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Abstract. The state price density of a basket, even under uncorrelated Black–Scholes dynamics, does not
allow for a closed from density. (This may be rephrased as statement on the sum of lognormals and is
especially annoying for such are used most frequently in Financial and Actuarial Mathematics.) In this note
we discuss short time and small volatility expansions, respectively. The method works for general multi-
factor models with correlations and leads to the analysis of a system of ordinary (Hamiltonian) differential
equations. Surprisingly perhaps, even in two asset Black–Scholes situation (with its flat geometry), the
expansion can degenerate at a critical (basket) strike level; a phenomena which seems to have gone unnoticed
in the literature to date. Explicit computations relate this to a phase transition from a unique to more than one
“most-likely” paths (along which the diffusion, if suitably conditioned, concentrates in the afore-mentioned
regimes). This also provides a (quantifiable) understanding of how precisely a presently out-of-money basket
option may still end up in-the-money.

1. Introduction

As is well known, the sum of independent log-normal variable does not admit a closed-form density.
And yet, there are countless applications in Finance and Actuarial Mathematics where such sums play
a crucial role, consider for instance the law of a Black–Scholes basket B at time T , i.e. the weighted
average of d geometric Brownian motions.

As a consequence, there is a natural interest in approximations and expansions, see e.g. [14] and the
references therein. This article contains a detailed investigation in small volatility and short time regimes.
Forthcoming work of A. Gulisashvili and P. Tankov deals with tail asymptotics. Our methods are not
restricted to the geometric Brownian motion case: in principle, each Black–Scholes component could be
replaced by the asset price in a stochastic volatility model, such as the the Stein–Stein model [37], with
full correlation between all assets and their volatilities. In the end, explicit solutions only depend on the
analytical tractability of a system of ordinary differential equations. If such tractability is not given, one
can still proceed with numerical ODE solvers.

As a matter of fact, our aim here is no too push the generality in which our methods work: one can and
should expect involved answers in complicated models. Rather, our main – and somewhat surprising –
insight is that unexpected phenomena are already present in the simplest possible setting: to this end, our
first focus will be on the case of d = 2 independent Black–Scholes assets, without drift and correlation,
with unit spot and unit volatility). To be more specific, if CB denotes the fair value of an (out-of-money)
call option on the basket B struck at K, one naturally expects, for a small maturity T ,

∂2

∂K2 CB (K,T ) ∼ (const) exp
(
−

Λ (K)
T

)
1
√

T
.

And yet, while true for most strikes, it fails for K = K∗; in fact,{
∂2

∂K2 CB (K,T )
}

K=K∗
∼ (const) exp

(
−

Λ (K∗)
T

)
1

T 3/4 .

To the best of our knowledge, and despite the seeming triviality of the situation (two independent Black–
Scholes assets!), the existence of a “special” strike level K∗, at which the value of a basket option (here:

Key words and phrases. Sums of lognormals, focality, pricing of butterfly spreads on baskets.
1

ar
X

iv
:1

30
6.

27
93

v1
  [

m
at

h.
PR

] 
 1

2 
Ju

n 
20

13



2 CHRISTIAN BAYER, PETER K. FRIZ, AND PETER LAURENCE

butterfly spread1) has a “special” decay behavior, as maturity approaches, seems to be new. There are
different proofs of this fact; the most elementary argument – based on the analysis of a convolution
integral – is given in Section 2. However, this approach – while telling us what happens – does not tell us
how it happens.

The main contribution of this note is precisely a good understanding of the latter. In fact, there is
clear picture that comes with K∗. For K < K∗, and conditional on the option to expire on the money,
there is a unique “most likely” path around which the underlying asset price process will concentrate
as maturity approaches. For K > K∗, however, this ceases to be true: there will be two distinct (here:
equally likely) paths around which concentration occurs. What underlies this interpretation is that large
deviation theory, which on a deep level underlies our methods, not only characterizes the probability of
unlikely events (such as expiration in-the-money, if presently out-of-the-money, as time to maturity goes
to zero) but also the mechanism via which these events can occur. Such understanding was already crucial
in previous works on baskets, starting with [1, 2], aiming at quantification of basket (implied vol) skew
relative to its components. As a matter of fact, the analysis in these paper relied on the statement that
“generically there is a unique arrival point [of a unique energy minimizing path] on the (basket-strike)
arrival manifold”. The situation, however, even in the Black–Scholes model, is more involved. And
indeed, we shall establish existence of a critical strike K∗, at which one sees the phase-transition from
one to two energy minimizing, “most likely”, paths.2 And this information will have meaning to traders
(as long as they believe in a diffusion model as maturity approaches, which may or may not be a good
idea . . . ) as it tells them the possible scenarios in which an out-of-the money basket option may still
expire in the money.

Let us conclude this introduction with a few technical notes. We view the evolution of the basket
price – even in the Black-Scholes model – as a stochastic volatility evolution model; by which we mean
dBt/Bt = σ(t, ω)dWt (as opposed to a local vol evolution where σ = σ(t, Bt)). This should explain why
the methods developed in Part I of [10, 11] for the analysis of stochastic volatility models (then used
in Part II, [11], to solve the concrete smile problem (shape of the wings) for the correlated Stein–Stein
model), are also adequate for the analysis of baskets. In a sense, the present note may well be viewed as
Part III in this sequence of papers.

Acknowledgment: P.K.F. has received partial funding from the European Research Council under the
European Union’s Seventh Framework Program (FP7/2007-2013) / ERC grant agreement nr. 258237.

2. Computations based on saddle-point method

In terms of a standard d-dimensional Wiener process
(
W1, . . . ,Wd

)
,

BT =

d∑
i=1

S i
0 exp

(
µiT + σiW i

T

)
.

Write f = fT (K) for the probability density function of BT ; i.e. for P [BT ∈ [K,K + dK] /dK. Of course,
it is given by some (d − 1)-dimensional convolution integral, explicit asymptotic expansions are - in
principle - possible with the saddle point method. It will be enough for our purposes to illustrate the
method in the afore-mentioned simplest possible setting:

d = 2, S 1
0 = S 2

0 = 1, µ1 = µ2 = 0, σ1 = σ2 = 1.

1Extensions to spreads and vanilla options are possible and will be discussed elsewhere.
2It can be shown that, sufficiently close to the arrival manifold, there is in fact a unique energy minimizing paths. The (near-

the-money) analysis of [1, 2] is then justified.
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In other words BT = exp
(
W1

T

)
+ exp

(
W2

T

)
; we claim that

f (K) =


exp

(
−

Λ (K)
T

)
1
√

T
(1 + O (T )) when K , K∗(1a)

exp
(
−

Λ (K∗)
T

)
1

T 3/4
(1 + O (T )) when K = K∗(1b)

with

K∗ = 2e ≈ 5.43656

and

Λ(K) = log(K/2)2.

With the minimal x∗ = K/2 as established below we immediately have f (K) ≈ exp(−hK(x∗)/(2T )) and
since hK(x∗) ∼ 2(logK/2)2asT → 0, we get Λ(K) as given above. Here, we are interested in establishing
the two regimes proposed in (1). The stock price S i

T has a log-normal distribution with parameters
µi = log(S i

0) − (σi)2T
2 = −T/2 and ξi = σi

√
T =

√
T , where the density of the log-normal distribution is

given by

(2) fµ,ξ(x) =
1

√
2πξx

exp
− (

log x − µ
)2

2ξ2

 .
Obviously, the density of the sum of these two independent log-normal random variables satisfies

(3) f (K) =

∫ K

0
fµ1,ξ1 (K − x) fµ2,ξ2 (x)dx.

Using our special parameters, the integrand is of the form

fµ1,ξ1 (K − x) fµ2,ξ2 (x) =
1

2πT x(K − x)
exp

(
−

hK(x)
2T

)
with

(4) hK(x) :=
(
log x +

T
2

)2

+

(
log(K − x) +

T
2

)2

.

In order to apply the Laplace approximation to (3), we compute the minimizer for hK , which is found by
the first order condition

h′K(x) = 0 ⇐⇒
log x + T/2

x
−

log(K − x) + T/2
K − x

= 0.

Clearly, this equation is solved by choosing x∗ = K/2. Now let us check degeneracy of that minimum by
computing

h′′K(x∗) = h′′K(K/2) = 16
1 − log(K/2) − T/2

K2 .

Thus, we find that

(5) h′′K(x∗) = 0 ⇐⇒ K = 2e1−T/2 ∼ 2e, for T → 0.

Choosing K = 2e1−T/2 and, correspondingly, x∗ = e1−T/2, we obtain the Taylor expansion hK(x) =

hK(x∗) +
h(4)

K (x∗)
24 (x − x∗)4 + O((x − x∗)5), with hK(x∗) = 2 and h(4)

K (x∗) = 20e2T−4, we obtain the Laplace
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approximation

f (K) =

∫ K

0

1
2πT (K − x)x

exp
(
−

hK(x)
2π

)
dx

=
1

2πTe2−T

∫ K

0
exp

(
−

1
T

)
exp

(
−

5e2T−4(x − K/2)4

12T

)
dx (1 + O(T ))

=
31/4Γ(1/4)

51/42
√

2πe
exp

(
−

1
T

)
1

T 3/4
(1 + O(T )) ,

where we used ∫ ∞

−∞

exp(−αx4)dx =
Γ(1/4)
2α1/4 , α > 0.

Thus, we arrive at (1).

3. Large Deviations approach

Our main tool here are novel marginal density expansions in small-noise regime [10]. This was used
in order to compute the large-strike behavior of implied volatility in the correlated Stein–Stein model;
[37, 22].3

In fact, the technical assumptions of [10] were satisfied in the analysis of the Stein–Stein model
whereas in the (seemingly) trivial case of two IID Black-Scholes assets, the technical assumptions of
[10] are indeed violated for a critical strike K = K∗. The necessity of this condition is then highlighted
by the fact, as was seen in the previous section,{

∂2

∂K2 CB (K,T )
}

K=K∗
/ (const) exp

(
−

Λ (K∗)
T

)
1

T 1/2

The computation of K∗ can be achieved either via a geometric construction borrowed from Riemannian
geometry, which relies on the Weingarten map, or by some (fairly) elementary analysis of a system
of Hamiltonian ODEs. In fact, the Hamiltonian point of view extends naturally when one introduces
correlation, local and even stochastic volatility. Explicit answers then depend on the analytical tractability
of these (boundary value) ODE problems. (Of course, the numerical solution of such problems is well-
known.)

In the following, we review [10]. Consider a d-dimensional diffusion
(
Xε

t
)
t≥0 given by the stochastic

differential equation

(6) dXε
t = b

(
ε,Xε

t
)

dt + εσ
(
Xε

t
)

dWt, with Xε
0 = xε0 ∈ R

d

and where W = (W1, . . . ,Wm) is an m-dimensional Brownian motion. Unless otherwise stated, we assume
b : [0, 1) × Rd → Rd, σ = (σ1, . . . , σm) : Rd → Lin

(
Rm,Rd

)
and x·0 : [0, 1)→ Rd to be smooth, bounded

with bounded derivatives of all orders. Set σ0 = b (0, ·) and assume that, for every multiindex α, the drift
vector fields b (ε, ·) converges to σ0 in the sense4

(7) ∂αx b (ε, ·)→ ∂αx b (0, ·) = ∂αxσ0 (·) uniformly on compacts as ε ↓ 0.

We shall also assume that

(8) ∂εb (ε, ·)→ ∂εb (0, ·) uniformly on compacts as ε ↓ 0

and

(9) xε0 = x0 + εx̂0 + o (ε) as ε ↓ 0.

3Similar investigations have recently been conducted in the Heston model; [25, 21] and the references therein.
4If (6) is understood in Stratonovich sense, so that dW is replaced by ◦dW, the drift vector field b (ε, ·) is changed to b̃ (ε, ·) =

b (ε, ·) −
(
ε2/2

)∑m
i=1 σi · ∂σi. In particular, σ0 is also the limit of b̃ (ε, ·) in the sense of (7) .
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Theorem 1. (Small noise) Let (Xε) be the solution process to

dXε
t = b

(
ε,Xε

t
)

dt + εσ
(
Xε

t
)

dWt, with Xε
0 = xε0 ∈ R

d.

Assume b (ε, ·) → σ0 (·) in the sense of (7), (8), and Xε
0 ≡ xε0 → x0 as ε → 0 in the sense of (9).

Assume non-degeneracy of σ in the sense that σ.σT is strictly positive definite everywhere in space. 5 Fix
y ∈ Rl, Ny :=

(
y, ·

)
and let Ky be the the space of all h ∈ H, the Cameron-Martin space of absolutely

continuous paths with derivatives in L2 ([0,T ],Rm), s.t. the solution to

dφh
t = σ0

(
φh

t

)
dt +

m∑
i=1

σi

(
φh

t

)
dhi

t, φ
h
0 = x0 ∈ R

d

satisfies φh
T ∈ Ny. In a neighborhood of y, assume smoothness of6

Λ
(
y
)

= inf
{

1
2
‖h‖2H : h ∈ Ky

}
.

Assume also (i) there are only finitely many minimizers, i.e. Kmin
y < ∞ where

Kmin
y :=

{
h0 ∈ Ky :

1
2
‖h0‖

2
H = Λ

(
y
)}

;

(ii) x0 is non-focal for Ny in the sense of [10]. (We shall review below how to check this.) Then, for fixed
x0,y and T > 0 there exists c0 = c0

(
x0, y,T

)
> 0 such that

Yε
T = ΠlXε

T =
(
Xε,1

T , . . . , Xε,l
T

)
, 1 ≤ l ≤ d

admits a density with expansion

fε
(
y,T

)
= e−

Λ(y)
ε2 e

max{Λ′(y)· ŶT (h0):h0∈K
min
y }

ε ε−l (c0 + O (ε)) as ε ↓ 0,

where Λ′ denotes the gradient of Λ.
Here Ŷ = Ŷ (h0) =

(
Ŷ1, . . . , Ŷ l

)
is the projection, Ŷ =ΠlX̂, of the solution to the following (ordinary)

differential equation

dX̂t =
(
∂xb

(
0, φh0

t (x0)
)

+ ∂xσ(φh0
t (x0))ḣ0 (t)

)
X̂tdt + ∂εb

(
0, φh0

t (x0)
)

dt,(10)

X̂0 = x̂0.

Remark 2 (Localization). The assumptions on the coefficients b, σ in theorem 1 (smooth, bounded with
bounded derivatives of all orders) are typical in this context (cf. Ben Arous [5, 6] for instance) but rarely
met in practical examples from finance. This difficulty can be resolved by a suitable localization. For
instance, as detailed in [10], an estimate of the form

(11) lim
R→∞

lim sup
ε→0

ε2 logP [τR ≤ T ] = −∞.

with τR := inf
{
t ∈ [0,T ] : sups∈[0,t]

∣∣∣Xε
s

∣∣∣ ≥ R
}

will allow to bypass the boundedness assumptions.

5This may be relaxed to a weak Hoermander condition with an explicit controllability condition.
6If #Kmin

y = 1 smoothness of the energy can be shown and need not be assumed; [10]. Note also that in our application to tail
asymptotics, with θ-scaling, θ ∈ {1, 2}, the energy must be linear resp. quadratic (by scaling) and hence smooth.
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3.1. Short time asymptotics. The reduction of short time expansions to small noise expansions by
Brownian scaling is classical. In the present context, we have the following statement, taken from [10,
Sec. 2.1].

Corollary 3. (Short time) Consider dXt = b (Xt) dt + σ (Xt) dW, started at X0 = x0 ∈ R
d, with C∞-

bounded vector fields which are non-degenerate in the sense that σ.σT is strictly positive definite every-
where in space. Fix y ∈ Rl, Ny :=

(
y, ·

)
and assume (i),(ii)as in theorem 1. Let f (t, ·) = f

(
t, y

)
be the

density of Yt =
(
X1

t , . . . ,X
l
t

)
. Then

f
(
t, y

)
∼ (const)

1
tl/2 exp

(
−

d2 (
x0, y

)
2t

)
as t ↓ 0

where d
(
x0, y

)
is the sub-Riemannian distance, based on (σ1, . . . , σm), from the point x0 to the affine

subspace Ny.

3.2. Computational aspects. We present here the mechanics of the actual computations, in the spirit of
the Pontryagin maximum principle (e.g. [36]). For details we refer to [10].

• The Hamiltonian. Based on the SDE (6), with diffusion vector fields σ1, . . . , σm and drift vector
field σ0 (in the ε→ 0 limit) we define the Hamiltonian

H
(
x, p

)
B

〈
p, σ0 (x)

〉
+

1
2

m∑
i=1

〈
p, σi (x)

〉2

=
〈
p, σ0 (x)

〉
+

1
2

〈
p,

(
σσT

)
(x) p

〉
.

Remark the driving Brownian motions W1, . . . ,Wm were assumed to be independent. Many
stochastic models, notably in finance, are written in terms of correlated Brownian motions, i.e.
with a non-trivial correlation matrix Ω =

(
ωi, j : 1 ≤ i, j ≤ m

)
, where d

〈
W i,W j

〉
t

= ωi, jdt. The
Hamiltonian then becomes

(12) H
(
x, p

)
=

〈
p, σ0 (x)

〉
+

1
2

〈
p,

(
σΩσT

)
(x) p

〉
.

• The Hamiltonian ODEs. The following system of ordinary differential equations,

(13)
(

ẋ
ṗ

)
=

(
∂pH

(
x (t) , p (t)

)
−∂xH

(
x (t) , p (t)

) )
,

gives rise to a solution flow, denoted by Ht←0, so that

Ht←0
(
x0, p0

)
is the unique solution to the above ODE with initial data

(
x0, p0

)
. Our standing (regularity)

assumption are more than enough to guarantee uniqueness and local ODE existence. As in [8,
p.37], the vector field

(
∂pH ,−∂xH

)
is complete, i.e.one has global existence. It can be useful to

start the flow backwards with time-T terminal data, say
(
xT , pT

)
; we then write

Ht←T
(
xT , pT

)
for the unique solution to (13) with given time-T terminal data. Of course,

Ht←T
(
HT←0

(
x0, p0

))
= Ht←0

(
x0, p0

)
.

• Solving the Hamiltonian ODEs as boundary value problem. Given the target manifold
Na = (a, ·), the analysis in [10] requires solving the Hamiltonian ODEs (13) with mixed initial -,
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terminal - and transversality conditions,

x (0) = x0 ∈ R
d,

x (T ) =
(
y, ·

)
∈ Rl⊕Rd−l,(14)

p (T ) = (·, 0) ∈ Rl⊕Rd−l.

Note that this is a 2d-dimensional system of ordinary differential equations, subject to d + l +

(d − l) = 2d conditions. In general, boundary problems for such ODEs may have more than one,
exactly one or no solution. In the present setting, there will always be one or more than one
solution. After all, we know [10] that there exists at least one minimizing control h0 and can be
reconstructed via the solution of the Hamiltonian ODEs, as explained in the following step.

• Finding the minimizing controls. The Hamiltonian ODEs, as boundary value problem, are
effectively first order conditions (for minimality) and thus yield candidates for the minimizing
control h0 = h0 (·), given by

(15) ḣ0 =


〈
σ1 (x (·)) , p (·)

〉
. . .〈

σm (x (·)) , p (·)
〉

 .
Each such candidate is indeed admissible in the sense h0 ∈ Ka but may fail to be a minimizer. We
thus compute the energy ‖h0‖

2
H = H(x0, p0) for each candidate and identify those (“h0 ∈ K

min
a ”)

with minimal energy. The procedure via Hamiltonian flows also yields a unique p0 = p0 (h0). If
σ0 = 0 – as in our case – the energy is equal toH(x0, p0), otherwise the formula is slightly more
complicated.

• Checking non-focality. By definition [10], x0 is non-focal for N =
(
y, ·

)
along h0 ∈ K

min
a in the

sense that, with
(
xT , pT

)
:= HT←0

(
x0, p0 (h0)

)
∈ T ∗Rd,

∂(z,q)|(z,q)=(0,0)πH0←T

(
xT +

(
0
z

)
, pT + (q, 0)

)
is non-degenerate (as d×d matrix; here we think of (z, q) ∈ Rd−l×Rl � Rd and recall that π denotes
the projection from T ∗Rd onto Rd; in coordinates π

(
x, p

)
= x). Note that in the point-point

setting, xT = y is fixed and only perturbations of the arrival ”velocity” pT - without restrictions,
i.e. without transversality condition - are considered. Non-degeneracy of the resulting map
should then be called non-conjugacy (between two points; here: xT and x0). In the absence of the
drift vector field σ0, this is consistent with the usual meaning of non-conjugacy; after identifying
tangent- and cotangent-space ∂q|q=0πH0←T is precisely the differential of the exponential map.

• The explicit marginal density expansion. We then have

f ε
(
y,T

)
= e−c1/ε

2
ec2/εε−l (c0 + O (ε)) as ε ↓ 0.

with c1 = Λ
(
y
)
. The second-order exponential constant c2 then requires the solution of a finitely

many ( #Kmin
a < ∞) auxiliary ODEs, cf. theorem 1.

4. Analysis of the Black–Scholes basket

For a general multi-dimensional Black-Scholes model, we have a HamiltonianH(x, p) = 1
2

〈
p, (σ(x)Ωσ(x)T )p

〉
,

withσ(x) = (σ1x1, . . . , σmxm). While the corresponding Hamiltonian ODEs can be solved in closed form,
the boundary conditions lead to systems of non-linear equations, which we cannot solve explicitly any
more. While numerical solutions are, of course, possible, we restrict ourselves to the extremely simple
setting of Section 2, in order to keep maximal tractability.
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Consequently, we have the Hamiltonian H(x, p) = 1
2

(
(σx1 p1)2 + (σx2 p2)2

)
. The solutions of the

Hamiltonian ODEs started at (x0, p0) satisfy

(16) Ht←0(x0, p0) =


x1

0eσ
2 x1

0 p1
0t

x2
0eσ

2 x2
0 p2

0t

p1
0e−σ

2 x1
0 p1

0t

p2
0e−σ

2 x2
0 p2

0t

 ,
which can be easily seen from the observation that H is constant along solutions of the Hamiltonian
ODEs together with symmetry between (x1, p1) and (x2, p2). This immediately implies that the inverse
flow is given by

(17) H0←t(xt, pt) =


x1

t e−σ
2 x1

t p1
t t

x2
t e−σ

2 x2
t p2

t t

p1
t eσ

2 x1
t p1

t t

p2
t eσ

2 x2
t p2

t t

 .
Now we introduce the boundary conditions. Note that, contrary to Theorem 1, we now project to the
linear subspace {x : x1 + x2 = K}. Thus, the terminal condition on x translates into x1

T + x2
T = K – we need

to end at the target manifold –, whereas the transversality condition translates to pT being orthogonal to
the target manifold. Evaluating these conditions at T = 1, we get

x1
0 = S 1

0 = 1,

x2
0 = S 2

0 = 1,

x1
1 + x2

1 = K,

p1
1 − p2

1 = 0.

By symmetry, it is clear that the optimal configuration must satisfy x∗1 = (K/2,K/2). Inserting this value
into the first two components of (16), we obtain the equation

K
2

= eσ
2 pi

0 ⇐⇒ pi
0 = log

(K
2

)
/σ2, i = 1, 2.

This implies that p∗1 =
(

2
σ2K log(K/2), 2

σ2K log(K/2)
)
. Moreover, we see that the minimizing control

satisfies

(18) ḣ0(t) =

(
σx1(t)p1(t)
σx2(t)p2(t)

)
=

(
σp1

0
σp2

0

)
=

( log(K/2)
σ

log(K/2)
σ

)
,

see (15), implying that the minimal energy is given by

(19) Λ(K) =
1
2
‖h0‖

2
H =

log(K/2)2

σ2 = H(x0, p0).

Regarding focality, we have to check that the matrix:

(20) M(x1, p1) :=


∂
∂ε

∣∣∣
ε=0 H1

0←1(x1 + ε(1,−1), p1) ∂
∂η

∣∣∣∣
η=0

H1
0←1(x1, p1 + η(1, 1))

∂
∂ε

∣∣∣
ε=0 H2

0←1(x1 + ε(1,−1), p1) ∂
∂η

∣∣∣∣
η=0

H2
0←1(x1, p1 + η(1, 1))


is non-degenerate when evaluated at the optimal configuration (x∗1, p∗1). A simple calculation shows that

M(x1, p1) =

(
e−σ

2 x1
1 p1

1 − x1
1 p1

1σ
2e−σ

2 x1
1 p1

1 −σ2(x1
1)2e−σ

2 x1
1 p1

1

−e−σ
2 x2

1 p2
1 + x2

1 p2
1σ

2e−σ
2 x2

1 p2
1 −σ2(x2

1)2e−σ
2 x2

1 p2
1

)
,
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implying that

M(x∗1, p∗1) =

( 2
K (1 − log(K/2)) −σ

2K
2

2
K (−1 + log(K/2)) −σ

2K
2

)
,

and we can conclude that
det M(x∗1, p∗1) = 2σ2 (

log(K/2) − 1
)
,

which is zero if and only if K = 2e. We summarize the results of this calculation as follows:
• In the generic case K , 2e, the non-focality condition of Theorem 1 holds true, and we obtain

(from Corollary 3) the following (short time) density expansion of BT = exp(σW1
T ) + exp(σW2

T ),
expansion

K 7→ exp
(
−

Λ (K)
T

)
1
√

T
(1 + O (T ))

When specialized to unit volatility, we precisely find (1a).
• For K = 2e, the initial stock price is focal for the minimizing configuration, so the non-focality

condition of Theorem 1 fails. And indeed, we want it to fail for the actual expansion in this case,
namely (1b), is not at all of the generic form predicted by our theorem.

Remark 4. It is immediate to use this analysis to deal also with the case of non-unit (but identical) spots
S 1

0 = S 2
0 by scaling the Black-Scholes dynamics accordingly, i.e., by replacing K with K/S 1

0. Hence, in

this case focality happens when log
(

K
2S 1

0

)
= 1, i.e., when K = 2S 1

0e.

5. Extensions: correlation, local and stochastic vol

5.1. Analysis of the Black–Scholes basket, small noise. In section 4 we analyzed the density of a
simple Black–Scholes basket with dynamics

dBt = S 1
t σdW1

t + S 2
t σdW2

t .

As explained in Section 3 the analysis is really based on a small noise (small vol) expansion of

dBεt = S 1,ε
t σεdW1

t + S 2,ε
t σεdW2

t ,

run til time T = 1. Consider now a situation with small rates, also of order ε. In other words,

dS i,ε
t = rS i,ε

t εdt + S i,ε
t σεdW i,

and then Bεt = S 1,ε
t + S 2,ε

t as before. We still assume S i
0 = 1. A look at Theorem 1 (now we cannot use

Corollary 3) reveals that the entire leading order computation remains unchanged (at least at unit time
and with trivial changes otherwise). The resulting (now: small noise) density expansion of of BεT |T=1 is
more involved and takes the form

(21) K 7→ exp
(
−

Λ (K)
ε2

)
exp

(
2r log(K/2)
σ2 log(2)ε

)
1
ε

(1 + O(ε)) .

Here Λ (K) is given in closed form, cf. 19, so that Λ′ (K) =
2 log(K/2)
σ2K is also explicitly known. Furthermore,

h0 is (still) given by (18), so that

φh0
t =

(
(K/2)t

(K/2)t

)
.

Thus, the ODE for X̂ (see Theorem 1) is given by

dX̂t

dt
= log(K/2)X̂t + r

(
(K/2)t

(K/2)t

)
, X̂0 = x̂0 = 0,

which has the solution

X̂i
t = r

(
1 −

(
1
2

)t) Kt

log 2
,
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implying that Ŷ1 = X̂1
1 + X̂2

1 = rK/ log(2). Thus, the second exponential term has the form given above.

5.2. Basket analysis under local, stochastic vol etc. One can immediately write down the Hamiltonian
associated to, say two, or d > 2 assets, each of which is governed by local vol dynamics or stochastic
vol, based on additional factors. In general, however, one will be stuck with the analysis of the resulting
boundary value problem for the Hamiltonian ODEs; numerical (e.g. shooting) methods will have to be
used. In some models, including the Stein–Stein model, we believe (due to the analysis carried out in
[11]) that, in special cases, closed form answers are possible but we will not pursue this here. Instead, we
continue with a few more computation in the Black–Scholes case for d assets.

5.3. Multi-variate Black-Scholes models. In the multi-variate case d > 2 of a general, d-dimensional
Black Scholes model with correlation matrix (ρi j), the Hamiltonian has the form

H(x, p) =
1
2

d∑
i, j=1

ρi jσ
i pixiσ jx j p j.

Thus, the Hamiltonian ODEs have the form

ẋl = σlxl
d∑

i=1

ρliσ
i pixi, i = 1, . . . , d

ṗl = −σl pl
d∑

i=1

ρliσ
i pixi, i = 1, . . . , d.

Consequently, it is again easy to see that ∂
∂t xl(t)pl(t) = 0, implying that xl(t)pl(t) = xl

0 pl
0. The Hamiltonian

flow has the form

(22) Ht←0(x0, p0) =


(
xl

0 exp
[
σl

(∑d
i=1 ρliσ

i pi
0xi

0

)
t
])d

l=1(
pl

0 exp
[
−σl

(∑d
i=1 ρliσ

i pi
0xi

0

)
t
])d

l=1

 .
Using again that pl(t)xl(t) = pl(0)xl(0) for any l, we obtain the inverse Hamiltonian flow

(23) H0←t(xt, pt) =


(
xl

t exp
[
−σl

(∑d
i=1 ρliσ

i pi
t x

i
t

)
t
])d

l=1(
pl

t exp
[
σl

(∑d
i=1 ρliσ

i pi
t x

i
t

)
t
])d

l=1

 .
The boundary conditions – at T = 1 – are now given by

x0 = S 0(24a)
d∑

l=1

xl(1) = K(24b)

p1(1) = p2(1) = · · · = pd(1).(24c)

Indeed, the transversality condition (24c) says that the final momentum p(1) is orthogonal to the surface{ ∑d
l=1 yl = K

}
, whose tangent space is spanned by the collection of vectors e1 − el, l = 2, . . . , d, with

e1, . . . , ed the standard basis of Rd. The equations (24) are certainly not difficult to solve numerically, but
an explicit solution is not available, neither in the general case nor in the case of d uncorrelated assets.

Remark 5. The main point of this calculation is that while explicit solutions are no longer possible in
a general Black-Scholes model, the phenomenon (1) potentially appears in all Black-Scholes models.
Moreover, we stress that the non-focality conditions are easily checked numerically.
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Remark 6. Note that the discretely monitored Asian option can be considered as a special case of a basket
option on correlated assets. Indeed, let us consider an option on

1
N

N∑
i=1

S ti , with (for simplicity) ti = i∆t, i = 1, . . . ,N.

For each individual i ∈ { 1, . . . ,N } we have, for fixed ∆t > 0, the equality in law

S ti = S 0eσBi∆t−
1
2σ

2i∆t = S 0eσ
iW i

∆t−
1
2 (σi)2∆t

for σi B
√

iσ and W i
∆t B Bi∆t/

√
i. In law, the vector

(
W1

∆t, . . . ,W
N
∆t

)
corresponds to the marginal distribu-

tion of an N-dimensional Brownian motion at time ∆t with correlation ρi j =
min(i, j)
√

i j , 1 ≤ i, j ≤ N. Thus,
the Asian option corresponds to an option on the basket with S i

0 ≡ S 0, σi as above and a correlation ma-
trix ρi j with maturity ∆t. Moreover, the asymptotic expansion of the price of the Asian option as ∆t → 0
corresponds to the short-time asymptotics of the basket.

Remark 7. A small-noise asymptotic expansion of the continuous Asian option on
∫ T

0 S tdt is also possible
by the techniques of Section 3 (with ellipticity conditions replaced by weak Hörmander conditions).
Essentially, this is equivalent to letting N → ∞ in Remark 6 – but more direct.

As in the two-dimensional case, the boundary conditions can be solved explicitly in the fully symmetric
case, when σl ≡ σ and, say, S l

0 ≡ 1. Then the optimal configuration satisfies

x∗0 = (1, . . . , 1)T , x∗1 = (K/d, . . . ,K/d)T

p∗0 =

(
log(K/d)

σ2 , . . . ,
log(K/d)

σ2

)T

, p∗1 =

(
d

σ2K
log(K/d), . . . ,

d
σ2K

log(K/d)
)T

.

Introducing

q = ε1


1
1
...
1

 , z =


ε2 + · · · + εd

−ε2
...
−εd

 ,
we obtain (for the case of d uncorrelated assets)

M(x1, p1) B ∂(z,q)
∣∣∣
(z,q)=0 πH0←1(x1 + z, p1 + q)

=

(
a1 b
a G

)
,

where a = (a2, . . . , ad)T ∈ R(d−1)×1, b = b(1, . . . , 1) ∈ R1×(d−1), G = diag(g2, . . . , gd) ∈ R(d−1)×(d−1) with

al = −(σl)2(xl
1)2e−(σl)2 pl

1 xl
1 , l = 1, . . . d,

b =
[
1 − (σ1)2x1

1 p1
1

]
e−(σ1)2 p1

1 x1
1 ,

gl = −
[
1 − (σl)2xl

1 pl
1

]
e−(σl)2 pl

1 xl
1 , l = 2, . . . d.

In the symmetric case, we can evaluate M at the optimal configuration and obtain

M(x∗1, p∗1) =


−σ2 K

d
[
1 − log(K/d)

] d
K · · ·

[
1 − log(K/d)

] d
K

−σ2 K
d −

[
1 − log(K/d)

] d
K · · · 0

...
...

. . .
...

−σ2 K
d 0 · · · −

[
1 − log(K/d)

] d
K

 ,
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whose determinant can be seen to be

det M(x∗1, p∗1) = (−1)dσ2K
[(

1 − log(K/d)
) d

K

]d−1

.

Thus, the non-focality condition fails if and only if K = de. Moreover, we obtain the energy

Λ(K) = H(x∗0, p∗0) =
d
2

log(K/d)2

σ2 .

Appendix A. A geometric approach to focality

Consider the Black Scholes model

dS i
t = σiS i

tdW i
t ,

〈
dW i, dW j

〉
t
= ρi, jdt.

We change parameters S→ y→ x, by

yi :=
log

(
S i

S i
0

)
σi , xi = Lipyp, i = 1, . . . , d,

where ρ denotes the correlation matrix of W and ρ = LLT its Cholesky factorization. Obviously, S i =

S i
0eσiyi

. and in terms of the x-coordinates we have

xi = xi(F) = Lip log
(
S p/S p

0

)
/σp,

S i = S i(x) = S i
0eσiLip xp

.

The advantage of using the chart x is that the corresponding Riemannian metric tensor is the usual Eu-
clidean metric tensor. Thus, we simply have

d(S0,S) = |x0 − x|

and the geodesics are straight lines as seen from the x-chart. Note furthermore that S = S0 is transformed
to x = 0.

The payoff function of the option is given by
(∑

wiS i
T − K

)+
. We normalize wi ≡ 1 and T ≡ 1.

The strike surface F =
{
S ∈ Rd

+

∣∣∣∑d
i=1 S i = K

}
, which is (a sub-set of) a hyperplane in S coordinates

is, however, transformed to a much more complicated submanifold in x coordinates. Re-phrasing the
equation

∑
i S i = K in y-coordinates and solving for yd gives

yd = log


K −

d−1∑
i=1

S i
0eσ

i ∑d
p=1 Lip xp

 /S d
0

 /σd,

with (Li j) = (Li j)−1, which implies – using that L and L−1 are lower-triangular matrices –

Ldd xd = log


K −

d−1∑
i=1

S i
0eσ

i ∑i
p=1 Lip xp

 /S d
0

 /σd −

d−1∑
k=1

Ldk xk.

For sake of clarity, let us introduce the notation q = (q1, . . . , qd−1) := (x1, . . . , xd−1). A parametrization of
the strike surface F is then given by the map ϕ : U ⊂ Rd−1 → Rd with

U :=

q ∈ Rd−1

∣∣∣∣∣∣∣
d−1∑
i=1

S i
0eσ

i ∑i
p=1 Lipqp

< K

 ,
and

ϕ(q) :=

q, 1
Ldd

log


K −

d−1∑
i=1

S i
0eσ

i ∑i
p=1 Lipqp

 /S d
0

 /σd −

d−1∑
k=1

Ldkqk


 .
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Note that by the change of coordinates, we are implicitly assuming that S i > 0 for all i. Moreover, the
standard basis e1(p), . . . , ed−1(p) of the tangent space TpF to F at p = ϕ(q) is given by the columns of the
Jacobi matrix of ϕ evaluated at q, more precisely we have

ei(p) =

(δ j
i )

d−1
j=1 , −

1
Ldd

 1
σd

∑d−1
j=i σ

jL jiS j
0eσ

j ∑ j
r=1 L jrqr

K −
∑d−1

j=1 S j
0eσ j ∑ j

r=1 L jrqr
+ Ldi




for i = 1, . . . , d − 1 and p = ϕ(q). Consequently, the normal vector field N to S at p = ϕ(q) is given by

N(p) = α(p)


 1

Ldd

 1
σd

∑d−1
j=i σ

jL jiS j
0eσ

j ∑ j
r=1 L jrqr

K −
∑d−1

j=1 S j
0eσ j ∑ j

r=1 L jrqr
+ Ldi




d−1

i=1

, 1

 = N ◦ ϕ(q),

where α is a normalization factor guaranteeing that |N(p)| = 1, i.e.,

α(p) =

1 +

d−1∑
i=1

1
(Ldd)2

 1
σd

∑d−1
j=i σ

jL jiS j
0eσ

j ∑ j
r=1 L jrqr

K −
∑d−1

j=1 S j
0eσ j ∑ j

r=1 L jrqr
+ Ldi


2
−1/2

.

The Weingarten map or shape operator Lp : TpF → TpF is defined by

Lp
(
dϕϕ−1(p)(v)

)
= −d(N ◦ ϕ)(ϕ−1(p)) · v,

v ∈ Rd−1 = Tϕ−1(p)U, see [13]. In other words, for ϕ(q) = p, we interpret N as a map in q and −Lp is
than the directional derivative of that map. We study the Weingarten map since it gives us the curvature
of the surface F. Indeed, the eigenvalues k1(p), . . . , kd−1(p) of the linear map Lp : TpF → TpF are called
principal curvatures of F. Then the focal points of F at p are given by

{p +
1

ki(p)
N(p)|1 ≤ i ≤ d − 1 such that ki(p) , 0}.

In order to compute the eigenvalues of the shape operator, we need to compute the representation of
Lp in the standard basis (e1(p), . . . , ed−1(p)). Let us denote this matrix by L(p), then we obviously have

L(ϕ(q))i j = −〈
∂

∂q j (N ◦ ϕ)(q), ei(ϕ(q))〉, i, j = 1, . . . , d − 1.

The principal curvatures k1(p), . . . , kd−1(p) are, thus, the eigenvalues of the (d − 1)-dimensional matrix
L(p).

Since the calculations become too complicated in the general case, we now again concentrate on the
case of two uncorrelated assets, i.e., d = 2 and ρ = L = I2. In this case, we have

e1(p) =

1, −σ1

σ2

S 1
0eσ

1q1

K − S 1
0eσ1q1

 ,
N(ϕ(q)) =

1√
(σ1)2(S 1

0)2e2σ1q1
+ (σ2)2

(
K − S 1

0eσ1q1
)2

(
σ1S 1

0eσ
1q1
, σ2

(
K − S 1

0eσ
1q1))

.

Thus, the Weingarten map is given by

Lp(ve1(p)) = vκ(p)e1(p),

where for q = (q1) ∈ R

κ(ϕ(q)) = k1(ϕ(q)) =
K(σ1)2(σ2)2S 1

0eσ
1q1

(
S 1

0eσ
1q1
− K

)
[
(σ1)2(S 1

0)2e2σ1q1
+ (σ2)2

(
S 1

0eσ1q1
− K

)2
]3/2
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is the curvature of the curve F in R2. We see that κ = 0 if and only if K = S 1
0eσ

1q1
, i.e., at the boundary

of the surface F. Otherwise, κ is negative.
Here, both components of N(p) are positive on F. Consequently, for any p = ϕ(q) ∈ S there is

precisely one focal point f = f(p) ∈ R2, which is given by

f
1 = q1 +

S 1
0eσ

1q1
[
2(σ2)2K − ((σ1)2 + (σ2)2)S 1

0eσ
1q1

]
− (σ2)2K2

σ1(σ2)2K
(
K − S 1

0eσ1q1
) ,

f
2 =

1
σ2 log

K − S 1
0eσ

1q1

S 2
0

 + 2
σ2

(σ1)2 −
σ2Ke−σ

1q1

(σ1)2S 1
0

−
((σ1)2 + (σ2)2)S 1

0eσ
1q1

(σ1)2σ2K
.

Denoting p = (x1, x2) and re-introducing the short-cut notation S i = S i
0eσ

i xi
, i = 1, 2, (noting that

S 1 + S 2 = K) we can express f as

f
1 = x1 +

S 1
[
2(σ2)2K − ((σ1)2 + (σ2)2)S 1

]
− (σ2)2K2

σ1(σ2)2KS 2 ,

f
2 = x2 +

S 1
[
2(σ2)2K − ((σ1)2 + (σ2)2)S 1

]
− (σ2)2K2

(σ1)2σ2KS 1 .

In the current setting, let q∗ be the optimal configuration in q-coordinates, i.e., the point on F with
smallest Euclidean norm. Then the non-focality condition of Theorem 1 is satisfied, if 0 is not a focal
point to ϕ(q∗), see the discussion in the proof of [10, Prop. 6].

Remark 8. As both components of the normal vector N are non-negative on F and the curvature κ is
negative, 0 can only be a focal point if F has a non-empty intersection with the positive quadrant. Inserting
into the parametrization of F, we see that this can only be the case if K > S 1

0 + S 2
0. In other words: if

the option is in the money, then the non-focality condition is always satisfied (in the two-dimensional,
uncorrelated case).

Let us again use the parameters of Section 2, i.e., S 1
0 = S 2

0 = 1, σ1 = σ2 = σ. Then we consider
S∗ = (K/2,K/2), which translates into x∗ =

(
log(K/2)

σ
,

log(K/2)
σ

)
. Inserting into the formulas for the focal

points, we obtain

f
1(x∗) = f2(x∗) =

log
(

K
2

)
− 1

σ
.

So, 0 is focal to the optimal configuration, if and only if

K = 2e,

and we recover, once more, the results of Section 2 and Section 4 – recall that S0 corresponds to 0 in
x-coordinates.

In Figure 1 and 2 the focal points are visualized for two different configurations of two uncorrelated
baskets. We plot the surface F as a submanifold of R2. We have seen above that for any p ∈ F there
is precisely one focal point f(p). Hence, we additionally plot the surface {f(p)|p ∈ F} – more precisely,
part of this surface. In Figure 1 we show the case constructed above where the non-focality condition is
violated. In Figure 2 the option is ITM. As explained above, in the ITM case the manifold F does not
intersect the positive quadrant, implying that the non-focality condition is satisfied.
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Figure 2. Optimal configuration and focal points for two independent assets with σ1 =

σ2 = 1, S0 = (1, 1), K = 2/e.
(A) The dashed line depicts the optimal path between the spot price S0 (0 in the q-chart)
and the optimal configuration.
(B) Dotted lines connect some selected points on the manifold F with the corresponding
focal points. Points marked with a triangle visualize the construction of the focal points.
This example illustrates the fact that the non-focality condition always holds when the
basket option is in the money.
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