
The MOSIX Cluster Operating System for
High-Performance Computing on Linux Clusters,

Multi-Clusters and Clouds
A White Paper

A. Barak and A. Shiloh
http://www.MOSIX.org

OVERVIEW

MOSIX1 is a cluster operating system that provides users
and applications with the impression of running on a sin-
gle computer with multiple processors (single-system image),
without changing the interface and the run-time environment
of their respective login nodes. For example, in a MOSIX
cluster users can run applications that create multiple pro-
cesses, then let MOSIX seek resources and automatically
distribute processes among nodes, e.g., to improve the overall
performance, without changing the run-time environment of
the migrated processes. As a result, users need not change or
link applications with any special library, they need not modify
applications, login or copy files to remote nodes or even know
where their programs run.

MOSIX for Linux-2.2 and Linux-2.4 was originally de-
veloped to manage a single cluster [4]. MOSIX for Linux-
2.6 and Linux-3 was extended with a comprehensive set
of new features for managing clusters, multi-clusters, e.g.,
among different groups in an organization [6] and clouds. For
example, one multi-cluster feature allows owners of clusters to
share their resources from time to time, while still preserving
the autonomy of the owners to disconnect their clusters at
any time, without sacrificing running guest processes from
other clusters. Another feature, MOSIX Reach the Clouds
(MOSRC), is a tool that allows applications to run in a hybrid
environment on remote clusters such as clouds [2], without
the need to pre-copy files to these clusters, see Sec. IV for
details. MOSRC can run on both Linux and various MOSIX
cluster configurations.

MOSIX supports both interactive processes and batch jobs.
It incorporates dynamic resource discovery and automatic
workload distribution, commonly found on single computers
with multiple processors. The resource discovery algorithm
provides each node with the latest information about resource
availability and the state of the nodes. Based on this informa-
tion and subject to priorities, the process migration algorithms
can initiate reallocation of processes among nodes, e.g., for

1MOSIX R© is a registered trademark of A. Barak and A. Shiloh.
Copyright c© A. Barak 2011. All rights reserved.

load-balancing, or to move processes from a disconnecting
cluster.

In a MOSIX cluster, a priority method ensures that local
processes and processes with a higher priority can always
move in and force out guest (migrated) processes with a
lower priority. The priority method can be used to guarantee
fair access to users. It can also be used to support flexible
configurations, where clusters can be shared (symmetrically
or asymmetrically) among users of different clusters. Users
need not know the details of the configuration nor the state of
any resource.

Other features of MOSIX include migratable sockets -
for direct communication between migrated processes; a se-
cure run-time environment (sandbox) that prevents guest pro-
cesses from accessing local resources in hosting nodes; “live-
queuing”, that preserves the full generic Linux environment
of queued jobs; gradual release of queued jobs, to prevent
flooding of any cluster as well as checkpoint and recovery.

MOSIX is implemented as a set of utilities that provide
users and applications with a distributed Linux-like run-time
environment. MOSIX supports most Linux features that are
relevant to ordinary, non-threaded Linux applications, sothat
most Linux programs can run unchanged.

Due to networking and management overheads, MOSIX is
particularly suited to run compute intensive and other applica-
tions with low to moderate amounts of I/O. Tests of MOSIX
show that the performance of several such applications overa
1Gb/s campus backbone is nearly identical to that within the
same cluster [6].

MOSIX should be used in trusted environments over secure
networks, where only authorized nodes are allowed. These
requirements are standard within private clusters and intra-
organizational clouds, but usually not elsewhere. Other than
these requirements, MOSIX could be used in any configuration
with multiple computers.

A production campus multi-cluster, with 18
MOSIX clusters (about 1000 CPUs) can be seen at
http://www.MOSIX.org/webmon. Most clusters are private,
belonging to research groups in various departments. The
rest are shared clusters that are made of workstations in
student labs. The features of MOSIX allow better utilization



of resources, including idle workstations in student labs,by
users who need to run HPC applications but cannot afford
such a large private cluster.

II. BUILDING BLOCKS

This section describes the two building blocks of MOSIX:
configurations and processes.

A. Configurations

A MOSIX clusteris a set of connected computers (including
servers and workstations), called “nodes”, which are adminis-
trated by a single owner and run the same version of MOSIX.
In a MOSIX cluster, each node maintains information about
availability and the state of the resources of all the nodes,see
Sec.III-A for details.

A MOSIX multi-cluster(also called “an intra-organizational
multi-cluster”) is a collection of private MOSIX clusters that
run the same version of MOSIX and are configured to work
together.

A MOSIX multi-cluster usually belongs to the same orga-
nization, but each cluster may be administrated by a different
owner or belongs to a different group.

The cluster-owners are willing to share their computing
resources at least some of the time, but are still allowed to
disconnect their clusters from the multi-cluster at any time.

In a MOSIX multi-cluster, each node maintains information
about availability and the state of the resources of all the nodes
in all the connected clusters. Different clusters may (or may
not) have a shared environment such as a common NFS file-
system. Nevertheless, MOSIX processes can run in remote
clusters while still using the environment provided by their
respective private home clusters. From the user’s perspective,
MOSIX transforms such a multi-cluster into a single cluster
by preserving the user’s local run-time environment.

In MOSIX multi-clusters there is usually a high degree
of trust, i.e., a guarantee that applications are not viewed
or tampered with when running in remote clusters. Other
possible safety requirements are a secure network and that only
authorized nodes, with identifiable IP addresses, are included.

A MOSIX cloudis a collection of entities such as MOSIX
clusters; MOSIX multi-clusters; Linux clusters (such as a
group of Linux servers); individual workstations and Virtual
Machines (VM). Each entity may possibly run a different
version of Linux or MOSIX.

In a MOSIX cloud, different entities are usually adminis-
trated by different owners and rarely share any file systems
(such as NFS). In this cloud, nodes in each entity are aware
of one or more nodes in other entities, including their IP-
addresses and services they are willing to provide, but there is
no on-going automatic flow of information between entities.

In a MOSIX cloud, users can launch applications from their
workstations or a private home-cluster, on target nodes of other
entities. These applications have access to files on nodes of
these entities, while still allowing the applications to access
files on their launching node. This is accomplished by the
MOSIX Reach Clouds (MOSRC), described in Sec. IV, which
allows applications to run in remote nodes, without the need
to copy files to/from remote clusters.

B. Processes

MOSIX recognizes two types of processes: Linux processes
and MOSIX processes. Linux processes are not affected by
MOSIX - they run in native Linux mode and cannot be
migrated. MOSIX processes can be migrated.

Linux processes usually include administrative tasks and
processes that are not suitable for migration. Another class
of Linux processes is those created by the “mosrun -E”
command. These processes can be assigned by the “-b” option
of “mosrun” to the least loaded nodes in the cluster (but not
to nodes in other clusters, for which the MOSRC tool can be
used, see Sec. IV for details).

MOSIX processes are usually user applications that are
suitable and can benefit from migration. All MOSIX processes
are created by the “mosrun” command. MOSIX processes
are started from standard Linux executables, but run in an
environment that allows each process to migrate from one
node to another. Each MOSIX process has a unique home-
node, which is usually the node in which the process was
created [4]. Child processes of MOSIX processes remain under
the MOSIX discipline (with the exception of thenative utility,
that allows programs, mainly shells, already running under
mosrun, to spawn children in native Linux mode). Below, all
references to processes mean MOSIX processes.

III. U NIQUE FEATURES OFMOSIX

The unique features of MOSIX are intended to provide users
and applications with the impression of running on a single
computer with multiple processors.

A. Automatic Resource Discovery

Resource discovery is performed by an on-line informa-
tion dissemination algorithm, providing each node in all the
clusters with the latest information about availability and the
state of system-wide resources [1]. The algorithm is based
on a randomized gossip dissemination, in which each node
regularly monitors the state of its resources, including the
CPU speed, current load, free and used memory, etc. This
information, along with similar information that has been
recently received by that node is routinely sent to randomly
chosen nodes. A higher probability is given to choosing target
nodes in the local cluster.

Information about newly available resources, e.g., nodes that
have just joined, is gradually disseminated across the active
nodes, while information about disconnected nodes is quickly
phased out. In [1] we presented bounds for the age properties
and the rates of propagation of the above algorithm.

B. Process Migration

MOSIX supports (preemptive) process migration [4] among
nodes in a cluster and in a multi-cluster. Process migrationcan
be triggered either automatically or manually. The migration
itself amounts to copying the memory image of the process
and setting its run-time environment. To reduce network occu-
pancy, the memory image is often compressed using LZOP [9].

Automatic migrations are supervised by on-line algorithms
that continuously attempt to improve the performance, e.g., by



load-balancing; by migrating processes that requested more
than available free memory (assuming that there is another
node with sufficient free memory); or by migrating processes
from slower to faster nodes. These algorithms are particularly
useful for applications with unpredictable or changing resource
requirements and when several users run simultaneously.

Automatic migration decisions are based on (run-time)
process profiling and the latest information on availability
of resources, as provided by the information dissemination
algorithm. Process profiling is performed by continuously
collecting information about its characteristics, e.g., size, rates
of system-calls, volume of IPC and I/O. This information is
then used by competitive on-line algorithms [7] to determine
the best location for the process. These algorithms take into
account the respective speed and current load of the nodes,
the size of the migrated process vs. the free memory available
in different nodes, and the characteristics of the processes.
This way, when the profile of a process changes or when
new resources become available, the algorithm automatically
responds by considering reassignment of processes to better
locations.

C. The Run-Time Environment

MOSIX is implemented as a software layer that allows
applications to run in remote nodes, away from their respective
home-nodes. This is accomplished by intercepting all system-
calls, then if the process was migrated, most of its system-calls
are forwarded to its home-node, where they are performed on
behalf of the process as if it was running in the home-node,
then the results are sent back to the process.

In MOSIX, applications run in an environment where even
migrated processes seem to be running in their home-nodes.
As a result, users do not need to know where their programs
run, they need not modify applications, link applications with
any library, login or copy files to remote nodes. Furthermore,
file and data consistency, as well as most traditional IPC
mechanisms such as signals, semaphores and process-ID’s are
intact.

The outcome is a run-time environment where each user gets
the impression of running on a single computer. The drawback
of this approach is increased overheads, including management
of migrated processes and networking.

1) Overhead of migrated processes:The following four
real-life applications, each with a different amount of I/O,
illustrate the overhead of running migrated processes. The
first application, RC, is an intensive CPU (satisfiability)
program. The second application,SW (proteins sequences),
uses a small amount of I/O. The third program,JELlium
(molecular dynamics), uses a larger amount of I/O. Finally,
BLAT (bioinformatics) uses a moderate amount of I/O.

We used identical Xeon 3.06GHz servers that were con-
nected by a 1Gb/s Ethernet and ran each program in three
different ways:

1) As a local (non-migrated)Linux process.
2) As a migrated MOSIX process to another node in the

same cluster.

3) As a migrated MOSIX process to a node in aremote
cluster, located about 1 Km away.

The results (averaged over 5 runs) are shown in Table I.
The first four rows show theLinux run-times (Sec.), the total
amounts ofI/O (MB), the I/Oblock size (KB) and the number
of system-calls performed by each program. The next two
rows list the run-times of migrated MOSIX processes and the
slowdowns (vs. the Linux times) in thesame cluster. The last
two rows show the run-times and the slowdowns in theremote
cluster across campus.

TABLE I
LOCAL VS. REMOTE RUN-TIMES (SEC.)

RC SW JEL BLAT
Linux 723.4 627.9 601.2 611.6
Total I/O (MB) 0 90 206 476
I/O block size – 32KB 32KB 64KB
Syscalls 3,050 16,700 7,200 7,800
Same cluster 725.7 637.1 608.2 620.1
Slowdown 0.32% 1.47% 1.16% 1.39%
Remote cluster 727.0 639.5 608.3 621.8
Slowdown 0.50% 1.85% 1.18% 1.67%

Table I shows that with a 1Gb/s Ethernet, the average
slowdown (vs. the Linux times) of all the tested programs
was 1.085% in the same cluster, and 1.3% across campus, an
increase of only 0.215%. These results confirm the claim that
MOSIX is suitable to run compute bound and applications
with moderate amounts of I/O over fast networks.

2) Migratable sockets:Migratable sockets allow processes
to exchange messages by direct communication, bypassing
their respective home-nodes. For example, if process X whose
home-node is A and runs on node B wishes to send a message
over a socket to process Y whose home-node is C and runs
on node D, then without a migratable socket, the message has
to pass over the network from B to A to C to D. Using direct
communication, the message will pass directly from B to D.
Moreover, if X and Y run on the same node, then the network
will not be used at all.

To facilitate migratable sockets, each MOSIX process can
own a “mailbox”. MOSIX Processes can send messages to
mailboxes of other processes anywhere in other clusters (that
are willing to accept them).

Migratable sockets make the location of processes transpar-
ent, so the senders do not need to know where the receivers
run, but only to identify them by their home-node and process-
ID (PID) in their home-node.

Migratable sockets guarantee that the order of messages per
receiver is preserved, even when the sender(s) and receiver
migrate several times.

3) A secure run-time environment:The MOSIX software
layer guarantees that a migrated (guest) process cannot modify
or even access local resources other than CPU and memory in
a remote (hosting) node. Due care is taken to ensure that those
few system-calls that are performed locally, cannot access
resources in the hosting node, while the majority are forwarded



to the home-node of the process. The net result is a secure run-
time environment (sandbox), protecting the host from stray
guest processes.

D. The Priority Method

The priority method ensures that local processes and pro-
cesses with a higher priority can always move in and push
out all processes with a lower priority. The priority method
allows flexible use of nodes within and among groups. By
default, guest processes are automatically moved out whenever
processes of the cluster’s owner or other more privileged
processes are moved in.

Owners of clusters can determine from which other cluster
they are willing to accept processes and which clusters to
block. Processes from unrecognized clusters are not allowed
to move in. Note that the priority applies to the home-node of
each process rather than to where it happens to arrive from.

By proper setting of the priority, two or more private clusters
can be shared (symmetrically or asymmetrically) among users
of each cluster. Public clusters can also be set to be shared
among users of private clusters.

E. Flood Control

Flooding can occur when a user creates a large number
of processes, either unintentionally or with the hope that
somehow the system will run it. Flooding can also occur when
other clusters are disconnected or reclaimed, causing a large
number of processes to migrate back to their respective home-
clusters.

MOSIX has several built-in features to prevent flooding.
For example, the load-balancing algorithm does not permit
migration of a process to a node with insufficient free memory.
Another example is the ability to limit the number of guest
processes per node.

To prevent flooding by a large number of processes, in-
cluding returning processes, each node can set a limit on
the number of local processes of certain classes. When this
limit is reached, additional processes of those classes are
automatically frozen and their memory images are stored in
secondary storage. This method ensures that a large number
of processes can be handled without exhausting the CPU and
memory.

Frozen processes are reactivated in a circular fashion, to
allow some work to be done without overloading the owner’s
nodes. Later, as more resources become available, the load-
balancing algorithm migrates running processes away, thus
allowing reactivation of more frozen processes.

F. Disruptive Configurations

In a multi-cluster configuration, authorized administrators of
each physical cluster can connect (disconnect) it to (from)the
pool at any time. If the cluster is a Linux cluster then all open
connections to other clusters are closed, which may result in
losing running jobs. In the case of a MOSIX cluster, all guest
processes (if any) are moved out and all local processes that
were migrated to other MOSIX clusters are brought back. Note

that guest processes can be migrated to any available node in
MOSIX clusters - not necessarily to their respective home-
nodes. It is therefore recommended that users do not login
and/or initiate processes from remote MOSIX clusters, since
if they did so, then their processes would have nowhere to
return.

1) Time to disconnect a cluster:This test shows the times
to move out guest processes from a hosting cluster in order
to disconnect it from a multi-cluster. Two MOSIX clusters,
with identical Xeon 3.06GHz servers that were connected by
a 1Gb/s Ethernet were used: cluster A with 14 nodes and
cluster B with 20 nodes.

First, a given set of identical CPU-bound processes were
started on cluster A and were forced to migrate to cluster B.
The test started by acluster-disconnectcommand on cluster
B, that forced all the guest processes out. The test ended when
all the processes returned to cluster A.

TABLE II
T IMES TO DISCONNECT A20 NODE CLUSTER

No. of Process Migration
Processes Size Time Rate

40 512 MB 198 Sec 103 MB/Sec
40 1024 MB 397 Sec 103 MB/Sec
80 256 MB 192 Sec 106 MB/Sec
80 512 MB 388 Sec 105 MB/Sec

The results are presented in Table II. The first two columns
list the number of guest processes and the size of each process;
Column 3 shows the average (over 4 runs) of the migration
times and Column 4 shows the migration rates.

The results show that MOSIX can migrate a set of processes
at an average (weighted over all cases) rate of 102.6 MB/s,
which is about 93% of the maximal TCP/IP rate over a 1Gb/s
Ethernet.

2) Long-running processes:The process migration, the
freezing and the gradual reactivation mechanisms provide
support to applications that need to run for a long time, e.g.,
days or even weeks, in different clusters. As explained above,
before a MOSIX cluster is disconnected, all guest processes
are moved out. These processes are frozen in their respective
home-nodes and are gradually reactivated when system-wide
MOSIX nodes become available again. For example, long
processes from one department migrate at night to unused
nodes in another department. During the day most of these
processes are frozen in their home-cluster until the next
evening.

G. Dynamic Queuing

The number and type of jobs that are released by the
MOSIX queuing system depends on the current availability
of the cluster/multi-cluster resources.

H. Live Queuing

Unlike other queuing systems, MOSIX uses “live-queuing”
that allows queued jobs to preserve their full connection with



their Linux environment, such as the controlling terminal,
parent-process, signals, pipes, sockets, shared file-descriptors,
etc.

IV. MOSIX REACH THE CLOUDS

MOSIX Reach the Clouds (MOSRC) is a tool that allows
applications to run in remote computers in any MOSIX cloud
entity (see Sec.??), without pre-copying files to these comput-
ers. MOSRC users launch applications from their workstation
(or private home-cluster) on target nodes of other entities.
MOSRC applications run in a hybrid environment, where some
of their files are on their launching node and the rest are on
target nodes. As a result, MOSRC can be used in diverse ways
to promote different modes of file-sharing among different
computers and users.

MOSRC can run on both Linux computers and MOSIX
clusters. The hybrid environment on target nodes can be used
for remote file access; file-sharing among different computers
and users (even more than two computers when MOSRC is
used recursively); and for running applications that need to
use both private and shared data. Standard I/O remains on the
launching computer. All “mosrun” features can be used on
clouds running MOSIX.

The rationale behind MOSRC is to harness resources in
remote entities without copying data files there. As such,
MOSRC can be useful to users that need to run applications
but do not wish to store data on commercial clouds [2], or
that cannot determine in advance which files (or file-parts) will
be needed. MOSRC provides consistent access to files, even
among multiple MOSRC jobs that run on different targets. Due
to network latencies, MOSRC is more suited to run compute
intensive and other applications with low to moderate amounts
of I/O.

MOSRC consists of two parts: a launching program that can
send jobs from a head-node to designated target nodes, and
a run-time environment that provides file services to running
jobs on target computers. The head-node could be the user’s
workstation and any computer that has access to the user’s
files, possibly even a virtual machine in a commercial cloud,
if the user’s files are stored there. Note that the head-node
should not be confused with the MOSIX home-node, which,
in the case of using MOSRC to launch MOSIX processes, is
the target node rather than the head-node.

The head-node and the target nodes can run Linux or
MOSIX. If the target node is part of a MOSIX cluster, then
MOSRC jobs can benefit from all the MOSIX features. In
particular, MOSIX processes generated by MOSRC jobs can
be automatically dispersed among the nodes of that cluster
or even among other MOSIX clusters in a multi-cluster. If a
target node runs Linux (not MOSIX), then MOSRC jobs can
only run there as native Linux jobs.

Launching a job (from the head-node) is done by the “mrc”
command, see the mrc manual for details.

V. OTHER SERVICES

This section describes additional services that are provided
to MOSIX processes.

A. Checkpoint and Recovery

Checkpoint and recovery are supported for most computa-
tional MOSIX processes. When a process is checkpointed, its
image is saved to a file. If necessary, the application can later
be recovered from that file and continue to run from the point
it was last checkpoint. Checkpoints can be triggered by the
program itself, by a manual request or can automatically be
taken periodically.

Some processes may not be checkpoint and other processes
may not run correctly after recovery. For example, for security
reasons checkpoint of processes with setuid/setgid privileges
is not permitted. In general, checkpoint and recovery are not
supported for processes that depend heavily on their Linux
environment, such as processes with open pipes or sockets.

Processes that can be checkpointed but may not run cor-
rectly after being recovered include processes that rely on
process-ID’s of either themselves or other processes; processes
that rely on parent-child relations; processes that rely onter-
minal job-control; processes that coordinate their input/output
with other running processes; processes that rely on timers
and alarms; processes that cannot afford to lose signals; and
processes that use system-V semaphores and messages.

B. Queuing

MOSIX incorporates a First-Come-First-Serve (FCFS) dy-
namic queuing that allows users to dispatch a large number of
jobs, to run once sufficient resources are available.

The MOSIX queuing system includes tools for tracing
queued jobs, changing their priorities or the order of execution
and for running parallel, e.g., MPI jobs.

In addition to the unique dynamic and live-queuing, de-
scribed in the previous section, MOSIX also supports fair-
share, urgent and out-of-order jobs.

1) Fair-share: An optional fair-share policy allows the
interleaving of queued-jobs among users, thus protecting users
against the possibility that other users that came first effec-
tively do not allow their jobs to start at all. Fine-tuning among
users of the fair-share policy is also available.

2) Urgent jobs:Despite the FCFS queuing policy, MOSIX
allows to assign an additional number of “urgent” jobs to
run, regardless of the available resources and other limitations.
Obviously, there are restrictions on who is allowed to use this
option and which jobs should be considered as “urgent”. It is
the sys-admin’s responsibility to ensure that at any given time,
even when running the maximum allowed number of those
additional “urgent” jobs, there will be sufficient memory/swap-
space to proceed reasonably.

3) Out-of-order jobs:MOSIX can be configured to guar-
antee a minimal (usually small) number of jobs per user to
start out of order, even when resources are insufficient. This,
for example, allows users to run short jobs while very long
jobs of other users are already running or are placed in the
queue.

The only restriction on out-of-order jobs is that there must
be sufficient free memory, so that jobs that require much



memory are not started. Jobs (per user) above this number
and jobs that require more memory, are queued.

C. Batch Jobs

MOSIX supports batch jobs that can be sent to any node
in the local cluster (as opposed to interactive jobs that require
the specific environment of their dispatching node).

There are two types of batch jobs: Linux and MOSIX. Linux
batch processes do not migrate, while MOSIX batch processes
can migrate, although their home-node can be different than
their dispatching node. MOSIX can assist both types by: (a)
Queuing the job until resources are available (using “mosrun
-q”, “mosrun -S” or both); and (b) Selecting the best initial
assignment for the job.

Batch jobs are started from binaries in another node and
preserve only some of the caller’s environment: they receive
the environment variables; they can read from their standard-
input and write to their standard output and error, but not
from/to other open files; they receive signals, but if they
fork, signals are delivered to the whole process-group rather
than just the parent; they cannot communicate with other
processes on the calling node using pipes and sockets (other
than standard input/output/error), semaphores, messages, etc.
and can only receive signals, but not send them to processes
on the calling node.

The main advantage of batch jobs is that they save time by
not needing to refer to the dispatching-node to perform system-
calls, and that temporary files can be created on the node where
they start, preventing the dispatching node from becoming
a bottleneck. This approach is therefore recommended for
programs that perform a significant amount of I/O.

D. Support for 64-bit

The latest distribution of MOSIX supports only the x8664
architecture.

E. Running in a Virtual Machine

MOSIX can run in native Linux mode or in a Virtual Ma-
chine (VM). In native mode, performance is better [8], but it
requires some modifications to the base Linux kernel, whereas
a VM can run on top of any unmodified operating system that
supports virtualization, including OS-X and Windows.

F. Monitors

The monitor,mosmon provides information about resources
in the cluster, e.g., CPU-speed, load, free vs. used memory,
swap space, number of active nodes, etc. Type “help” to see
the available options.

VI. D OCUMENTATION

The MOSIX web includes a wiki, a list of frequently asked
questions (FAQ) and a list of selected MOSIX publications [5].

The wiki includes installation and configuration instructions,
pointers to the latest release and the change-log, to the user’s
and the administrator’s guide and the MOSIX manuals, an
overview and tutorial presentations, a list of MOSIX related
publications, a reference to the MOSIX book [3] and descrip-
tion of the MOSIX history.

VII. H OW TO OBTAIN A COPY

Subject to the MOSIX software license agreement, a copy of
MOSIX is available via the MOSIX web [5]. Distributions are
provided for use with native Linux, as RPMs for openSUSE
and as a pre-installed virtual-disk image that can be used to
create a MOSIX virtual cluster on Windows and/or Linux
computers.

VIII. C ONCLUSIONS

MOSIX is an operating system-like management system
that consists of a comprehensive set of tools for sharing
computational resources in Linux clusters, multi-clusters and
clouds. Its main features are geared for ease of use by
providing the impression of running on a single computer with
multiple processors. This is accomplished by preserving the
interface and the run-time environment of the login (home)
node for applications that run in other nodes. As a result,
users need not modify or link applications with any library,
they need not login or copy files to remote nodes or even know
where their programs run.

The unique features of MOSIX include automatic resource
discovery, dynamic workload distribution by process migra-
tion, a priority method that allows processes to migrate among
nodes in a multi-cluster, to take advantage of available re-
sources beyond the allocated nodes in any private cluster. This
is particularly useful in shared clusters or when it is necessary
to allocate a large number of nodes to one group, e.g., to
meet a deadline. The flood prevention and the disruptive con-
figuration provisions allow an orderly migration of processes
from disconnecting clusters, including long running processes
when remote resources are no longer available. Other unique
features include live queuing and a tool to run applicationson
clouds, without the need to pre-copy files to these clusters.

REFERENCES

[1] Amar L., Barak A., Drezner Z. and Okun M., “Randomized Gossip
Algorithms for Maintaining a Distributed Bulletin Board with Guar-
anteed Age Properties,”.Concurrency and Computation: Practice and
Experience, Vol. 21, pp. 1907-1927, 2009.

[2] Armbrust M., et al, “Above the Clouds: A Berkeley View of Cloud
Computing,” Technical Report EECS-2009-28, 2009.

[3] Barak A., Guday G. and Wheeler R., The MOSIX Distributed Operating
System, Load Balancing for UNIX. LNCS Vol. 672, Springer-Verlag,
ISBN 0-387-56663-5, New York, May 1993.

[4] Barak A., La’adan O. and Shiloh A., “Scalable Cluster Computing with
MOSIX for Linux,” Proc. 5th Annual Linux Expo, Raleigh, NC, pp.
95–100, 1999.

[5] http://www.MOSIX.org.
[6] Barak A., Shiloh A. and Amar L., “ An Organizational Grid of Federated

MOSIX Clusters,”Proc. 5-th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid05), Cardiff, 2005.

[7] Keren A., and Barak A., “Opportunity Cost Algorithms forReduction of
I/O and Interprocess Communication Overhead in a ComputingCluster,”
IEEE Tran. Parallel and Dist. Systems, 14(1), pp. 39–50, 2003.

[8] Maoz T., Barak A. and Amar L., “Combining Virtual MachineMigration
with Process Migration for HPC on Multi-Clusters and Grids,” Proc.
IEEE Cluster 2008, Tsukuba, 2008.

[9] http://www.lzop.de.


