algorithm is an instance of Valiant’s
(1975), who reduced the problem of parsing to matrix multiplica-
tions. We show that, while the conquer step of Valiant’s is O(n3)
in the worst case, it improves to O(log3 n), under certain condi-
tions satisfied by many useful inputs. These conditions occur for
example in program texts written by humans. The improvement
happens because the multiplications involve an overwhelming ma-
jority of empty matrices. This result is relevant to modern comput-
ing: divide-and-conquer algorithms can be parallelized relatively
easily.

Categories and Subject Descriptors F.4.2 [Grammars and Other
Rewriting Systems]: Parsing

Keywords Parallel Computation, Incremental Computation, Sequence-
Homomorphism, Parsing, Complexity, Context-Free Languages,
Iteration

1. Introduction
Recent years have seen the rise of parallel computer architectures
for the masses. Multicore CPUs and GPUs are legion. One would
expect functional programs to be a perfect match for these archi-
tectures. Indeed, thanks to the absence of side-effects, functional
programs are conceptually easy to parallelise. However, functional
programmers have traditionally relied heavily on lists as the data-
structure of choice. This tradition hinders the adaptation of func-
tional programs to the age of parallelism. Indeed, the very linear
structure of lists imposes a sequential treatment of them. In an
eloquent 2009 ICFP invited talk, Guy Steele harangued the func-
tional programming crowds to stop using lists and use sequences,
represented as balanced trees. If a computation over them follows
the divide-and-conquer skeleton, and uses an associative operator
to cheaply combine intermediate results at each node, their fractal
structure allows to take advantage of many processors in parallel;
in fact as many as there are leaves in the tree.

An additional benefit of the structure its ability to support in-
cremental computation. That is, if one remembers the intermediate

[Copyright notice will appear here once ’preprint’ option is removed.]

results of the computation for each node, then after changing a sin-
gle leaf in the tree, it suffices to recompute the results for the nodes
which are on the path from the root to the given leaf. If the tree is
balanced, this means that one only has to run the association oper-
ator only a few times to update the result after a single incremental
change.

Some problems are naturally solved by divide-and-conquer al-
gorithms. This is the case for example of vector operations, which
treat each element independently of the others. However, many
problems require creativity to discover divide-and-conquer solu-
tions. This is the case of the problem of parsing context free lan-
guages.

Valiant (1975) discovered a divide-and-conquer algorithm for
context-free recognition. However, on the face of it, the cost of the
conquer step is cubic. This means that the conquer step dominates
the cost of the algorithm: what we gain by running sub-problems
in parallel is dwarfed by the cost of what we must run sequentially.
Therefore the divide-and-conquer structure does not yield a sig-
nificant performance benefit. In this paper, we show that on most
inputs, one can carefully implement Valiant’s algorithm to get a
polylogarithmic conquer step, yielding good overall performance.

We make the following contributions:

• We give a new correctness proof of the Valiant algorithm. We
re-construct the Valiant algorithm by calculating it from its
specification, in a style reminiscent of Bird and de Moor (1997)
(Sec. 3.4).

• We characterize a new subclass of context-free languages, cor-
responding to strings parsed in a hierarchical manner (Def. 9,
Sec. 4.1).

• We show that, for languages of the new subclass, the time
complexity of the conquer step is O(log3 n) (Sec. 4.2).

• We propose a refinement of context-free grammars (and the
corresponding modifications of Valiant’s parser) which allows
to parse iterative structures hierarchically instead of linearly
(Sec. 5).

• We conjecture that any given context-free programming lan-
guage, understood as the set of strings actually written in it (not
the language prescribed by its grammar) belong to the subclass
that we propose if iteration is represented hierarchically as we
prescribe.

• We have implemented the parsing technique described above,
and have integrated it in the BNFC parser generator (Forsberg
and Ranta 2012).

To Appear in ICFP 2013 1 2013/6/19

2. The Divide-And-Conquer Skeleton
We aim to construct a divide and conquer algorithm which pro-
cesses sequences of input symbols (taken in a finite alphabet Σ) —
strings. In the following section, we specify this aim precisely by
using the theory of sequences as initial algebras (Bird 1986).

Definition 1. A sequence-algebra is a triplet of:

• A carrier type a
• A constant nil of type a
• A ternary operation bin of type a→ Σ → a→ a .

which satisfies the associative law:

bin a x (bin b y c) = bin (bin a x b) y c (1)

The type of sequences of Σ, written Seq , can be defined as the
initial sequence-algebra. Concretely, one way to implement Seq is
as a tree structure, but all different balancing are considered equiv-
alent. In actual implementations, sequences will be represented
by more complex data structures; perhaps featuring dynamic re-
balancing such as finger trees (Hinze and Paterson 2006). The as-
sociative law (1) guarantees that re-balancing will not be observ-
able by user code. We will write Nil and Bin (with capitals) for
the operations of the initial sequence-algebra:

Nil : Seq
Bin : Seq → Σ → Seq → Seq

Assume a function f : Seq → A. The construction of a divide-
and-conquer algorithm computing f can be specified as finding a
sequence-algebra A = (A,nilA, binA) such as f is an homomor-
phism between Seq and A.

That is, we need a carrier type A, a constant nilA and a function
binA such that (1) is satisfied and

nilA = f Nil

binA (fl)x (fr) = f (Bin l x r)

Given such an algebra A and a sequence t, one can compute ft
as the catamorphism of A applied to t.

Assuming an implementation of Seq as trees, one can obtain a
parallel algorithm by spawning a new thread of execution at each
node. In an actual implementation, the shape of the tree struc-
ture will be dictated by the architecture of the computer running
the code. The implementation is free to choose the structure: any
choice yields the same result, as guaranteed by (1).

An incremental algorithm can be obtained by caching the inter-
mediate results in each node. An update at a leaf of the tree needs
to run the bin function d times, where d is the depth of the tree.

Furthermore, and crucially, in order for parallelisation and in-
crementalization to yield benefits in terms of performance, the cost
of running bin, assuming f l and f r are already computed, must
be less than that of running f on the subtrees l and r.

In all the cases considered in the remainder, the associative law
will be a consequence of the other homomorphism laws. This is
because we are interested only in values which are generated by a
sequence-homomorphism.

Lemma 1. Given f : Seq → A, and bin : A→ Σ → A→ A such
that

bin (f l) x (f r) = f (Bin l x r)

then (A′, f Nil , bin) is a sequence-algebra, where A′ is the image
of Seq under f .

Proof. The missing associative law is obtained as follows:

bin a x (bin b y c)
= {-by A′ being inverse image of f -}

bin (f s) x (bin (f t) y (f u))

= {-by assumption on bin -}
f (Bin s x (Bin t y u)

= {-by Seq being a sequence-algebra -}
f (Bin (Bin s x t) y u)

= {-by assumption on bin -}
bin (bin (f s) x (f t)) y (f u)

= {-by definition of a, b, c -}
bin (bin a x b) y c

3. Context Free Parsing
In this section we briefly review the basics of context free (CF)
parsing and introduce our notation.

3.1 Conventions and notations
We assume a CF grammar G, given by a quadruple (Σ, N, P, S),
where Σ is a finite set of terminals,N is a finite set of non-terminals
of which S is the starting symbol, and P a finite set of productions.

We furthermore assume an input w ∈ Σ∗ — a sequence of
terminal symbols of length |w|. The input symbol at position i is
denotedw[i]. A sub-string ofw starting at position i (included) and
ending at position j (excluded), is denoted w[i..j]. Metasyntactic
variables standing for arbitrary strings of terminals will have the
form w1, w2, The letters A,B,C, . . ., stand for arbitrary non-
terminals, while α, β, . . . stand for arbitrary strings (elements of
(Σ ∪ N)∗) and t stands for a terminal symbol. Each production
rule associates a non-terminal with a string it can generate.

Definition 2. αAβ −→ αγβ iff. (A ::= γ) ∈ P

Definition 3. ∗−→ stands for the reflexive transitive closure of−→.

The input string w belongs to the language L generated by G
iff. S ∗−→ w.

Any CF grammar G defining a language L can be converted to
a grammar G′ in Chomsky Normal Form (CNF) defining the same
language L, with |G′| ≤ |G|2 (Chomsky 1959). Hence we will
assume without loss of generality a grammar in CNF. In CNF, the
rules are restricted to the following forms

S ::= ε (nullary)
A ::= t (unary)
A0 ::= A1A2 (binary)

but it is easy to handle the empty string specially, so we conven-
tionally exclude it from the input language and thus exclude the
nullary rule. In sum, we assume that P contains only unary and bi-
nary rules. The reader avid of details is directed to Lange and Leiß
(2009) for a pedagogical account of reduction to CNF.

Given a grammar specified as above, the problem of parsing is
reduced to finding a binary tree such that each leaf corresponds to
a symbol of the input and a suitable unary rule; and each branch
corresponds to a suitable binary rule. Essentially, parsing is equiva-
lent to consider all possible bracketings of the input, and verify that
they form a valid parse.

3.2 Charts as matrices, parsing as closure
In this section we show how to specify parsing as an equation
on matrices. We start by abstracting away from the grammar, via
a ring-like structure. We define the operations 0,+, · and σ as
follows.

To Appear in ICFP 2013 2 2013/6/19

Definition 4 (0,+, · on P(N)).

0 = ∅
x+ y = x ∪ y
x · y = {A | A0 ∈ x,A1 ∈ y,A ::= A0A1 ∈ P}
σi = {A | A ::= w[i] ∈ P}

The (.) operation fully characterizes the binary production rules
of the grammar, while σ captures the unary ones. We have the
following properties: (0,+) forms a commutative monoid (the usual
group of sets with union); 0 is absorbing for (·); and (·) distributes
over (+). However, and crucially, (·) is not associative.

x+ 0 = x

0 + x = x

(x+ y) + z = x+ (y + z)

x · (y + z) = x · y + x · z
x · 0 = x

0 · x = x

We will then use matrices of sets of non-terminals to record which
non-terminals can generate a given substring. The intention is that
A ∈ Cij iff.A ∗−→ w[i..j]. See Fig. 1 for an illustration. In parsing
terminology, a structure containing intermediate parse results is
called a chart. We call the set of charts C.

Definition 5. C = P(N)N×N

We lift the operations 0,+, · from sets of non-terminals to
matrices of sets of nonterminals, in the usual manner.

Definition 6 (0,+, · on C).

0ij = 0

(A+B)ij = Aij +Bij

(A ·B)ij =
∑
k

Aik ·Bkj

The properties are lifted accordingly. The operation σ is used to
compute an upper diagonal matrix corresponding to the input w, as
follows.

Definition 7 (Initial matrix). The initial matrix, written I(w), is a
square matrix of dimension |w|+ 1 such that

I(w)i,i+1 = σi

I(w)i,j = 0 if j 6= i+ 1

Let W (1) = I(w). Note that W (1)
i,i+1 = σi contains all the non-

terminals which can generate the substring w[i..i+1]. LetW (2) =

W (1)W (1) + I(w). It is easy to see thatW (2)
i,i+2 = σi ·σi+1, hence

it contains all the non-terminals which can generate the substring
w[i..i+ 2]. Consider now W (3) = W (2) ·W (2) + I(w). We have

W
(3)
i,i+3 = W

(2)
i,i+2 ·W

(2)
i+2,i+3 +W

(2)
i,i+1 ·W

(2)
i+1,i+3

= (σi · σi+1) · σi+2 + σi · (σi+1 · σi+2)

and

W
(3)
i,i+4 = W

(2)
i,i+2 ·W

(2)
i+2,i+4

= (σi · σi+1) · (σi+2 · σi+3)

Hence W (3) contains all possible parsing of 3 symbols, and all
balanced parsings of 4 symbols. By iterating n times, one obtains
all the parsings of n symbols. (However, as a hint to our method for
efficient parsing, it suffices to repeat the process logn+ 1 times to
obtain all balanced parsings of n symbols).

A

B

i

j
k

l

X

Y

Z

Figure 1. Example charts. In each chart a point at position (x, y)
corresponds to a substring starting at x and ending at y. The first
parameter x grows downwards and the second y one rightwards.
The input string w is represented by the diagonal line. Dots in the
upper-right part represent nonterminals. The first chart witnesses
A

∗−→ w[i..j] and B ∗−→ w[k..l]. An instance of the rule Z ::=
XY is exemplified on the second chart.

Definition 8 (Transitive closure). If it exists, the transitive closure
of a matrix W , written W+, is the matrix C such that

C = C · C +W

A consequence of the above is C ⊇ C ·C+ I(w). It is clear by
now that, consequently, every possible bracketing of the products
I(w) · · · · ·I(w) is contained in C, and thus all possible parsings of
w[i..j] are found inCij . Conversely, becauseC ⊆ C·C+W , ifCij
contains a non-terminal then it must generate w[i..j]. Algorithms
which parse by computing a chart are known as chart parsers.

The above procedure specifies a recognizer: by constructing
I(w)+ one finds if w is parsable, but not the corresponding parse.
Even though we focus on the recognition problem in this paper, it is
straightforward to specify parsers by using matrices of parse trees
instead of non-terminals, and adapting the operations accordingly.

In order to construct an efficient parallel parser, we must con-
struct a sequence-homomorphism from input strings to charts.
Thanks to Lem. 1, it suffices find an operator bin which com-
bines two charts I(w1)+, I(w2)+ and a terminal t into a chart
I(w1tw2)+.

3.3 Cocke–Younger–Kasami
A straightforward manner to turn the above specification into an
algorithm is as follows.

Let us first remark that the product of two upper triangular ma-
trices is upper triangular. Hence the closure of an upper triangular
matrix must also be upper triangular. Hence, in every chart ever
considered, every element at the diagonal and below it equals zero.
Expanding index-wise the equation C = C · C + I(w) yields:

Cij = I(w)ij +
n∑
k=0

Cik · Ckj

Because C is upper triangular, Cik = 0 if k ≤ i and Ckj = 0 if
k > j. Hence the sum can be limited to the interval [i+ 1..j]

Cij = I(w)ij +

j∑
k=i+1

Cik · Ckj

Observing that the summand equals 0 on the upper diagonal and
I(w)ij = 0 otherwise, we distinguish on that condition and obtain
the two equations:

Ci,i+1 = σi (2)

Cij =

j∑
k=i+1

Cik · Ckj if j > i+ 1 (3)

To Appear in ICFP 2013 3 2013/6/19

These equations give a method to compute Cij by induction on
j − i. The equations can be re-interpreted in term of parses and
non-terminals as follows. Either

• we parse a single token wi, and the nonterminals generating it
are given directly from unary rules, or

• we parse a longer string. In this case we split it at any interme-
diate position k, and combine the intermediate results (found in
Cik and Ckj) in every possible way according to binary rules.

By applying the above rules naively, computation time is exponen-
tial in the length of the input; however by memoizing each inter-
mediate result (for example by using lazy dynamic programming
(Allison 1992)) the complexity is merely cubic. The resulting dy-
namic programming algorithm is known as CYK, owing to its in-
dependent discoverers: Cocke (1969), Kasami (1965) and Younger
(1967).

In the CYK algorithm, any element of the chart is computed
only on the basis of elements strictly closer to the diagonal. Hence
it can be used to combine charts. The combination of two charts and
a terminal C = bin(A,w[i], B), is defined as follows. Elements
of C in the upper left corner are copied from A; elements of the
bottom right corner are copied from B; and elements from the top
right corner are computed using σi and the CYK formula (Eq. (3)).

Are we done? Unfortunately, no. The above operator has to
compute a matrix of size n×m, and computing each element takes
time linear in n+m. The complexity of the association is therefore
cubic; and dwarfs the time spent on computing the sub-chartsA and
B. However, for parallelisation to be effective, we need the running
time of the combination operator to be less than the running time
of the recursive calls.

3.4 Valiant
A more subtle way to turn the transitive closure specification into
an algorithm is the following. Our task is to find a function + which
maps a matrix W to its transitive closure C = W+. As above, we
do so by refinement of the definition of transitive closure, but we
adopt a divide and conquer approach rather than a direct one.

If W is a 1 by 1 matrix, C = W = 0. Otherwise, let us divide
W and C in blocks as follows (for efficiency the blocks should
be roughly of the same size; but the reasoning here holds for any
sizes):

W =

[
A X
0 B

]
C =

[
A′ X ′

0 B′

]
Then the condition that C is the transitive closure of W becomes[

A′ X ′

0 B′

]
=

[
A′ X ′

0 B′

]
·
[
A′ X ′

0 B′

]
+

[
A X
0 B

]
Applying matrix multiplication and sum block-wise:

A′ = A′A′ +A

X ′ = A′X ′ +X ′B′ +X

B′ = B′B′ +B

Because A and B are smaller than W (and still upper triangular),
we know how to compute A′ and B′ recursively (A′ = A+,
B′ = B+). There remains to find an algorithm to compute the
top-right corner X ′ of the matrix. That is (renaming variables for
convenience) the problem is reduced to finding a recursive function
V which maps A, B and X to Y = V (A,X,B), such that
Y = AY +Y B+X . In terms of parsing, the function V combines
the chart A of the first part of the input with the chart B of the
second part of the input, via a partial chart X concerned only with
strings starting in A and ending in B, and produces a full chart Y .
Let us divide each matrix in blocks again:

Step 1:

A11

A22

A12

B12B11

B22

X21

X11

X22

X12

Step 2:

A11

A22

A12

B12B11

B22

Y21

X11

X22

X12

Step 3:

A11

A22

A12

B12B11

B22

Y21

Y11

X22

X12

Step 4:

A11

A22

A12

B12B11

B22

Y21

Y11

Y22

X12

Figure 2. The recursive step of function V . The charts A and B
are already complete. To complete the matrix X , that is, compute
Y = V (A,X,B), one splits the matrices and performs 4 recursive
calls. Each recursive call is depicted graphically. In each figure, to
complete the dark-gray square, multiply the light-gray rectangles
and add them to the dark-gray square, then do a recursive call on
triangular matrix composed of the completed dark-gray square and
the triangles.

Y =

[
Y11 Y12

Y21 Y22

]
X =

[
X11 X12

X21 X22

]

A =

[
A11 A12

0 A22

]
B =

[
B11 B12

0 B22

]
(Again we assume that splitting can be done; the base cases can be
obtained by dropping the first rows and/or the second columns in
the above splits.) The condition on Y then becomes[

Y11 Y12

Y21 Y22

]
=

[
A11 A12

0 A22

]
·
[
Y11 Y12

Y21 Y22

]
+

[
Y11 Y12

Y21 Y22

]
·
[
B11 B12

0 B22

]
+

[
X11 X12

X21 X22

]
By applying matrix multiplication and sum block-wise:

Y11 = A11Y11 + A12Y21 + Y11B11 + 0 + X11

Y12 = A11Y12 + A12Y22 + Y11B12 + Y12B22 + X12

Y21 = 0 + A22Y21 + Y21B11 + 0 + X21

Y22 = 0 + A22Y22 + Y21B12 + Y22B22 + X22

By commutativity of (+) and 0 being its unit:

Y11 = A11Y11 + X11 + A12Y21 + Y11B11

Y12 = A11Y12 + X12 + A12Y22 + Y11B12 + Y12B22

Y21 = A22Y21 + X21 + 0 + Y21B11

Y22 = A22Y22 + X22 + Y21B12 + Y22B22

Because each of the sub-matrices is smaller and because of the
absence of circular dependencies, Y can be computed recursively:

Y21 = V (A22, X21 , B11)
Y11 = V (A11, X11 +A12Y21 , B11)
Y22 = V (A22, X22 + Y21B12 , B22)
Y12 = V (A11, X12 +A12Y22 + Y11B12, B22)

To Appear in ICFP 2013 4 2013/6/19

We have ignored the base cases so far because they are straight-
forward, except for the following point. When computing V (A,X,B)
on matrices of dimension 1 × 1, it is guaranteed that A and B are
equal to 0. Indeed, in that case X is just above the diagonal. There-
fore A and B are on it and must then be 0. The result matrix is
therefore equal to X .

In sum, with the above definitions, we have the following ex-
pression for V in the recursive case

V

([
A11 A12

0 A22

]
,

[
X11 X12

X21 X22

]
,

[
B11 B12

0 B22

])
=

[
Y11 Y12

Y21 Y22

]
.

In the base cases, some or all of the top and/or right sub-matrices
are empty and the corresponding recursive calls are omitted. In
terms of parsing, initially the partial chartX contains at the bottom-
left position a single non-zero element corresponding to the symbol
at the interface of A and B. Recursive calls progressively fill
this chart, quadrant by quadrant. The above algorithm was first
described by Valiant (1975). A graphical summary is shown in
Fig. 2, and Haskell implementation is show if Fig. 3.

From Valiant’s function V , one can construct the bin operator
(completing the sequence homomorphism) as follows:

bin(A, t, B) =

[
A V (A,X,B)
0 B

]
where X =

0 · · · · · · 0
... . .

. ...

0 0
...

σi 0 · · · 0

An advantage of Valiant’s algorithm over CYK is that it treats

whole subcharts at once, via matrix-level multiplication and addi-
tion, while CYK explicitly refers to each element ofC individually.
In particular, when using a sparse-matrix representation, the mul-
tiplication of an empty chart with any other chart is instantaneous.
The ability to handle this case efficiently is key: we observe that in
many cases, charts are sparse, and composition of charts is efficient.

When using a representation supporting sparse matrices, the im-
plementation of Valiant’s algorithm is an elegant functional pro-
gram, as can be seen in Fig. 3.

4. Sparse Matrix assumption and Complexity
Analysis

4.1 Model of the input
In practice, matrices representing charts are expected to be sparse
for large inputs, that is, a given substring is unlikely to be generated
by a given non-terminal. Indeed, in most cases, the substring starts
in the middle of a construction and ends in the middle of some
other, usually unrelated other construction. This effect is illustrated
in Fig. 4. In the remainder of the paper, we assume that inputs
conform to this assumption. Before explaining where it is coming
from, we give its formal definition.

Definition 9 (Assumption). There exists a constant α such that,
for any input, the distribution of non-zero elements in the chart C
corresponding to it is bounded as follows. For any square subchart
A of C above the diagonal,

#A ≤

α
∑

(i,j)∈dom(A)

1

(j − i)2

where #A is the number of non-zero elements in matrix A.

We stress that the assumption involves not a grammar per se,
but the language itself (i.e. the set of possible input strings we
consider), when seen as strings generated by a given grammar in
CNF. So, for any given α, every non-trivial grammar will admit

import Prelude (Eq (. .))
class RingLike a where

zero :: a
(+) :: a → a → a
(·) :: a → a → a

data M a = Q (M a) (M a) (M a) (M a) | Z | One a

q Z Z Z Z = Z
q a b c d = Q a b c d

one x = if x ≡ zero then Z else One x

instance (Eq a,RingLike a)⇒ RingLike (M a) where
zero = Z

Z + x = x
x + Z = x
One x + One y = one (x + y)
Q a11 a12 a21 a22 + Q b11 b12 b21 b22

= q (a11 + b11) (a12 + b12)
(a21 + b21) (a22 + b22)

Z · x = Z
x · Z = Z
One x ·One y = one (x · y)
Q a11 a12 a21 a22 ·Q b11 b12 b21 b22

= q (a11 · b11 + a12 · b21) (a11 · b12 + a12 · b22)
(a21 · b11 + a22 · b21) (a21 · b21 + a22 · b22)

v :: (Eq a,RingLike a)⇒ M a → M a → M a → M a
v a Z b = Z
v Z (One x) Z = One x
v (Q a11 a12 Z a22) (Q x11 x12 x21 x22) (Q b11 b12 Z b22)

= q y11 y12 y21 y22

where y21 = v a22 x21 b11
y11 = v a11 (x11 + a12 · y21) b11
y22 = v a22 (x22 + y21 · b12) b22
y12 = v a11 (x12 + a12 · y22 + y11 · b12) b22

Figure 3. Data structure for charts as sparse matrices (M), and im-
plementation of the function V . The tricky parts compared to the
mathematical development of Sec. 3.4 is the handling of empty ma-
trices. Care must be taken to create empty matrices (Z) whenever
they contain only zero elements. This is done by using the smart
constructors q and one in matrix multiplication. The input matrices
a and b are empty iff. the matrix x has dimension one. For con-
cision, this implementation supports only matrices of size 2n for
some n. It can be extended to matrices of arbitrary dimension in
a straightforward manner by adding constructors for row and col-
umn matrices, to be used as leaves. An implementation supporting
arbitrary matrix dimensions, as well as the optimization explained
in Sec. 7.2 can be found in the BNFC repository:
https://github.com/BNFC/bnfc/blob/master/source/
runtime/Data/Matrix/Quad.hs

To Appear in ICFP 2013 5 2013/6/19

strings that break the assumption, but usually the set of strings we
consider behaves well in practice.

The above formula merits justification. Before using it to eval-
uate the complexity of the parsing algorithm, we will build a more
precise intuition for it by examining its consequences and its pos-
sible causes.

By symbolically evaluating the sum, we can deduce what the
above assumption implies for each of the following shapes for A:

• if A is a square of size n touching the diagonal, then #A ≤
dα logne

• ifA is a square of size n at distance kn to the diagonal with k ≥
1, then #A ≤ dα(2 log(k + 1)− log(k + 2)− log(k))e.
Hence, remarkably, a square chart of dimension n which is
at least n elements away from the diagonal contains at most a
number of elements which is independent from n.

A stochastic way to formulate the idea behind our assumption
is the following. When considering k random substrings of size
n in a corpus of strings representative of the language, one finds
on average that αk

n2 of them correspond to a single nonterminal.
That is, by doubling the size of the substring considered, it will
be four times less likely to be parsable. This condition agrees with
experience.

In order for the assumption to be satisfied, it is also sufficient
to assume that the parse trees corresponding to the inputs are
balanced. That is, if every node in the chart corresponding to a
substring of size n is combinable with exactly one other symbol
of size n (precluding ambiguity), then the assumption is verified.
In fact the assumption can be relaxed as follows. Consider the
triangle-shaped subchart Tn which touches the diagonal and a
non-terminal A at distance k from it. We assume all symbols in
the triangle but closer to the diagonal combine to form A. If the
symbol A can be combined with exactly one other symbol of size
βk with 0 < β ≤ 1, it will yield exactly one symbol at distance
(1 + β)k. Inductively we compute that is of the order of log(n)

log(1+β)

nodes in the triangle, which is compatible with our condition, with
α = 1/log2(1 + β).

A

n

k

Experiments The assumption we make is not strictly speaking
verifiable experimentally, since for any chart there exists an α such
that the assumption is verified. However, one can gain confidence
in the assumption by plotting the probability of a string to be
parsable against its size. One should observe that this probability
decreases with the square of the size. In practical terms, given
a chart corresponding to a large input, if one observes a drastic
cut-off in the density of non-zero elements when departing from
a certain distance from the diagonal, then the input is compatible
with our assumption. In Fig. 4, we show a chart corresponding to
a fragment of C code, obtained using our algorithm. This chart,
along with all other inputs for which we have run this experiment,
exhibits the expected features. The assumption is also confirmed,
albeit indirectly by observing that the cost analysis which depends
on it holds in practice.

Figure 4. The chart corresponding to a fragment of a C program.
The input program can be found in appendix. Two remarkable
features merit commentary. First, the staircase shapes, which are
explained in Sec. 5.4. Second, some small sub-matrices near the
diagonal appear to be dense. These regions correspond to argument
lists in the C program, and this iteration structure is implemented
by linear recursion rather than our special encoding of Sec. 5.

Non-suitable inputs Any input which uses nesting in linear pro-
portion to the size of its input will violate our assumption. For ex-
ample, the lisp program composed of n successive applications of
cons does not satisfy our assumption.

(cons x (cons x (. . . (cons x nil) . . .)))

It appears however that few programs are written in this style,
except perhaps for machine-generated ones. Linear constructions
are often present, but they are then supported by special syntax.
Indeed the above lisp program is invariably written as:

(list x x . . . x)

Hence we provide special treatment for such special iteration syn-
taxes. We show in Sec. 5 how to deal with them, while respecting
our assumption.

4.2 Cost estimation
For simplicity we consider only inputs of sizes which are powers
of 2. This implies that we only need to consider square matrices in
our analysis. We will estimate the cost as the number of elementary
multiplications (multiplications on sets of non-terminals) to be
performed.

We first remark that because charts are always divided in the
middle, a subchartX considered by the algorithm is always square,
and at a distance kn to the diagonal, where k is some natural
number and n is the dimension of X . When k = 0 we say that
X touches the diagonal and when k > 0 we say that X is far from
the diagonal. This distinction is crucial, because matrices touching
the diagonal have O(logn) elements in them, whereas matrix far
away have a constant number of elements in them.

4.2.1 Cost of matrix multiplications
We start by estimating the cost of the multiplication of two matrices
A and B of size n, Mn(A,B). Assuming that p = #A and
q = #B, then matrix multiplication needs to perform O(pq)
elementary multiplications. Indeed, each non-zero element in A

To Appear in ICFP 2013 6 2013/6/19

needs to be multiplied at most with every non-zero element in B.
We now assume that A and B are also a subcharts, and distinguish
the following cases.

1. Both A and B touch the diagonal. We have p = O(logn) and
q = O(logn) and thus Mn(A,B) = O(log2 n).

2. Either A or B is at least n away from the diagonal. In this
case there either p or q is bounded by a constant and thus
Mn(A,B) = O(logn).

3. Both A and B are at least n away from the diagonal. In this
case there both p and q are bounded by a constant and thus
Mn(A,B) = O(1).

Before proceeding we recall a standard result:

Theorem 1 (Master Theorem, Cormen et al.). Assume a function
Tn constrained by the recurrence

Tn = aTn
b

+ f(n)

(Such an equation will typically come from a divide-and-conquer
algorithm, where a is the number of sub-problems at each recursive
step, n/b is the size of each sub-problem, and f(n) is the running
time of dividing up the problem space into a parts, and combining
the sub-results together.)

If we let e = logb a and f(n) = O(nc logd n), then

Tn = O(ne) if c < e

Tn = O(nc logd+1 n) if c = e

Tn = O(nc) if c > e

4.2.2 Cost of the conquer step
We proceed to estimate the running cost Vn of the valiant function
V on a matrix of size n. We do so assuming that we know the
resulting chart Y = V (A,X,B). That is, Vn maps Y to the cost
of running V (A,X,B). We have the following recurrence:

Vn(0) = 0

Vn

[
Y11 Y12

Y21 Y22

]
= Vn

2
(Y21) + Vn

2
(Y11) + Vn

2
(Y22) + Vn

2
(Y12)

+Mn
2

(A12, Y21) +Mn
2

(Y21, B12)

+Mn
2

(A12, Y22) +Mn
2

(Y11, B12)

Because A and B are upper-triangular matrices, the subcharts A12

and B12 touch the diagonal. We distinguish two cases: either Y
touches the diagonal or it is at least at a distance n from it.

Y is far away In the latter case we pose Fn = Vn (F for far), and
all sub-matrices of Y are far from the diagonal. Hence all matrix
multiplications involve at most one matrix touching the diagonal,
and the total combined cost of multiplications is O(logn). The
recurrence specializes then to:

Fn(0) = 0

F1(Y) = 1

Fn

[
Y11 Y12

Y21 Y22

]
= Fn

2
(Y11) + Fn

2
(Y12) + Fn

2
(Y21) + Fn

2
(Y22)

+O(logn)

Because Y has a constant number of non-zero elements, most re-
cursive calls will return immediately, and on average only one re-
cursive call need to be counted. Hence we use the Master Theorem
with a = 1, b = 2 and f(n) = O(logn). We are therefore in the
case c = e, and obtain Fn = O(log2 n).

Y touches the diagonal In the former case, let Vn = Cn (C
for close), and Y21 touches the diagonal. Hence two of the matrix

multiplications involve pairs of matrices at the diagonal, and the
combined cost of multiplications is O(log2 n). Only the recursive
call involving Y12 touches the diagonal, and the three others involve
matrices far from it. Therefore the recurrence specializes to:

C1 = 1

Cn = Cn
2

+ 3Fn
2

+O(log2 n)

= Cn
2

+O(log2 n)

We use the Master Theorem with a = 1, b = 2 and f(n) =
O(log2 n). We are therefore in the case c = e, and obtain Cn =
O(log3 n).

4.2.3 Total cost
We can proceed to compute the total cost of our algorithm on an
input string of size n = |w|, again using the Master Theorem. We
always divide the input into two parts, so b = 2. We assume that the
input is provided as a balanced tree representing the matrix I(w),
and so the cost of the divide step is zero. Therefore f(n) is the cost
of the conquer step only. This step involves a matrix close to the
diagonal, so f(n) = Cn = O(log3 n), and in turn c = 0 and
d = 3.

• If we assume a sequential execution of sub-problems then a =
2. In turn, e = 1 and T (n) = O(n).

• If we assume perfect parallelisation of sub-problems, or an
incremental situation, where one of the sub-solution can be
reused, then a = 1. In turn, e = 0 and T (n) = O(log4 n).

We remark that Valiant’s evaluation for V (n) is O(nγ), for
some γ between 2 and 3 (the exact value depends on the matrix
multiplication algorithm used). In his case c = γ and d = 0,
yielding T (n) = O(nγ) in all cases: according to Valiant’s original
analysis, making an incremental or parallel version of his algorithm
would lead no benefit, while our analysis reveals that a big payoff
is at hand.

4.2.4 Experiments
We have conducted two sets of experiments on the running time
of the algorithm. All timings were obtained using the CRITERION
library (O’Sullivan 2013), on an Intel Core 2 at 2.13GHz. All pro-
grams were compiled with GHC 7.6.1. In the first set, we have mea-
sured the performance on a practical language on practical inputs,
to confirm that the function is fast enough to use as an incremental
parser in an interactive setting. To do so, we have run our BNFC
implementation on a C grammar to produce the σ and (·) functions,
and tested the running time of the V function on a large C program,
extracted from the Linux kernel scheduler (https://github.
com/torvalds/linux/blob/master/kernel/sched/core.c
— preprocessor directives as well as typedefs found in it were
expanded by hand.) The input was divided into a left part and a
right part of equal sizes, and a middle symbol. The complete charts
for the left and the right part were computed, then we measured the
time of the V function on the charts and the singleton chart contain-
ing the middle symbol. After collecting 100 samples, CRITERION
reported a mean runtime of 320.1469 µs, with a standard deviation
of 23.06691 µs. This is well within acceptable limits for interactive
use: most people cannot perceive a delay less than a millisecond.

In the second set of experiments, we tested the V function on
generated inputs of various sizes, to confirm our calculation of the
worst case running time. The grammar is that corresponding to the
encoding of t∗ (the nonterminal t repeated an arbitrary number
of times) using the technique described in Sec. 5 (which ensures
that our assumption is verified with α close to 1). The inputs
were a repetition of that terminal symbol. The results are shown

To Appear in ICFP 2013 7 2013/6/19

20 24 28 212 216 220 224
0

50

100

150

200

Input size

R
u

n
n

in
g

ti
m

e
[µ

s]

quadratic fitting curve

Figure 5. Running time of the V function in function of the size
of the input, using semi-logarithmic scale. The grammar is that
corresponding to the encoding of t∗ using the technique described
in Sec. 5. The next data point (input size 223) could not be obtained
due to running out of memory. The curve is the graph of a quadratic
function which fits the measurements.

in Fig. 5. We observe that the measurements, when drawn on a
semi-logarithmic scale, fit a quadratic curve.

The observed running therefore appears better than the theoret-
ical cost estimation, which predicts a cubic curve. The best expla-
nation we have for this discrepancy is that we made a pessimistic
assumption in our analysis: we have estimated the cost of the ma-
trix product to be at worst O(log2 n) if each argument matrix has
O(logn) elements. However, this occurs only if the elements are
lined up so that every pair needs to be considered. This case may
occur in practice, but we conjecture that it happens so infrequently
that it does not contribute significantly to the total running time.
This experiment thus suggests that a more precise analysis of the
algorithm can be done, which we leave for future work.

5. Iteration in Context-Free Grammars
5.1 The problem with iteration
While we have worked hard to ensure the efficient handling of the
non-associative aspect of CF parsing, we have neglected so far that
most CF languages feature regular iteration; that is, associative
concatenation rules. Without special treatment, such associative
rules cause severe inefficiencies in the algorithm as presented so
far.

Iteration is technically known as Kleene star, and is written here
as a postfix ∗. In context-free grammars, it can be (and usually
is) encoded as either as left or right recursion. For example a rule
A ::= Y ∗ is typically encoded as follows.

A ::= ε

A ::= AY

The problem with this encoding is two-fold. First, inputs consisting
mostly of a sequence of Y necessarily violate our assumption on
inputs: the depth of the parse tree grows linearly with the size of
the input.

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

0

1

Figure 6. Matching a list using the oracle-sensitive algorithm. We
assume that only one non-terminal Y is involved and thus show
only the bit-tags. Considering only the non-terminals which cannot
be combined using the rule Y ::= Y 0Y 1, the charts features a
sequence of Y 1 (of increasing size), followed by a sequence of Y 0

(of decreasing size).

Second, the generated AST will necessarily be linear. Conse-
quently, as we have seen in the introduction, this linear shape would
preclude efficient parallel or incremental processing of the AST by
computations consuming it.

One could possibly imagine working around the first problem
with creative algorithmic devices. However it is clear that the sec-
ond problem is intrinsic to the encoding of iteration as linear recur-
sion. Hence we take the stance that special support for iteration is
necessary in any parallel or incremental parser.

5.2 Towards an efficient encoding
Instead of a linear, unary encoding of iterations, one can attempt a
binary tree encoding. One might propose the following encoding:

A ::= AA

A ::= Y

However this encoding accepts all possible associations of se-
quences of Y s, in particular also linear ones. One might attempt
to mend the rules by using a more clever encoding, say:

Ak+1 ::= AkAk

Ignoring that it codes only lists of size 2n for some n, our second
condition on inputs is still be violated. Indeed, in a sequence of Y ,
any subsequence of length 2n for some n will be recognized. This
means that there will be a lot of overlap between possible parse
trees.

In the remainder of the section we describe a way to keep the
rule A ::= AA, but tweak the parsing algorithm so that for any
sequence of Y s only a single association is considered.

5.3 Oracle-sensitive parsing
Overview Each nonterminal will come with a bit indicating
whether it should be used either as a left or right-child in the parse
tree. The bit will be chosen by an oracle upon production of the
nonterminal, so that the tree will be balanced. We write Y b for the
non-terminal Y annotated with bit b. The main rule constructing
trees is then written:

Y ::= Y 0Y 1

This restricts which trees are explored. After parsing with this rule,
we obtain a sequence of Y 1 (unmatched right children) of growing
size followed by a sequence of Y0 (unmatched left children), as

To Appear in ICFP 2013 8 2013/6/19

depicted in Fig. 6. These nodes will then be collected using special
rules. Assuming that C0 and D0 delimit the list of non-terminals
Y ∗, the collecting rules would be written:

C ::= C0

::= C Y 1
D ::= D0

::= Y 0D

And the final list can be produced by the rule L ::= CD.
The delimiters C0 and D0 are necessary so that only one col-

lection of Y 1 and only one collection of Y 0 are needed; thereby
ensuring a good performance. Without delimiters, every combina-
tion of sequences of Y 1 and Y 0 would need to be considered. An
intermediate situation is where only one delimiter is present, say
the opening one. In that case, only one list of Y 1 is considered, but
many sequences of Y 0 would be considered.

Oracle-Sensitive Grammar Formalism In general, we extend
productions so that non-terminals on a right-hand-side are tagged
with a bit. Formally, we extend the syntax of the productions as
follows, where b1, b2, . . . range over bits:

• A ::= Bb1Cb2

• A ::= t, for t ∈ Σ

We allow, as a shorthand, to write non-annotated non-terminal
in a production right-hand-side. The production then stands for a
pair of rules with either annotation. That is A ::= α0Bα1 is a
shorthand for the pair of rulesA ::= α0B

0α1 andA ::= α0B
1α1.

Algorithm An implementation will take a grammar written using
a special construction for iteration and translate it to the above
formalism appropriately. The parsing algorithm per se remains
the same as previously, except for the operator combining non-
terminals, which is changed as follows.

Definition 10.
x · y = {Ab | Bb1 ∈ x,Cb2 ∈ y,A ::= Bb1Cb2 ∈ P}

where the output bit b comes from the oracle.

The transitive closure function modified to use the above ver-
sion of the (·) operator is called T in the remainder.

Formalization and proof We proceed to prove that the above
implementation indeed recognizes the intended language. Firstly,
we must define the meaning of our extended grammar formalism
and show that it corresponds to our needs.

The main issue is that the algorithm behaves non-deterministically,
in the sense that the grammar-writer does not have access to the bits
generated by the oracle. The rest of the section is structured as fol-
lows:

1. we define a generation relation restricted to a given source bits
ρ;

2. we show that the algorithm decides the relation for a specific
(but intangible) ρ;

3. we narrow the acceptable grammars to those which are oblivi-
ous to ρ (describe languages independent of ρ);

4. we provide a toolkit which enables to identify and construct
oblivious grammars;

5. and finally we show that our encoding of iteration preserves
obliviousness.

Oracle We define a new generation relation
ρ7−→, indexed by a

stream of bits ρ. This stream of bits wholly models the oracle.
The meaning of production rules annotated with bits can then

be given. We first define a 1-step generation relation indexed by a
single bit.

Definition 11 (bit-indexed generation).

• if (A ::= Bb1Cb2) ∈ P , then w0A
bα

b7−→ w0B
b1Cb2α

• if (A ::= x) ∈ P , then w0A
bα

b,ρ7−→ w0xα

Crucially, the rules require the relation to act on the first non-
terminal in a string. This forces the bit-stream ρ to be used in a
deterministic way. Otherwise, the relation could use each bit of ρ
in a arbitrary place, essentially bypassing the instructions of the
oracle, transmitted via the bitstream ρ.

Definition 12 (stream-indexed generation). The relation α
ρ7−→ w

is inductively defined as follows.

• w
ρ7−→ w

• If α b7−→ γ and γ
ρ7−→ w then α

b,ρ7−→ w

Algorithm The algorithm decides the
ρ7−→ relation, but only for

one particular bit-stream ρ (which the grammar-writer has no con-
trol over).
Theorem 2.

1. if Ab ∈ T (I(w))ij then ∃ρ.Ab ρ7−→ wij

2. if Ab 6∈ T (I(w))ij then ∃ρ.Ab 6 ρ7−→ wij

Proof. By induction on the decomposition structure of the matrix
(done by T).

Obliviousness Ultimately, we do not want the language defined
using our formalism to depend on the actual stream ρ of bits
generated by the oracle, since this is out of the control of the
grammar writer. That is, if a string is recognized using some ρ,
it should be recognized with every ρ.

We first remark that the set of strings generated by any given
tagged non-terminal will always depend on ρ. Hence instead we
have to consider the strings generated by sets of non-terminals (and
in general sets of strings).

We thus define the following relations, using Γ, ∆ and Ξ to
range over sets of strings.
Definition 13.

• Γ
∃7−→ w iff. ∃ρ.∃α ∈ Γ. α

ρ7−→ w

• Γ
∀7−→ w iff. ∀ρ.∃α ∈ Γ. α

ρ7−→ w

Definition 14. A set of strings Γ is called oracle-oblivious if the
set of strings of terminals generated by it is insensitive to non-
determinism; that is, for any w0, if Γ

∃7−→ w0 then Γ
∀7−→ w0.

Definition 15. We note Ã the set {A0, A1}.
Definition 16 (well-formed grammar). A oracle-sensitive gram-
mar is well-formed if S̃ is oracle-oblivious.

We can then show that obliviousness fulfills its purpose: the
sensitivity to ρ introduced in the algorithm is indeed hidden by
obliviousness.

Theorem 3. If Ã is oracle-oblivious then

Ã
∀7−→ wij iff Ab ∈ T (I(w))ij , for some bit b

Proof. The left-to-right direction is the contrapositive of Th. 2.2.
The right-to-left direction is obtained by composing Th. 2.1 with
the definition of obliviousness for Ã.

A kit for well-formed grammars Given a grammar definition
using bit-annotations arbitrarily, it is hard to decide whether it
is well-formed. Hence we define the following relation, which
enables us to reason about obliviousness compositionally.

Definition 17. Γ
∗

=⇒ ∆ iff for every w0,

To Appear in ICFP 2013 9 2013/6/19

• if Γ
∃7−→ w0 then ∆

∃7−→ w0.
• if ∆

∀7−→ w0 then Γ
∀7−→ w0.

The above relation is constructed to transport obliviousness:

Lemma 2. If Γ
∗

=⇒ ∆ and ∆ is oracle oblivious, then so is Γ.

Proof. Direct consequence of the definition.

Lemma 3.

1. ∗
=⇒ is reflexive and transitive

2. If Γ
∗

=⇒ ∆ then ΓΞ
∗

=⇒ ∆Ξ and ΞΓ
∗

=⇒ Ξ∆
3. Assume a non-terminal A and Γ its set of productions. Then
Ã

∗
=⇒ Γ.

Proof. 1. and 3. are a direct consequences of the definitions. The
proof of 2. is tedious but straightforward, and similar in style to the
proof of Lem. 4 and thus omitted.

The above lemma means that, if productions are written without
bit annotations (they generate all possible annotations), then they
preserve obliviousness. Hence, a grammar written without annota-
tions is necessarily well formed. Because our encoding of iteration
also preserves obliviousness, this in turn means that, if one uses an-
notations only to encode iteration in the pattern we prescribe, the
grammar will be well-formed.

Encoding iteration As a reminder, we encode L ::= C0Y0 ∗D0,
as

Y ::= Y0

::= Y 0Y 1

C ::= C0

::= C Y 1

D ::= D0

::= Y 0D

L ::= CD

Theorem 4. L̃ ∗
=⇒ C̃0Ỹ

∗
0 D̃0

Proof. We construct the relation in the following stages.

1. L̃
2. C̃0{Y 1}∗{Y 0}∗D̃0

3. C̃0Ỹ
∗D̃0

4. C̃0Ỹ
∗
0 D̃0

Most of the steps are consequences of Lem. 3. Only the step
between stages 2. and 3. requires special treatment: it depends on
the relation

{Y 1}∗{Y 0}∗ ∗
=⇒ Ỹ ∗

Proving it requires to preservation lemmas for every w0:

• if {Y 1}∗{Y 0}∗ ∃7−→ w0 then Ỹ ∗ ∃7−→ w0.
• if Ỹ ∗ ∀7−→ w0 then {Y 1}∗{Y 0}∗ ∀7−→ w0.

The first one is an easy consequence of the ability to chose any
possible ρ in the ∃7−→ relation. The second one is the angular stone
of our method, and is proved in the following lemma.

Lemma 4. Let w ∈ Σ∗ and α ∈ Ỹ ∗. If α ∀7−→ w then there exists
β ∈ {Y 1}∗ and γ ∈ {Y 0}∗ such that βγ ∀7−→ w.

Proof. By induction on the length of α. If α is in the required form,
we have the result. If not, then the subsequence Y 0Y 1 can be found
at least once in α:

α = α0Y
0Y 1α1

We can decompose w into two parts w0 and w1 such that

α0
∀7−→ w0

Y 0Y 1α1
∀7−→ w1

But, for any b, we have Y bα1
b7−→ Y 0Y 1α1. Therefore, Y bα1

∀7−→
w1 and in turn α0Y

bα1
∀7−→ w.

We can then use the induction hypothesis on α0Y
bα1 to obtain

β and γ satisfying the conditions of the theorem.

5.4 Performance
The above encoding yields good performance in practice, even
with a straightforward implementation of the oracle providing the
stream of bits ρ. Indeed, Fig. 6 shows the chart generated from
a sample C program. It exhibits the drastic cut-off in non-zero
node density formalized in Def. 9, except for a few linear shapes,
as one can observe. These are caused by our implementation of
the oracle, which is naive. In our implementation, the bit which
is generated is a parameter of the function V , and it is flipped
(deterministically) for some recursive calls. This means that, inside
a given subchart, all instances of associative rules either right-
associate or left-associate, yielding a linear arrangement of results
in the chart. Yet, this strategy for bit generation is the best we have
found with respect to observed performance. The reason might be
that more even distributions of results in the chart worsens the
locality of non-zero data, yielding smaller zero subcharts.

6. Related work
6.1 Our own previous work
Claessen (2004) wrote a paper titled “parallel parsing processes”,
but which has only tenuous connections with the present work. The
paper of 2004 presents a parsing technique based on usual sequen-
tial parsers, but where disjunction is represented by processes run-
ning concurrently. An advantage of that technique is that the parser
processes the input string in chunks that can be discarded as soon
as the parser has analyzed them.

Bernardy (2009) has shown how to combine the above idea with
the online parsers of Hughes and Swierstra (2003). This makes
the resulting parsing algorithm suitable for incremental parsing
in an editing environment such as Yi (Bernardy 2008). However
the method is brittle, because grammars need to be expressed in a
special-purpose formalism, and error-correction must be “bake-in”
the grammar. In contrast, the method presented here works with
context free grammars as usually written; only iterative structures
need to be changed to use the special construction of Sec. 5. One
does not have to worry about error recovery since all substrings are
parsed.

6.2 Special support for iteration
The assumption we make on inputs, which is tied to the balancing
of the parse trees is partially inspired by work by Wagner and Gra-
ham (1998). They show that linear parse trees cannot be handled
efficiently, since updating a structure requires time proportional to
its depth. Wagner and Graham then deduce that efficient incremen-
tal parsing requires a special purpose support for iteration, as we
have done in Sec. 5.

To Appear in ICFP 2013 10 2013/6/19

6.3 General CF Parsing
Perhaps the most well known method for parsing general CF lan-
guages is that of Tomita (1986). This method has in common with
ours that it achieves linear performance on well-behaved inputs,
while degrading gracefully to the best possible performance (cu-
bic) in the worst case.

The main difference between the methods is that Tomita’s algo-
rithm processes the input sequentially, while we can process it any
bottom-up order. This means that the condition for well-behaved
inputs is different for either methods. In Tomita’s case, the condi-
tion is that, at any point during the parsing, the amount of ambiguity
is small (bound by a constant), implying that the next action of the
parser is most of the time determined by the next symbol in the in-
put. In our case, it is captured by Def. 9, which essentially means
that the input should be hierarchical. Tomita’s condition does not
imply ours: linearly arranged inputs can be deterministic. Check-
ing the other implication is left for future work. It is not easy to
conclude: our condition imposes non-local conditions which may
or may not restrict non-determinism in a linear processing of the
input.

The chief advantage of our method is its divide-and-conquer
structure, which means that is can be used in a standard parallel
or incremental framework. Tomita inherits essential use of the
sequential processing of the input from LR parsing, making his
technique not amenable to parallelization.

6.4 Parallel Parsing
There is a wealth of previous work devoted to efficient recogni-
tion and parsing of context-free languages on abstract parallel ma-
chines, so much that a comprehensive survey of the field does not
fit in this paper. The situation can however be summarized as fol-
lows: to the best of our knowledge, before this work, algorithms
proposed for parallel parsing either need an unrealistic number of
processors, or they target a language class which is too restrictive
to be of practical interest.

Too many processors Sikkel and Nijholt (1997) describe a paral-
lel algorithm (in section 6.3) which can recognize a string of length
n in O(logn) time, but it requires O(n6) processors in the worst
case.

A line of work involving Rytter gives a dozen of complexity
results for various sub-classes of CF and various abstract machines.
The most closely related results are perhaps the following.

Chytil et al. (1991) present a simple parallel algorithm recog-
nizing unambiguous context-free languages on a CREW PRAM
in time log2 n with only n3 processors. The similarity with our
work is that the authors restrict the languages they accept to a well-
behaved subset of CF to obtain sensible running time. In our opin-
ion the present work captures better the actual sets of inputs found
in the actual practice of CF parsing.

Too restrictive grammars Rytter and Giancarlo (1987) analyze
an algorithm which can parse a bracket grammar in O(logn) time
andO(n/ logn) processors. This is fast and does not use too many
processors, but is restricted to languages where the grouping of
non-terminals is completely explicit in the input: each production
rule starts with an opening bracket and ends with a closing bracket.

Parallel implementations of Existing Chart Parsing Algorithm
Dozens of papers have been written about parallel implementations
of usual chart parsing algorithms, again too many to survey exten-
sively. Most work in that area focuses on practical aspects such as
balancing the load between execution units or optimizing the flow
of communication between them. Overall the issues addressed ap-
pear largely disjoint from our concerns.

6.5 Automatic Parallelisation
Gibbons (1996) (following the work of Bird (1986)) states that if a
function can be expressed both as a leftwards and rightwards func-
tion (foldl and foldr), then it can also be expressed as a sequence
homomorphism. Morita et al. (2007) use this theorem to derive
such sequence homomorphism algorithmically. They present a tool
which can produce a sequence homomorphism when given func-
tions expressed both as foldl and foldr.

It would be interesting to check if the method could derive
an efficient parallel parsing algorithm. As far as we understand,
the method might (possibly with extensions) be able to discover
the Valiant algorithm from a leftwards and a rightwards CYK
algorithm. However, discovering the interest of a sparse matrix
representation out of reach: it requires a creative step which is hard
to capture in an automatic tool.

Mainstream parsing algorithms (such as LL(k) or LALR(k))
also seem hard to parallelise using an automatic method. First, it
is not clear how one can reverse such a parser, since the definition
of the algorithm is tightly coupled with direction of parsing (as
their name indicates). Second, Morita et al. (2007) do not give
an upper bound on the efficiency of the generated combination
operator (bin), but only measure the performance of the generated
code on a number of examples. As we understand there may be
situations where the method produces an associative operator of
linear (or worse) complexity, thereby defeating the effectiveness of
parallelisation.

6.6 Simultaneous incremental and parallel computation
Burckhardt et al. (2011) propose a model of computation which
captures both incremental and parallel execution. Their model is
based on concurrently running tasks which commit their results
atomically upon completion. Our work is instead based on the
well-known sequence homomorphism as model of parallel and
incremental computation.

7. Discussion
7.1 Destructive updates
We were tempted to solve the problem of iteration by using destruc-
tive updates. That is, to have associative rules such as Y ::= Y Y
consume their arguments. That is, when a Y non-terminal is added
to the chart using the above rule, the two Y non-terminals that com-
pose it would be removed. We have attempted this solution, but
faced a couple of issues, which will not surprise an audience of
functional programmers.

• On the theoretical side, reasoning about parsing with destruc-
tive updates of the chart has proven too complicated to fit in
this paper. The generation relation describing which strings are
recognized by a parser is hard to define, let alone reason about.
A major difficulty is to combine destructive updates with a no-
tion of non-determinism similar to that described in Sec. 5. In-
deed, the user has no control on which particular consuming
rule will fire first, since this depends on the particular of the im-
plementation of Valiant’s algorithm (the order in which matrix
multiplications are run, etc.) and the exact positioning of the
substrings.

• On the practical side, the presence of updates makes for a more
complicated implementation. It would also mean to abandon (so
far unexploited) parallel opportunities in the matrix multiplica-
tion and the V function.

7.2 Optimization
In many grammars, a fair proportion of non-terminals occur only
either on the left, or on the right of binary productions. Assume for

To Appear in ICFP 2013 11 2013/6/19

example that A only ever occurs on the left. It is wasteful in this
case to consider A for right-combinations, as does the algorithm
we have presented so far.

This optimization is available to many CF parsing algorithms,
but it is especially useful to us, because it acts in synergy with the
detection of empty matrices. Indeed, by having separate matrices of
left-combinable and right-combinable non-terminals, each matrix
will be sparser. This means some combinations can be discarded
in blocks, that is, at the level of matrices instead at the level of
individual non-terminals.

An additional benefit of this optimization is that it pays for
the cost of tagging non-terminals with an extra bit, as we suggest
in Sec. 5. Indeed, 0-tagged non-terminals occur only on the left
of binary productions, and 1-tagged non-terminals occur only on
the right in our encoding of iteration. Therefore this optimization
eliminates all the cost of tagging: instead of tagging a non-terminal
with a bit, it suffice to insert it only in the relevant matrix.

7.3 Implementation
An implementation of the parsing method presented here, includ-
ing special support for iteration as presented in Sec. 5 and the opti-
mization presented above, is implemented as a new back-end for
the BNFC tool, (Forsberg and Ranta 2012) available in version
2.6. The tool takes a grammar in BNF with annotations for effi-
cient repetition. When running the tool with the option -cnf, it
produces a Haskell implementation of CNF tables and an instance
of the Valiant’s algorithm using it. As other BNFC back-ends, our
implementation produces full parsers, not mere recognizers.

7.4 Unexploited parallelism
The parallelisation that we suggest can take advantage of at most
a number of processors proportional to the length of the input.
When parsing using Valiant’s algorithm, there is more parallelism
to take advantage of (for example two of the recursive calls in the
V function are independent from each other). However, running
in parallel all recursive calls to V would require asymptotically
more processors than the length of the input. We do believe that
this is not a reasonable assumption to make when parsing a whole
input. However, in the case of incremental parsing, where only a
tiny fraction of the input will be re-parsed, one might want to take
advantage of such extra parallelism opportunities.

7.5 Unexploited incrementality
We have suggested that the incremental version of the parser should
run the V function O(logn) times when changing one symbol in
the input. In fact, it might be possible to use a better implementation
of the chart data structure, which would support an incremental
update with a single run of the V function. Indeed, when changing
a single symbol of the input, only the part of the chart which
depends on that symbol (the square whose bottom-left corner is the
symbol in question) needs to be recomputed. This improved re-use
of results is left for future work.

7.6 Chomsky normal-form
Even though we assume that we transform the grammar to CNF
for ease of presentation, this is not actually the best form to use in
an implementation. In fact, it is better to convert the grammar to
2NF (where productions have at most 2 symbols) and derive the
operations (·) and σ using a slightly modified algorithm, using the
method described by Lange and Leiß (2009), as we have done in
our implementation.

The conversion from Backus-Naur Form (BNF) to CNF (or
2NF) involves a division of long productions into binary ones.
This is usually done by chaining the binary rules linearly. If the
productions of the input grammar are long, this impacts negatively

the performance of our algorithm, which performs best on balanced
inputs. Fortunately it is not difficult to divide long productions into
a balanced tree of binary rules.

The CNF grammar is suitable not only for recognition of lan-
guages, but also for parsing: the parse trees obtained by the con-
verted grammar are essentially a binarization of the trees obtained
by the grammar in BNF. The aspect which cannot be preserved by
the conversion is the presence of cycles of unit rules. However, the
elimination of such cycles can only be seen as a benefit: they intro-
duce an unbounded amount of ambiguity in the grammar, and are a
symptom of a mistake in the grammar specification.

7.7 A new class of languages
The assumption we make on the input (depending on a constant α),
defines implicitly a new class of languages. The class lies between
regular and context-free languages. We call the class α-balanced
context-free languages, or BCF(α). The use of the parameter α
contrasts with that of the parameter k in classes such as LL(k) or
LR(k). While LL(k) or LR(k) restricts the form that a CF grammar
can take, BCF(α) does not. Instead, it restricts the form that the
strings of the language can take as a whole.

We have found that for a given grammar, programs are written
with a shallow nesting structure, instead of a deep one (with the ex-
ception of regular iteration) and hence we have anecdotal evidence
that any given programming languages is a member of BCF(α).
Together with observation that the parsing problem for BCF(α)
is simpler than that of general-context free languages, this makes
BCF(α) worthy of study.

In fact, because the assumption we make is not one which is
enforced by usual CF grammars, but we still observe it to hold in
practice, it must mean that the assumption is self-imposed by the
writers of these inputs, namely programmers. This is not too sur-
prising, as our assumption can be violated only by programs which
exhibit an amount of nesting comparable to the total length of the
input. As folklore goes, programmers are adverse to deeply-nested
constructions. Indeed, understanding a program with n levels of
nesting requires to remember n levels of context. The link between
the ability for a computer to efficiently parse an input in parallel
and incrementally and for a human to do so is intriguing, and we
hope that the present paper sheds an interesting light on it.

7.8 Generalization
The body of the paper does not depend on the particulars of CF
recognition: we abstract over it via an arbitrary association oper-
ator. This means that other applications can be devised. A natural
extension is to support CF parsing, as we have done in our im-
plementation. More exotic extensions are also possible. A first ex-
ample would be to support symbol tables, which are necessary for
proper parsing of C. In this extension, non-terminals would be as-
sociated with two symbol sets, one that they assume comes from
the environment and one which they provide to the environment.
The combination operator would reconcile these two sets. A sec-
ond example is probabilistic parsing. Here, a probability would be
associated with each non-terminal and production rule, and the as-
sociation operator would simply multiply the probabilities.

In fact, our method can be seen as a general way to turn a
non-associative operator into an associative one by computing all
possible associations. The efficiency is recovered by the ability to
filter out most of the results; either because the original operator
discards them, or because there is (possibly hidden) associativity
which can be taken advantage of.

7.9 The old as new
It strikes us that a parsing algorithm published in 1975 finds an ap-
plication in the area of parallelisation for computer architectures of

To Appear in ICFP 2013 12 2013/6/19

the 2010 decade. Further, Valiant gives no indication that the algo-
rithm described should find any practical parsing application. As it
seems, he aims only to tie the complexity of context-free recogni-
tion to that of matrix multiplication (via the transitive closure oper-
ation).

Indeed, in the case of parsing (in contrast to mere recognition),
subtraction of matrices is not defined. Hence one cannot use the ef-
ficient Strassen algorithm (Strassen 1969) for multiplication, and in
turn the complexity of general context-free parsing using Valiant’s
method is cubic, and fails to beat the simpler CYK algorithm.

Our contribution is to recognize that Valiant’s algorithm per-
forms well for parsing practical inputs, given a special handling of
iteration and a sparse matrix representation (even when using the
naive matrix multiplication algorithm). If we also account for the
ease of making parallel and incremental implementations of the al-
gorithm thanks to its divide and conquer structure, we must classify
Valiant’s algorithm as a practical method of parsing.

In fact, Valiant’s algorithm offers such a combination of sim-
plicity and performance that we believe it deserves a prominent
place in textbooks, on par with LALR algorithms.

8. Conclusions
At the start of this work, we set out to find an associative opera-
tor with sub-linear complexity that could be used to implement a
divide-and-conquer algorithm for parsing. The goal was to obtain a
parallelizable parsing algorithm that would double as an incremen-
tal parsing algorithm. We managed to find such an operator, but the
desired complexity only holds under certain assumptions that luck-
ily do seem to hold in practice. The conditions hold when the recur-
sive nesting depth of a program text only grows, say logarithmically
in terms of the total length of the program. An unanticipated result
of our work is thus the definition of a new class of languages. We
were also forced to come up with a special way of dealing with
iteration (frequently occurring in grammars) so it would not break
this practical assumption.

Acknowledgments
The proof-method used in the presentation of Valiant’s algorithm
was suggested by Patrik Jansson. Engaging discussions about the
complexity of Valiant algorithm were conducted with Devdatt Dub-
hashi. Peter Ljunglöf pointed us to some most relevant related
work. Thomas Bååth Sjöblom, Darius Blasband and Peter Ljunglöf,
as well as anonymous reviewers gave useful feedback on drafts of
the paper.

References
L. Allison. Lazy Dynamic-Programming can be eager. Information Pro-

cessing Letters, 43(4):207–212, 1992.

J.-P. Bernardy. Yi: an editor in Haskell for Haskell. In Proc. of the first
ACM SIGPLAN symposium on Haskell, pages 61–62. ACM, 2008.

J.-P. Bernardy. Lazy functional incremental parsing. In Proc. of the 2nd
ACM SIGPLAN symposium on Haskell, pages 49–60. ACM, 2009.

R. Bird. An introduction to the theory of lists. Programming Research
Group, Oxford University Comp. Laboratory, 1986.

R. Bird and O. de Moor. Algebra of programming. Prentice-Hall, Inc.,
1997.

S. Burckhardt, D. Leijen, C. Sadowski, J. Yi, and T. Ball. Two for the price
of one: A model for parallel and incremental computation. In Proc. of the
2011 ACM international conference on Object oriented programming
systems languages and applications, pages 427–444. ACM, 2011.

N. Chomsky. On certain formal properties of grammars. Information and
control, 2(2):137–167, 1959.

M. Chytil, M. Crochemore, B. Monien, and W. Rytter. On the parallel
recognition of unambiguous context-free languages. Theor. Comp. Sci.,
81(2):311–316, 1991.

K. Claessen. Parallel parsing processes. J. Funct. Program., 14(6):741–757,
2004.

J. Cocke. Programming languages and their compilers: Preliminary notes.
Courant Institute of Mathematical Sci.s, New York University, 1969.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms, second ed. MIT press, 2001.

M. Forsberg and A. Ranta. BNFC Quick reference, chapter Appendix A,
pages 175–192. College Publications, 2012.

J. Gibbons. The third homomorphism theorem. J. Funct. Program., 6(4):
657–665, 1996.

R. Hinze and R. Paterson. Finger trees: a simple general-purpose data
structure. J. Funct. Program., 16(2):197–218, 2006.

R. J. M. Hughes and S. D. Swierstra. Polish parsers, step by step. In Proc.
of ICFP 2003, pages 239–248. ACM, 2003.

T. Kasami. An efficient recognition and syntax analysis algorithm for
context-free languages. Technical report, DTIC Document, 1965.

M. Lange and H. Leiß. To CNF or not to CNF? an efficient yet presentable
version of the CYK algorithm. Informatica Didactica (8)(2008–2010),
2009.

K. Morita, A. Morihata, K. Matsuzaki, Z. Hu, and M. Takeichi. Automatic
inversion generates divide-and-conquer parallel programs. ACM SIG-
PLAN Notices, 42(6):146–155, 2007.

B. O’Sullivan. The Criterion benchmarking library, 2013.
W. Rytter and R. Giancarlo. Optimal parallel parsing of bracket languages.

Theor. computer science, 53(2):295–306, 1987.
K. Sikkel and A. Nijholt. Parsing of context-free languages, pages 61–100.

Springer-Verlag, 1997.
V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,

13:354–356, 1969. 10.1007/BF02165411.
M. Tomita. Efficient Parsing for Natural Language. Kluwer Adademic

Publishers, 1986.
L. Valiant. General context-free recognition in less than cubic time. J. of

computer and system sciences, 10(2):308–314, 1975.
T. A. Wagner and S. L. Graham. Efficient and flexible incremental parsing.

ACM Transactions on Programming Languages and Systems, 20(5):
980–1013, 1998.

D. Younger. Recognition and parsing of context-free languages in time n3.
Information and control, 10(2):189–208, 1967.

To Appear in ICFP 2013 13 2013/6/19

Appendix: Bounds on Non-Empty Matrices
We have

#A ≤

α
∑

(i,j)∈dom(A)

1

(j − i)2

Assume S(n, d) is a square matrix of size n at distance d to
the diagonal. In this section we compute asymptotic bounds for
#S(n, kn), for any k.

The strategy is to symbolically evaluate P (A), from which it is
easy to infer bounds for #A, where

P (A) =
∑

(i,j)∈dom(A)

1

(j − i)2

Consider a lower triangle T (n, d), of size n and at distance
d to the diagonal, for which the above sum is easy to evaluate
symbolically. From a result on triangles one can recover a result
on squares:

P (S(n, d)) = P (T (2n, d))− 2P (T (n, n+ d)) (4)

n
d

We have:

P (T (n, d)) =
∑

(i,j)∈T (n,d)

1

(j − i)2

=

n∑
k=1

k∑
l=1

1

(d+ k)2

=

n∑
k=1

k

(d+ k)2

= ψ0(d+ n+ 1)− ψ0(d+ 1)+

d(ψ1(d+ n+ 1)− ψ1(d+ 1))

Where ψ is the polygamma function. We then use the approxima-
tion ψk(n) ∼ dk

dn
logn together with (4) and get

P (S(n, kn)) ∼ 2(kn+ n)

(
1

kn+ n+ 1
− 1

kn+ 2n+ 1

)
− kn

(
1

kn+ 1
− 1

kn+ 2n+ 1

)
− log(kn+ 1) + 2 log(kn+ n+ 1)− log(kn+ 2n+ 1)

• if k > 0, we have

lim
n→∞

P (S(n, kn)) = 2 log(k + 1)− log(k + 2)− log(k)

and the limit converges from below. So we the above expression
is an asymptotic bound for P (S(n, kn)).

• if k = 0, we have

S(n, kn) = S(n, 0)

∼ 2n

(
1

1 + n
− 1

1 + 2n

)
+ 2 log(1 + n)− log(1 + 2n)

∼ logn

Appendix: C Program Fragment
BEGIN PROGRAM

vo id s t a r t b a n dw i d t h t im e r (s t r u c t h r t ime r p e r i o d t im e r , i n t p e r i o d)
{

uns igned long d e l t a ;
i n t s o f t , hard , now ;

f o r (; ;) {
i f (h r t i m e r a c t i v e (p e r i o d t im e r))

break ;

now = h r t im e r c b g e t t im e (p e r i o d t im e r) ;
h r t im e r f o rwa r d (p e r i o d t ime r , now , p e r i o d) ;

s o f t = h r t i m e r g e t s o f t e x p i r e s (p e r i o d t im e r) ;
hard = h r t i m e r g e t e x p i r e s (p e r i o d t im e r) ;
d e l t a = i n t o n s (k t ime sub (hard , s o f t)) ;
h r t i m e r s t a r t r a n g e n s (p e r i o d t ime r , s o f t , d e l t a ,

HRTIMER MODE ABS PINNED , 0) ;
}
}

s t a t i c vo id u p d a t e r q c l o c k t a s k (s t r u c t rq ∗rq , l ong d e l t a) ;

vo id upd a t e r q c l o c k (s t r u c t rq ∗rq)
{

l ong d e l t a ;

i f (rq−>s k i p c l o c k u p d a t e > 0)
r e t u r n ;

d e l t a = s c h e d c l o c k c pu (cpu o f (rq)) − rq−>c l o c k ;
rq−>c l o c k += d e l t a ;
u p d a t e r q c l o c k t a s k (rq , d e l t a) ;

}

s t a t i c i n t s c h ed f e a t s h ow (s t r u c t s e q f i l e ∗ m, vo id v)
{

i n t i ;

f o r (i = 0 ; i < SCHED FEAT NR ; i++) {
i f (! (s y s c t l s c h e d f e a t u r e s & (1 << i)))

s e q pu t s (m, ”NO ”) ;
s e q p r i n t f (m, ”%s ” , s ch ed f e a t name s [i]) ;

}
s e q pu t s (m, ”\n”) ;

r e t u r n 0 ;
}

END PROGRAM

Fragment of a C program corresponding to the chart in
Fig. 4. It is excerpt by hand from the linux kernel scheduler
(beginning of the file https://github.com/torvalds/linux/
blob/master/kernel/sched/core.c)

To Appear in ICFP 2013 14 2013/6/19

