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Abstract—Heterogeneous computing systems can dramatically
increase the performance of parallel applications on clusters.
Currently, most applications that utilize OpenCLTM devices
(CPUs, GPUs, Accelerators), run their device-specific codeonly
on devices of the same computer were the application runs.
This paper presents the VirtualCL (VCL) cluster platform, a
wrapper for OpenCL that allows most unmodified applications
to transparently utilize many OpenCL devices in a cluster asif all
the devices are on the local computer. VCL benefits applications
that can use many devices concurrently. Such applications benefit
from the reduced programming complexity of a single computer,
the availability of shared-memory, multi-threads and lower level
parallelism, as in openMP, as well as concurrent access to devices
in many nodes, as in MPI. The paper presents the components
of VCL and its performance.

Index Terms—Heterogeneous clusters, OpenCL, parallel appli-
cations, cluster computing

I. I NTRODUCTION

Heterogeneous computing systems provide an opportunity
to dramatically increase the performance of parallel and High-
Performance Computing (HPC) applications on clusters, by
combining traditional multi-core CPUs, general-purpose GPUs
and Accelerator devices. Currently, applications that utilize
GPU devices, run their device-specific (kernel) code only on
local devices of the (hosting) computer were they run. Without
an adequate run-time environment, it is usually difficult tosplit
an application so that it can run on many computers in parallel.

The main programming paradigms for developing parallel
HPC applications are MPI [1] and OpenMP [2]. Development
of parallel applications is usually simpler in openMP than
in MPI, mainly because OpenMP supports shared-memory,
multi-threads and fine granularity. While traditional OpenMP
implementations run applications on a single computer, we
recently demonstrated [4] that OpenMP can be extended to
use a heterogeneous (CPU and GPU) cluster environment, so
while the CPU part of the application runs on one node, the
GPU kernels run on cluster-wide devices. This extension can
provide a simpler programming environment, because unlike
MPI, there is no need to split the application into sub-tasks
that run on different cluster-nodes.

Regardless of the programming paradigm, HPC programs
that are developed to run on heterogeneous clusters necessitate
the use of the communication-network, either to distribute
tasks and exchange messages as in MPI; or to send kernels,
data buffers and collect results as in the extended-OpenMP.

In both paradigms, the network latency could became a
bottleneck.

This paper presents the VirtualCL (VCL) cluster platform
that can run most unmodified OpenCL [3] applications trans-
parently on clusters with many devices, including CPUs, GPUs
and Accelerator devices of all vendors. VCL benefits appli-
cations that can use multiple OpenCL devices concurrently.
It is particularly suitable to run extended-OpenMP programs.
VCL allows programs to run on a cluster without having to
be split, by providing the impression of a single host with
many devices. Users can start a parallel application on a
hosting computer, then VCL manages and transparently runs
the kernels of the application on different nodes.

The VCL cluster platform consists of three components:
the VCL library, described in Sec. III-B is a cluster-wide
front-end for OpenCL applications. the broker, described in
Sec. III-C, performs cluster-wide allocation of resourcesand
the back-end daemon, described in Sec. III-D, which runs
kernels on behalf of host applications. Combining the above,
the VCL components provides a platform in which all the
cluster devices are seen as if they are located in the hosting-
node. The structure of VCL is therefore flexible enough, al-
lowing the incorporation of many algorithms, such as network
optimizations, load-balancing and dynamic configurations.

To show the overhead of VCL, we compare between the
time required by an application to run a sequence of kernels
using the “native” OpenCL library on a local device and the
times to run these kernels using VCL on local and remote
devices.

The paper presents the elements of VCL, its performance
and the performance of several applications.

II. T HE VCL RUN-TIME MODEL

VCL is designed to run applications that combine a CPU
process with parallel computation on OpenCL devices. The
CPU process is responsible for the overall program flow and
may as well also perform some of the computations. It can
be multi-threaded in order to utilize all the available cores
in the hosting node. While each instance of the application
runs on a single hosting node, it can use multiple openCL
devices of a cluster. Choosing the location of the devices is
transparent to the program – applications need not be aware



which cluster nodes and devices are available and where the
devices are located. The number of hosting nodes and cluster
nodes is configurable and they may overlap.

Currently most openCL applications make no use of multi-
ple devices. Most such unmodified applications will run cor-
rectly on VCL, but the full benefits of VCL manifest with par-
allel applications that can use multiple devices concurrently.
Our model simplifies the development of parallel applications
and reduces the management complexity of running them on
a cluster.

The VCL run-time model combines the advantages of both
the openMP [2] and the MPI [1] programming paradigms.
On the one hand, as in openMP, applications written for
VCL benefit from the reduced programming complexity of
the single computer, the availability of shared-memory, multi-
threads and lower level parallelism, while on the other hand, as
in MPI, VCL applications have concurrent access to devices
in many nodes. To demonstrate the capabilities of the VCL
model, we presented in [4] extensions of OpenMP and C++
that make use of VCL on clusters with multiple GPU devices.

III. T HE VCL CLUSTER PLATFORM

A. Overview

The VCL cluster platform is a wrapper for OpenCL that
allows most unmodified applications to transparently utilize
many OpenCL devices in a cluster as if all the devices are
on the local computer. With the VCL cluster platform, remote
nodes perform OpenCL functions on behalf of application(s)
on the host(s).

VCL is flexible: applications may choose to create OpenCL
contexts that comprise of devices from several nodes; or
multiple contexts, each with the devices of a different node;
or any combination of the above. Other applications may be
split into several independent processes and/or threads, each
running on a different set of devices, while using shared-
memory between them. Sophisticated applications may be
specific about which devices they include in their contexts,
but for the benefit of most unmodified applications, VCL also
allows environment-variables to control the device allocation
policies. By default, each context that is created includesall
the devices of a single node.

VCL consists of three components: the VCL library, the
broker and the back-end daemon.

B. The VCL Library

The VCL library is a cluster-wide front-end for OpenCL
applications. When linked with openCL applications it allows
transparent access to cluster-wide openCL devices, hidingthe
actual location of the devices from the calling applications.

The VCL library is designed to operate with most unmodi-
fied OpenCL programs, so platform-specific preferences, such

as the policy of choosing devices from the cluster, can be
defined using environment-variables. The VCL library fully
supports multi-threading and is thread-safe.

The VCL library incorporates various optimization algo-
rithms. For example, due to network latency, the VCL li-
brary attempts to optimize the communication performance
by maintaining an independent data-base of OpenCL objects
and performing as many OpenCL operations as possible on
the host-computer in order to reduce the number of network
round-trips to the minimum.

A shell-script is provided for the ease of running programs
with the VCL library.

C. The VCL Broker

The VCL broker is a daemon-process that runs on each host-
computer where users can run their OpenCL applications. Its
responsibilities include:

1) Online monitoring of existence and availability of
OpenCL devices (e.g. GPUs) in the cluster;

2) Reporting about such devices to enquiring applications;
3) Intelligent allocation of devices for OpenCL applications

when they create contexts, attempting for example to
match the number of requested devices with a combina-
tion of nodes that have the exact number of such devices.

4) Authenticate, route and ensure the integrity of messages
between the applications and back-ends.

The broker is connected with the VCL library via a UNIX
socket.

D. The Back-end Daemon

The back-end daemon runs on each cluster-node where
OpenCL devices are present and supported by an appropriate
vendor-specific SDK. The back-end uses whichever vendor-
specific OpenCL library(s) that are available on its node to
run kernels on behalf of client applications. It emulates all the
necessary OpenCL operations as requested by the VCL library.
For security protection, so long as GPU devices and SDKs
do not allow transparent preemption, OpenCL devices are not
shared by the back-end among different client applications-
each device is allocated to only one client application at a
time.

IV. PERFORMANCE OFVCL

A. The VCL overhead

To find the VCL overheads, we compared between the time
taken by an application to run a sequence of identical kernels
using the native OpenCL library and the times to run the same
kernels with VCL on local and remote devices.

The tests were performed on a cluster with Intel 4-way Core
i7 CPU nodes that were connected by a Quad Data Rate (QDR)



Infiniband. Each node included an AMD-ATI 6970 and an
NVIDIA GeForce GTX 480 (Fermi) GPUs.

In the first test we measured the net time to run 1000 pseudo
kernels on a local and remote devices, using the AMD-ATI
6970 GPUs. The time to compile the program and to copy
buffers to/from the device was deliberately excluded. Each
test was conducted 5 times and the median result is shown.

The results, for buffer sizes ranging from 4KB - 256MB
are shown in Table I: Column 1 lists the size of the buffer
that is passed to the OpenCL kernel. Column 2 shows the
native OpenCL library times. Columns 3 shows the net VCL
overheads (on top of the native OpenCL library times) for a
local device and Column 4 shows the corresponding overheads
for a remote device.

TABLE I
NATIVE OPENCL TIME VS. VCL OVERHEAD

Buffer Native Net VCL
Size OpenCL Overhead (ms)

Time (ms) Local Remote
4KB 96 35 113
16KB 100 35 111
64KB 105 35 106
256KB 113 36 105
1MB 111 34 114
4MB 171 36 114
16MB 400 36 113
64MB 1354 33 112
256MB 4993 37 111

From Table I it can be seen that the difference between
the local/remote times and the corresponding native times
are small and practically independent of the buffer size. The
overhead in the table shows the net time to start 1000 kernels,
therefore starting a single kernel by VCL on a local device
takes on average∼35µs longer than by the native OpenCL
library and ∼111µs longer on a remote device. This is a
reasonable overhead for most parallel HPC applications.

B. Performance of the SHOC benchmark

We ran the applications from the Scalable HeterOgeneous
Computing (SHOC) 1.01 benchmark suite [6], [7], using the
default parameters. The tests were performed on the above
cluster, with an NVIDIA GeForce GTX 480 (Fermi) GPU in
each node. We measured the runtime of each application, first
with the native OpenCL library, then with VCL on a local
device and again with VCL on a remote device. Each test was
conducted 5 times and the median result is shown.

The results are presented in Table II. For each application,
Column 2 shows the times to run the application with the na-
tive OpenCL library; Columns 3 and 4 show the corresponding
times to run the application with VCL on local and remote
devices.

Below we quote the briefSHOC description of each ap-
plication followed by an explanation of its VCL performance.

TABLE II
SHOC BENCHMARK PERFORMANCE

Application Native Time VCL Times (Sec.)
(Sec.) Local Remote

BusSpeedDownload 0.89 0.88 0.88
BusSpeedReadback 0.91 0.89 0.89
DeviceMemory 31.44 56.78 243.81
KernelCompile 5.91 5.93 5.94
MaxFlops 186.98 156.74 211.20
QueueDelay 0.88 0.93 1.22
FFT 7.29 7.15 7.33
MD 14.08 13.66 13.80
Reduction 1.60 1.58 2.88
SGEMM 2.11 2.13 2.43
Scan 2.53 2.54 6.57
Sort 0.98 1.04 1.53
Spmv 3.25 3.30 5.91
Stencil2D 11.65 12.48 18.94
Triad 6.01 11.83 53.37
S3D 32.39 32.68 33.17

• BusSpeedDownload and BusSpeedReadback: mea-
sures the bandwidth of transferring data across the
PCI bus to/from a device. In both cases, as the VCL
library detected that the applications did not run any
kernels, the data was never even transferred, so VCL
created no overheads.

• DeviceMemory: measures the bandwidth of memory
accesses to various types of device-memory.Since
this test does not involve any computation, the only
factor is the overhead of data transfers created by VCL.
Specifically, the local run adds 2 memory copies (via
UNIX sockets) and the remote run adds a memory copy
plus a TCP/IP network transfer.

• KernelCompile: measures the compile time for several
OpenCL kernels. The VCL roll is merely to transfer
the small source code and instruct the compiler in the
appropriate computer to compile it. The VCL overhead
is therefore negligent.

• MaxFlops: measures the maximum achievable floating
point performance.Unfortunately, the VCL performance
results in this specific case are misleading because the test
is self-calibrating, so that the actual amount of work is
different.

• QueueDelay: measures the overhead of using the
OpenCL command queue.This is an artificial test.

• FFT: forward and reverse 1D FFT. Relatively small
data, long computation - ideal for VCL.

• MD: computation of the Lennard-Jones potential
from molecular dynamics. Relatively small data, long
computation - ideal for VCL.

• Reduction: operation on an array of single or double
precision floating point values. Moderate amount of
computation resulted in moderate performance.



• SGEMM: matrix multiplication. Much data and com-
putation - reasonable VCL overhead.

• Scan (parallel prefix sum): on an array of single or
double precision floating point values.Much data, little
computation - poor results on remote devices.

• Sort: an array of key-value pairs using a radix sort
algorithm. More computation thanScan, therefore better
results.

• Spmv: sparse matrix vector multiplication. Huge data,
significant computation - moderate results.

• Stencil2D: a 9-point stencil operation applied to a 2D
data set. Huge data - bandwidth for remote devices is
the limiting factor.

• Triad: a version of the STREAM Triad benchmark
that includes PCIe transfer time. Huge data, minimal
computations - very poor results.

• S3D: a computationally-intensive kernel from the S3D
turbulent combustion simulation program. Relatively
small data, long computation - ideal for VCL.

C. Performance of the ATI-stream SDK Test Suite

In this test we ran selected applications from the AMD ATI-
stream SDK version 2.3 test suite [8], using an ATI 6970 GPU
in each node. The results are shown in Table III and exhibited
a similar pattern to the SHOC benchmark.

TABLE III
ATI- STREAMSDK TEST SUITE PERFORMANCE

Application and Parameters: Native VCL Times (Sec.)
Iterations (-i) orArray Size Time (Sec.) Local Remote
AESEncryptDecrypt -i 2,000 16.75 17.31 24.50
BinarySearch -s 10K -i 10,000 2.36 3.28 16.66
BinomialOption -i 10,000 4.83 5.04 16.34
BitonicSort 2,000K 2.99 2.83 3.02
BlackScholes -i 2,000 3.02 6.14 43.36
ConstantBandwidth 123.12 122.89 123.51
DwtHaar1D -i 10,000 3.73 4.33 23.97
FFT -i 20,000 7.44 9.15 56.35
FastWalshTransform1,000K 2.60 2.45 2.52
Histogram100K X 100K 22.28 21.77 21.75
LDSBandwidth -i 10,000 19.03 19.94 25.05
MatrixMultiply10K X 10K X 10K 12.46 14.87 27.21
MemoryOptimizations 5.60 6.61 12.55
MonteCarloAsian -c 1K 31.93 32.86 101.35
PCIeBandwidth 5.39 4.76 4.75
PrefixSum100K 0.98 0.86 0.88
RadixSort -i 1,000 8.98 10.19 27.64
RecursiveGaussian -i 1,000 3.60 5.57 24.93
Reduction1,000K 0.98 0.86 0.90
ScanLargeArrays1,000K 2.63 2.50 2.60
SimpleConvolution10K X 10K 5.43 15.69 34.32
SimpleImage -i 1,000 1.96 3.61 22.54
SobelFilter -i 1,000 1.51 2.29 11.67
URNGi -i 1,000 1.49 2.24 11.63

D. Performance outcome

The Tables show a very wide range of results for taking the
GPU computation to other nodes. On the one hand, much more

computation power is available throughout the cluster. On the
other hand, network bandwidth and especially network latency
take their toil on performance. Those tests with relativelylong
kernels and infrequent buffer-I/O operations are doing well,
but those with many short kernels or with frequent or large
I/O operations fall behind.

To amend these obvious problems that emerge from running
on a cluster, we designed ”SuperCL”.

V. SUPERCL

When running OpenCL on remote devices, network latency
is the main limiting factor. Minimizing the number of network
round-trips for standard OpenCL library-calls was the first
step, but is not enough.

As the next step, we designed an extension called ”Su-
perCL”, whereby a programmable sequence of kernels and/or
memory operations can be sent to device(s) of a cluster-
node, usually with just a single network round-trip. When
necessary, communication with the host is still possible, but
in an asynchronous manner, to avoid the round-trip waiting
time.

Bandwidth can also be a limiting factor when huge in-
puts/outputs are involved, so this is also addressed by SuperCL
by allowing buffers to be initialized from back-end files and
for results to be stored on back-end files.

Below are some examples of what can be done with
SuperCL, beginning with simple cases and continuing onto
more advanced options.

• Run a sequence of 3 kernels on a back-end device. As
each kernel depends on the output of the former kernel,
a temporary buffer is used on the back-end node, without
the need to create it on the host, or to transfer its contents
over the network.

• As above, but while the first and the third kernels are
parallel in nature and therefore run best on a GPU, the
middle kernel is sequential in nature and therefore runs
best on a CPU.
In this case, SuperCL uses a back-end that supports both
its CPU and its GPU(s) as OpenCL devices, where it
runs the first and third kernel on the GPU and the middle
kernel on the CPU - there is no need to transfer the
intermediate results to the host.

• Run 2 alternate kernels N consecutive times (A-B-A-B-
A-B...).

• Run 2 alternate iterative kernels: the first kernel computes
something and the second determines the accuracy of the
result. Repeat running both until an accuracy below a
given threshold is achieved.

• As above, but the currently-achieved level of accuracy
is also sent to the host after each iteration using asyn-
chronous messages. The host may also stop (or otherwise



control, for example by adjusting the threshold) the iter-
ations at any time by sending asynchronous instructions
which can then be inspected between kernels.

• Repeat a complex computation (with one or more kernels)
over a large matrix, either N times or until a condition
is satisfied. Instead of waiting until the computation is
complete and only then sending the whole matrix back to
the host, whenever parts of the matrix are known to have
final values, those parts (and only them) can be sent back
to the host, concurrently with the remaining computation.

• As above, but signals are also sent to the host to let it
know that some data has been copied.

• In all the above cases, it is possible to obtain the input
from common NFS-mounted files and/or from data left
over on the back-end nodes by earlier programs. Final
results can also be left on the back-end nodes instead of
being sent to the host.

SuperCL operations can be queued in the normal way as
standard OpenCL operations.

VI. SLURM, MULTITASKING AND MPI SUPPORT

VCL includes support for SLURM by providing a flexible
per-job virtual cluster, where each job has exclusive access
to the OpenCL devices on those back-end nodes that were
allocated by SLURM - and only to those. Virtual clusters
are set and destroyed by SLURM prologs and epilogs. VCL
also informs SLURM when less than the expected number of
OpenCL devices are found on a node, so to prevent SLURM
from allocating those nodes as VCL back-end nodes.

Most OpenCL applications are not programmed to expect
competition with other applications (including other instances
of the same application) over OpenCL devices. This issue that
is not addressed by the OpenCL standard (at least not up until
OpenCL-1.2) because it is of less importance on the single
node - however, in VCL where all the devices of a cluster are
visible and open to competition, this issue becomes serious.

Of particular interest is the possible competition among
different ranks of the same MPI job, which due to strict
adherence to the OpenCL standard may unintentionally fail
to allocate devices for contexts. VCL corrects this problemby
allowing tasks (such as MPI ranks) to pre-allocate a number
of exclusive OpenCL devices, thus avoiding competition with
other ranks.

Another problem that arises in general-purpose clusters, but
not common in the single node, is the presence of different
types of OpenCL devices which the application do not expect
to work on. A VCL option can make such unwanted devices
invisible to applications.

VII. C ONCLUSIONS ANDFUTURE WORK

Advancements in heterogeneous systems offer new opportu-
nities to increase the performance of parallel HPC applications

on clusters. Currently, users are provided with software devel-
opment and programming environments that can ease the use
of OpenCL devices on a single node, but were not designed
to run applications on clusters.

The paper presented the VCL cluster platform, a wrapper
for OpenCL that allows most unmodified applications to
transparently utilize many OpenCL devices in a cluster as if
all the devices are on the local computer. This platform allows
OpenMP and each task of MPI application to utilize cluster-
wide devices.

Performance of parallel applications with VCL shows that
running parallel kernels efficiently on remote devices in a
cluster is quite feasible. VCL should be able to support large-
scale high-end parallel computing applications.

Based on our experience, an ideal cluster for running paral-
lel HPC applications with our platform would be a collection
of low-cost servers, each with several OpenCL devices, that
are connected by a low-latency, high-bandwidth network to
high-end hosting nodes with many cores and large memories.

The work described in this paper could be extended by
the development of MOSIX-like algorithms for dynamic re-
source management, load-balancing among different devices
and within an APU, task priorities, fair-share and for choosing
the “best” device [5].

VCL is currently implemented for Linux platforms. The
latest distribution supports OpenCL 1.1. It can be obtained
from [10].
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