
An Architecture for Intrusion Detection using Autonomous Agents∗

Jai Sundar Balasubramaniyan, Jose Omar Garcia-Fernandez,
David Isacoff, Eugene Spafford, Diego Zamboni†

Center for Education and Research in Information Assurance and Security
1315 Recitation Building

Purdue University
West Lafayette, IN 47907-1315

{balasujs,jgarcia,isacoff,spaf,zamboni}@cs.purdue.edu

CERIAS Technical Report 98/05

June 11, 1998

Abstract

The Intrusion Detection System architectures com-
monly used in commercial and research systems have
a number of problems that limit their configurability,
scalability or efficiency. The most common short-
coming in the existing architectures is that they are
built around a single monolithic entity that does most
of the data collection and processing. In this paper,
we review our architecture for a distributed Intrusion
Detection System based on multiple independent en-
tities working collectively. We call these entities Au-
tonomous Agents. This approach solves some of the
problems previously mentioned. We present the mo-
tivation and description of the approach, partial re-
sults obtained from an early prototype, a discussion
of design and implementation issues, and directions
for future work.

1 Background and motivation

We start by introducing some concepts that are used
throughout this paper, as well as describing the lim-
itations that we see in existing Intrusion Detection
Systems, and why a distributed approach using au-
tonomous agents can help in overcoming those limi-
tations.

∗Portions of this work were supported by contract MDA904-
97-6-0176 from the Maryland Procurement Office, and by
sponsors of CERIAS.
†Main author and contact person for questions concerning

this paper

1.1 Intrusion Detection

Intrusion detection (ID) is defined [17] as “the prob-
lem of identifying individuals who are using a com-
puter system without authorization (i.e., ‘crackers’)
and those who have legitimate access to the sys-
tem but are abusing their privileges (i.e., the ‘insider
threat’).” For our work, we add to this definition the
identification of attempts to use a computer system
without authorization or to abuse existing privileges.
Thus, our definition matches the one given in [9],
where an intrusion is defined as “any set of actions
that attempt to compromise the integrity, confiden-
tiality, or availability of a resource.”

We have received comments regarding the use of
the word intrusion in the previous definition. The
definition of the word [16] does not include the con-
cept of an insider misusing the resources, nor the at-
tempt to do so. In this sense, a more proper term
is Intrusion and Misuse Detection. Given our defi-
nition, we use the term intrusion to represent both
intrusion and misuse.

We also use the broad categorization of models of
intrusion detection described in [17]:

Misuse detection model: Detection is performed
by looking for the exploitation of known weak
points in the system, which can be described by
a specific pattern or sequence of events or data
(the “signature” of the intrusion).

Anomaly detection model: Detection is per-
formed by detecting changes in the patterns of
utilization or behavior of the system. This is the
type of intrusion detection described in [5]. It is
performed by building a statistical model that
contains metrics derived from system operation

1



and flagging as intrusive any observed metrics
that have a significant statistical deviation from
the model.

An Intrusion Detection System (IDS) is a computer
program that attempts to perform ID by either mis-
use or anomaly detection, or a combination of tech-
niques. An IDS should preferably perform its task in
real time [17].

IDSs are usually classified [17] as host-based or
network-based. Host-based systems base their de-
cisions on information obtained from a single host
(usually audit trails), while network-based systems
obtain data by monitoring the traffic of information
in the network to which the hosts are connected.

Notice that the definition of an IDS does not in-
clude preventing the intrusion from occurring, only
detecting it and reporting the intrusion to an opera-
tor.

1.2 Desirable characteristics of an
IDS

In [4], the following characteristics are identified as
desirable for an IDS:

• It must run continually with minimal human su-
pervision.

• It must be fault tolerant in the sense that it must
be able to recover from system crashes, either ac-
cidental or caused by malicious activity. Upon
startup, the IDS must be able to recover its pre-
vious state and resume its operation unaffected.

• It must resist subversion. The IDS must be able
to monitor itself and detect if it has been modi-
fied by an attacker.

• It must impose a minimal overhead on the sys-
tem where it is running, so as to not interfere
with its normal operation.

• It must be able to be configured according to
the security policies of the system that is being
monitored.

• It must be able to adapt to changes in system
and user behavior over time (e.g., new applica-
tions being installed, users changing from one
activity to another or new resources being avail-
able that cause changes in system resource usage
patterns).

As the number of systems to be monitored in-
creases and the chances of attacks increase we also
consider the following characteristics as desirable:

• It must be able to scale to monitor a large num-
ber of hosts while still providing results in a
timely and accurate manner.

• It must provide graceful degradation of service
in the sense that if some components of the IDS
stop working for any reason, the rest of them
should be affected as little as possible.

• It must allow dynamic reconfiguration. If a large
number of hosts is being monitored, it becomes
impractical to restart the IDS in all of them
whenever a change has to be made.

1.3 Limitations of existing IDS

Many of the existing network- and host-based
IDSs [10, 9] perform data collection and analysis cen-
trally using a monolithic architecture. By this we
mean that the data is collected by a single host, ei-
ther from audit trails or by monitoring packets in a
network, and analyzed by a single module using dif-
ferent techniques. Other IDSs [11, 22] perform dis-
tributed data collection (and some preprocessing) by
using modules distributed in the hosts that are being
monitored, but the collected data is still shipped to a
central location where it is analyzed by a monolithic
engine. A good review of systems that take both ap-
proaches is presented in [17].

There are a number of problems with these archi-
tectures:

• The central analyzer is a single point of failure. If
an intruder can somehow prevent it from work-
ing (for example, by crashing or slowing down
the host where it runs), the whole network is
without protection.

• Scalability is limited. Processing all the informa-
tion at a single host implies a limit on the size
of the network that can be monitored. After
that limit the central analyzer becomes unable
to keep up with the flow of information. Dis-
tributed data collection can also cause problems
with excessive data traffic in the network.

• It is difficult to reconfigure or add capabilities to
the IDS. Changes and additions are usually done
by editing a configuration file, adding an entry
to a table or installing a new module. The IDS
usually has to be restarted to make the changes
take effect.

• Analysis of network data can be flawed. As
shown in [20], performing collection of network
data in a host other than the one to which the

2



data is destined can provide the attacker the pos-
sibility of performing Insertion and Evasion at-
tacks. These attacks make use of mismatched as-
sumptions in the network protocol stacks of dif-
ferent hosts to hide the attacks or create denial-
of-service attacks.

Other IDSs have been designed to do distributed
collection and analysis of information. A hierarchical
system is described in [24], and [29] describes a co-
operative system without a central authority. These
systems solve most of the problems mentioned ex-
cept for the reconfiguration or adding capabilities to
the IDS, which are not described in either of the two
designs.

1.4 Autonomous Agents

A software agent can be defined as [1]:

. . . a software entity which functions contin-
uously and autonomously in a particular envi-
ronment . . . able to carry out activities in a
flexible and intelligent manner that is respon-
sive to changes in the environment . . . Ideally,
an agent that functions continuously . . . would
be able to learn from its experience. In addi-
tion, we expect an agent that inhabits an envi-
ronment with other agents and processes to be
able to communicate and cooperate with them,
and perhaps move from place to place in doing
so.

In our context, we define an autonomous agent
(henceforth agent) as a software agent that performs
a certain security monitoring function at a host.

We term the agents as autonomous because they
are independently-running entities (i.e., their exe-
cution is scheduled only by the operating system,
and not by other process). Agents may or may not
need data produced by other agents to perform their
work, but they are still considered to be autonomous.
Additionally, agents may receive high-level control
commands—such as indications to start or stop ex-
ecution, or to change some operating parameters—
from other entities. This high-level control does not
interfere our definition of agent autonomy.

An agent may perform a single very specific func-
tion, or may perform more complex activities.

1.4.1 How the use of Autonomous Agents
can improve the characteristics of an
IDS

Because agents are independently-running entities,
they can be added and removed from a system with-
out altering other components, therefore without

having to restart the IDS. Furthermore, agents may
provide mechanisms for reconfiguring them at run
time without even having to restart them. Addi-
tionally, agents can be tested on their own before
introducing them into a more complex environment.
An agent may also be part of a group of agents that
perform different simple functions but that can ex-
change information and derive more complex results
than any one of them may be able to obtain on their
own.

Thus, we argue that an IDS whose data collection
and analysis elements are agents solves all the prob-
lems mentioned in Section 1.3:

• If an agent stops working for any reason, one or
two things may happen:

– If the agent is truly independent and pro-
duces results on its own, only its results will
be lost. All other agents will continue to
work normally.

– If the data produced by the agent was
needed by other agents, that group of
agents may be impeded from working prop-
erly.

In any case, the damage is restricted to at most
a set of agents. All the other agents can continue
to work normally. Thus, if the agents are prop-
erly organized in mutually independent sets, the
single point of failure problem is reduced.

• By organizing the agents in a hierarchical struc-
ture with multiple layers of agents reducing data
and reporting it to the upper layers, the system
can be made scalable. This idea is proposed in [3]
and is also used in [24].

• The ability to start and stop agents indepen-
dently of each other in the systems that are being
monitored adds the possibility of reconfiguring
the IDS (or parts of it) without having to restart
it. If we need to start collecting a new type of
data or monitoring for a new kind of attacks, the
appropriate agents can be started without dis-
turbing the ones that are already running. Sim-
ilarly, agents that are no longer needed can be
stopped, and agents that need to be reconfigured
can be sent the appropriate commands without
having to restart the whole IDS.

• If an agent collects network information related
to the host where it is running, we reduce the
possibility of being subject to insertion and eva-
sion attacks by reducing the number of mis-
matched assumptions that can be made.

3



Additionally, using agents as data collection and
analysis entities provides the following desirable fea-
tures:

• Because an agent can be programmed arbitrar-
ily, it can obtain its data from an audit trail,
by probing the system where it is running, by
capturing packets from a network, or from any
other suitable source. Thus, an IDS built from
a collection of agents can cross the traditional
boundaries between host-based and network-
based IDSs.

• Because agents can be stopped and started with-
out disturbing the rest of the IDS, agents can be
upgraded as increased functionality is required
from them. As long as their external interface
remains unchanged (or backward-compatible),
other components need not even know that the
agent has been upgraded.

• If agents are implemented as separated processes
on a host, each agent can be implemented in the
programming language that is best suited for the
task that it has to perform.

1.5 Related Work

The idea of doing distributed intrusion detection is
not new, nor is the idea of having different func-
tions performed by different modules of the IDS. The
GrIDS project at UC Davis [24] employs data source
modules running in each host to report information
to graph engines that build a graph representation of
activity in the network and use it to detect possible
intrusions. According to [24], GrIDS provides mech-
anisms to allow third-party security tools to be used
as data sources, but it is not clear if and how data
sources can be added, removed or updated.

The NADIR system [11] performs distributed data
collection by employing the existing service nodes in
Los Alamos National Laboratory’s Integrated Com-
puter Network (ICN) to collect audit information,
which is then analyzed by a central expert system.
This work describes an IDS that runs in a real-
world system, therefore [11] presents many interest-
ing results and considerations regarding the collec-
tion, storage, reduction and processing of data in a
large computer network.

A novel approach is presented in [29], in which Co-
operative Security Managers (CSM) are employed to
perform distributed intrusion detection that does not
need a hierarchical organization or a central coordi-
nator. In this model, each CSM performs as a local
IDS for the host in which it is running, but can addi-
tionally communicate with other CSMs and exchange

information about users moving through the network
and detect suspicious activity. The architecture also
allows for CSMs to take actions when an intrusion
is detected such as starting damage-control activities
or stopping the intruder in its actions. Unclear as-
pects are the mechanisms through which CSMs can
be updated or reconfigured, and the intrusion detec-
tion mechanisms that are used locally by each CSM.

The idea of employing widely distributed elements
to perform intrusion detection, by emulating to some
extent the biological immune systems, and by giv-
ing the system a sense of “self”, has also been ex-
plored [8].

A distributed sensor system that performs central
processing and that can be organized in a hierarchical
fashion is described in [12]. This paper proposes a
system that is almost identical to the original design
of our system as done in [3]. It appeared several years
later in the same conference, but [12] has little in the
way of detail, and no citations to related work that
would enable us to determine how their work may
relate to ours.

The EMERALD project [19] proposes a distributed
architecture for intrusion detection that employs en-
tities called service monitors which are deployed to
hosts and perform monitoring functions similar to the
functionality we propose for our agents. They also
define several layers of monitors for performing data
reduction in a hierarchical fashion. Monitors can be
programmed to perform any function. The EMER-
ALD project is work in progress, and we expect it to
provide some interesting results.

The approach for using Autonomous Agents in
ID that was the foundation for our work was pro-
posed in [4, 3]. These papers introduced the idea of
lightweight, independent entities operating in concert
for detecting anomalous activity, prior to most of the
approaches mentioned previously.

2 System architecture

We propose an architecture (which we call AAFID
for Autonomous Agents For Intrusion Detection) for
building IDSs that uses agents as their lowest-level
element for data collection and analysis and employs
a hierarchical structure to allow for scalability as de-
scribed in Section 1.4.1.

2.1 Overview

A simple example of an IDS that adheres to the
AAFID architecture is shown in Figure 1(a). This
figure shows the three essential components of the
architecture: agents, transceivers and monitors. We

4



User
interface

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� �
� �
� �
� �

� �
� �
� �
� �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Transceivers

Monitors
Data flow
Control flow

Agents

HostsLegend

A

B

C

E

D

(a) Physical layout of the components in a sample AAFID system, showing agents,
transceivers and monitors, as well as the communication and control channels be-
tween them.

A

E

B

C

D
UI

(b) Logic organization of the same AAFID system showing the communication hi-
erarchy of the components. The bidirectional arrows represent both the control and
data flow between the entities. Notice that the logical organization is independent
of the physical location of the entities in the hosts.

Figure 1: Physical and logical representations of a sample IDS that follows the AAFID architecture (called
an AAFID system).

5



refer to each one of these components as AAFID en-
tities or simply entities, and to the whole IDS consti-
tuted by them as an AAFID system.

An AAFID system can be distributed over any
number of hosts in a network. Each host can con-
tain any number of agents that monitor for inter-
esting events occurring in the host. All the agents
in a host report their findings to a single transceiver.
Transceivers are per-host entities that oversee the op-
eration of all the agents running in their host. They
exert control over the agents running in that host,
and they have the ability to start, to stop and to
send configuration commands to agents. They may
also perform data reduction on the data received from
the agents. Finally, the transceivers report their re-
sults to one or more monitors. Each monitor oversees
the operation of several transceivers. Monitors have
access to network-wide data, therefore they are able
to perform higher-level correlation and detect intru-
sions that involve several hosts. Monitors can be or-
ganized in a hierarchical fashion such that a monitor
may in turn report to a higher-level monitor. Also, a
transceiver may report to more than one monitor to
provide redundancy and resistance to the failure of
one of the monitors. Ultimately, a monitor is respon-
sible for providing information and getting control
commands from a user interface. This logical organi-
zation, which corresponds to the physical distribution
depicted in Figure 1(a), is shown in Figure 1(b).

All the components export an API to communicate
with each other and with the user.

In the following section we describe each compo-
nent in greater detail.

2.2 Components of the architecture

2.2.1 Agents

An agent is an independently-running entity that
monitors certain aspects of a host, and reports ab-
normal or interesting behavior (for some definition of
“interesting”) to the appropriate transceiver. For ex-
ample, an agent could be looking for a large number
of telnet connections to a protected host, and con-
sider the occurrence of that event as suspicious. The
agent would then generate a report that is sent to the
appropriate transceiver. The agent does not have the
authority to directly generate an alarm. Usually, a
transceiver or a monitor will generate an alarm for
the user based on information received from one or
more agents. By combining the reports from differ-
ent agents, transceivers build a picture of the status
of their host, and monitors build a picture of the sta-
tus of the network they are monitoring.

Agents do not communicate directly with each

other in the AAFID architecture. Instead, they send
all their messages to the transceiver. The transceiver
decides what to do with the information based on
agent configuration information.

Notice that the architecture does not specify any
requirements or limitations for the functionality of
an agent. Thus it may be a simple program that
monitors a specific system variable or an event (for
example, counting the number of telnet connections
within the last 5 minutes), or a complex software sys-
tem (for example, an instance of IDIOT [2] looking
for a set of local intrusion patterns). As long as the
agent produces its output in the appropriate format
and sends it to the transceiver, it can be part of the
AAFID system.

Internally, agents are also allowed to perform any
functions they need. Some possibilities are:

• Agents may evolve over time using genetic pro-
gramming techniques, as suggested in [3].

• Agents may employ techniques to retain state
between sessions, allowing them to detect long-
term attacks or changes in behavior. Currently,
the architecture does not specify any mecha-
nisms for maintaining persistent state.

• Agents could migrate from host to host by com-
bining the AAFID architecture with some exist-
ing mobile-agent architecture.

Agents can be written in any programming lan-
guage. Some functionalities (e.g., reporting, commu-
nication and synchronization mechanisms) are com-
mon to all the agents, and can be provided through
shared libraries or similar mechanisms. Thus, a
framework implementation (such as the one described
in [23]) can provide most of the tools and mecha-
nisms necessary to make writing new agents a rela-
tively simple task.

2.2.2 Transceivers

Transceivers are the external communications inter-
face of each host. They have two roles: control and
data processing. For a host to be monitored by an
AAFID system, there must be a transceiver running
on that host.

In its control role, a transceiver performs the fol-
lowing functions:

• Starts and stops agents running in its host. The
instructions to start and stop agents can come
either from configuration information, from a
monitor, or as a response to specific events (for
example, a report from one agent may trigger
the activation of other agents to perform a more
detailed monitoring of the host).

6



• Keeps track of the agents that are running in its
host.

• Responds to commands issued by its monitor
by providing the appropriate information or per-
forming the requested actions.

In its data processing role, a transceiver has the
following duties:

• Receives reports generated by the agents running
in its host.

• Does appropriate processing (analysis or reduc-
tion) on the information received from agents.

• Distributes the information received from the
agents or the results of processing it either to
other agents or to a monitor, as appropriate.

2.2.3 Monitors

Monitors are the highest-level entities in the AAFID
architecture. They also have control and data
processing roles that are similar to those of the
transceivers. The main difference between monitors
and transceivers is that a monitor can control enti-
ties that are running in several different hosts whereas
transceivers only control local agents.

In their data processing role, monitors receive the
reduced information from all the transceivers they
control, and thus can do higher-level correlations,
and detect events that involve several different hosts.
Monitors have the capability to detect events that
may be unnoticed by the transceivers.

In their control role, monitors can receive in-
structions from other monitors and they can control
transceivers and other monitors. Additionally, mon-
itors have the ability to communicate with a user
interface and provide the access point for the whole
AAFID system. This high-level control is accessed
through a common API that can be used both by
other monitors or by other programs (such as user
interfaces). This API includes mechanisms for access-
ing the information that the monitor has, for provid-
ing commands to the monitor, or to send commands
to lower-level entities such as transceivers and agents.

If two monitors control the same transceiver, mech-
anisms have to be employed to ensure consistency of
information and behavior. The AAFID architecture
does not currently specify the mechanisms for achiev-
ing this consistency.

2.2.4 User interfaces

The most complex and feature-full IDS can be useless
if it does not have good mechanisms to allow users to

interact with and control it. We have not looked in
full detail into the user interface problem, although
some issues are mentioned in Section 4.4.

The AAFID architecture clearly separates the user
interface from the data collection and processing ele-
ments. A user interface has to interact with a monitor
and it has to use the API that the monitor exports
to request information and to provide instructions.

This separation allows different user interface im-
plementations to be used (even concurrently) with
an AAFID system. For example, a Graphical User
Interface (GUI) could be used to provide interactive
access to the IDS, while a command-line based in-
terface could be used in scripts to automate some
maintenance and reporting functions.

2.3 Communication mechanisms

The transmission of messages between entities is a
central part of the functionality of an AAFID system.
If the communication between the entities is some-
how disrupted, the system essentially stops working.
Although the AAFID architecture does not specify
which communication mechanisms are to be used,
there is a minimum set of characteristics that we con-
sider desirable. A more detailed discussion of the
tradeoffs that have to be made, as well as discussion
of implementation alternatives, can be found in Sec-
tion 4.1.

We consider the following to be some important
points about the communication mechanisms used in
an AAFID system:

• Appropriate mechanisms should be used for dif-
ferent communication needs. In particular, com-
munication within a host may be established by
different means than communication across the
network.

• The communication mechanisms should be effi-
cient and reliable in the sense that they should
(a) not add significantly to the communications
load imposed by regular host activities, and (b)
provide reasonable expectations of messages get-
ting to their destination quickly and without al-
terations.

• The communication mechanisms should be se-
cure in the sense that they should (a) be resis-
tant to attempts (either by an external attacker
or by an authorized entity) of rendering it unus-
able by flooding or overloading, and (b) provide
some kind of authentication and confidentiality
mechanism.

The topics of secure communications, secure dis-
tributed computation and security in autonomous

7



agents have been already studied [6, 13], and possibly
some previous work can be used in AAFID imple-
mentations to obtain communication channels that
provide the necessary characteristics.

2.4 Other ideas and possible compo-
nents

In the course of designing our system architecture, we
explored some alternate architectural components.
We briefly discuss two such components: the Simple
Network Management Protocol (SNMP) and the Au-
dit Router. We also discuss the merits and demerits
of employing them in our system. These components
are not currently part of the AAFID architecture.

2.4.1 The Simple Network Management Pro-
tocol (SNMP)

The Simple Network Management Protocol
(SNMP) [21] is a protocol designed to facilitate
the exchange of management information between
network devices.

The SNMP model comprises a Network Manage-
ment System (NMS) and Managed Devices. An
SNMP Agent runs in each managed device, and an
SNMP Manager operates in the machines from which
the network is going to be monitored.

The SNMP Agent software is typically designed
to minimize its impact on the managed device. The
NMSs that run the management software bear the
load of management and contain applications to
present the management information to users (for ex-
ample, a GUI). The Management Information Base
(MIB) is a database that specifies variables that are
maintained by the agents, and that the manager can
query or set [26]. There are four operations defined:
get and getnext for information retrieval, set for infor-
mation setting, and trap for handling of asynchronous
events.

The SNMP model can be used to implement the
AAFID architecture. The transceivers can be im-
plemented as SNMP agents, while the functionality
of the monitor can be achieved by the SNMP NMS.
The autonomous agents (not to be confused with the
SNMP agents) can be given unique identifiers in a
specially designed MIB. These object identifiers can
provide access to a set of parameters within the MIB
whose values represent the state of the autonomous
agent and that can be retrieved or set by the NMS.
The transceivers could communicate with the moni-
tor by raising SNMP traps. The autonomous agents
communicate with the transceiver by setting their
corresponding data values.

Using SNMP to implement the AAFID architec-
ture might be an interesting possibility. However,
there are a number of significant issues that would
have to be further investigated, including security,
fault tolerance and ease of extension and deployment
of the implementation.

2.4.2 Audit Router

System audit trails are an essential source of infor-
mation for an IDS. However, there are problems that
arise when many different entities (such as agents in
the AAFID architecture) try to access them simulta-
neously. It may be useful to have a mechanism that
helps in distributing the information to the entities
that need it. We now describe some possibilities for
implementing such a mechanism.

The first and simplest scheme is to pass all the au-
dit records to all the agents, and let them select which
records they need. The problem with this scheme is
that every agent must process the whole audit trail,
which is probably a waste of processing resources.

Another possibility is to embed the agents within
a central audit server that passes appropriate records
to appropriate agents. A version of this approach has
successfully been used in the IDIOT IDS [15, 2]. One
problem is that this model only supports the push
mechanism of client-server interaction. This means
that the server sends events to the agents as they be-
come available. If an agent is not ready to receive
events, those events are lost, unless the agent imple-
ments synchronization and buffering techniques.

We propose the use of another mechanism that uses
a central audit router. This router handles most of
the work, and provides agents with mechanisms to
retrieve only the records they require.

The central audit router maintains a database of
agents and the audit classes that they require, and
implements support routines such as buffer manage-
ment (see Figure 2). Agents need to register with the
router and give it information regarding the types of
audit classes that they require. When doing so they
receive a handle in return. The agent can then simply
read from the handle whenever it is ready to receive
new events. When the agent closes the handle, the
router purges information about it in its tables. This
technique implements the pull model of computing.
The downside is that the audit router becomes more
complex because of the need to manage buffers and
other associated tasks.

This model could also support the push model by
allowing agents to specify a callback function that can
be invoked by the audit router when certain types of
data are received.

8



Agent 2Agent 1 Agent n

System Audit File
Buffer Management

Database of agents and
audit classes required

Audit Router

Registration information

Legend

Control and data stream

System audit data

Figure 2: Audit Router Model. The Audit Router acts as an intermediary between the audit files and the
agents that require information from them.

One way to implement the audit router model de-
scribed is to separate the audit stream into differ-
ent audit class buffers. The audit router maintains,
for each agent handle, a list of positions in the ap-
propriate audit class buffers. When an audit record
is requested, the router returns the next record in
chronological order from the buffers it is maintain-
ing.

2.5 Disadvantages of the AAFID ar-
chitecture

We have identified several shortcomings in the
AAFID architecture that we propose.

• In their control role, monitors are single points
of failure. If a monitor stops working, all the
transceivers that it controls stop producing use-
ful information. This can be solved through a
hierarchical structure where the failure of a mon-
itor would be noticed by higher-level monitors,
and measures would be taken to start a new
monitor and examine the situation that caused
the original one to fail. Another possibility is to
establish redundant monitors that look over the
same set of transceivers so that if one of them
fails, the other can take over without interrupt-
ing its operation.

• If duplicated monitors are used to provide redun-
dancy there is the problem of consistency and
duplication of information. Mechanisms have to
be used to ensure that redundant monitors will
keep the same information, will obtain the same
results, and will not interfere with the normal
operation of the IDS.

• The AAFID architecture currently does not
specify access-control mechanisms to allow for
different users to have different levels of access
to the IDS. This is an issue that will need to be
addressed at the monitor, transceiver and agent
levels as well as in the user interfaces.

• Detection of intrusions at the monitor level is
delayed until all the necessary information gets
there from the agents and transceivers. This is
a problem common to distributed IDSs.

3 Implementations

We have developed two prototypes based on the
AAFID architecture, and we are currently in the pro-
cess of improving those implementations as well as
developing new ones.

3.1 First prototype

The first prototype we built was programmed in a
combination of Perl [28], Tcl/Tk [18] and C [14], and
was intended as a proof of concept for the architec-
ture. In this implementation, which we call AAFID1,
much of the behavior of the components was hard-
coded and it was not extremely configurable. It
used UDP as the inter-host communication mecha-
nism and Solaris message queues as the intra-host
communication mechanism. About 12 agents were
developed for this prototype to detect different types
of interesting activity. This prototype allowed us to:

• Show that the AAFID architecture could work
for doing distributed detection of anomalous
events.

9



• Gain some experience in writing agents that al-
lowed us to identify important functionality that
is needed for all agents.

• Identify some design issues that had to be im-
proved. For example, this first prototype inte-
grates the monitor and the GUI in a single pro-
gram, which proved to be a limitation because it
does not allow to organize monitors in a hierar-
chical fashion.

3.2 Second prototype

Drawing from the experiences obtained with the first
prototype we developed a second one almost from
scratch, which we call AAFID2. This prototype is
written exclusively in Perl, which has the advantage
of making it easy to port to other architectures at
the expense of some performance loss. The main ob-
jective of this implementation is to allow for exten-
sive testing of the architecture, therefore emphasis
has been made in its ease of use, configurability and
extensibility. Some of the major contributions of this
new implementation are:

• Increased portability because it is written com-
pletely in Perl.

• Implementation of an infrastructure that pro-
vides all the base services necessary for devel-
oping new entities.

• Definition of an internal API for developing new
agents.

• Clear separation of communication mechanism
internals and other platform-dependent ele-
ments.

• Clear definition of each entity as an object, and
of the relationships between the different classes
of objects.

• Different execution modes for entities (both
as loadable modules and as stand-alone pro-
grams) that facilitate developing, testing and de-
buggging new entities.

• Definition of an extensible message format that
can be extended to represent different types of
information. Furthermore, the handling of mes-
sage format internals is encapsulated so that it
can be modified or updated with minor modifi-
cations to other elements of the system.

• Separation of the monitor and the user interface.

This implementation is our current test bed for the
architecture and is the one under which we are devel-
oping new agents and exploring new communication
and data-reduction mechanisms. A much more de-
tailed description of AAFID2 can be found in [23].

3.3 Low-level implementations

The first two prototypes have helped us in refining the
architecture as well as identifying needs and problems
that have to be solved. However, not much emphasis
has yet been placed in performance issues because the
prototypes have been mostly implemented in high-
level scripting languages such as Perl, which have
large memory and CPU footprints. For this reason,
as the architecture design starts to stabilize, we have
started to work in porting the architecture to lower
system levels. In particular, we are currently working
on integrating components of the AAFID architec-
ture into the Unix kernel. We are currently working
on incorporating additional auditing and monitoring
capabilities into the Linux kernel, and will possibly
work also with Solaris, BSD/OS and Windows NT.
Further advantages and disadvantages of this low-
level approach are described in Section 4.2.

4 Experiences, comments and
design issues

Through the experiences obtained with the design
and implementations of the AAFID architecture (see
Section 3 and [23]), we have identified a number of
issues that should be subject of future work.

These issues can be classified in the following broad
categories: communication between the components
of the IDS, impact of the IDS on the performance of
the hosts that are being monitored, data processing
and reduction, and user interface design. They are
discussed in this section.

4.1 Communication and Scalability

To reduce the overhead imposed by the IDS, the com-
munication mechanisms employed have to be as effi-
cient as possible.

We can classify the communication needs of the
IDS in two major groups: intra-host communication
(between processes inside a single host) and inter-
host communication (between processes running in
different hosts).

10



4.1.1 Intra-host communication

Although the general inter-host communication
mechanisms may be used for communication within
the same host, we think that intra-host communica-
tion should be optimized to make use of the fact that
the entities involved are in the same host.

For our IDS architecture, we have identified two
main types of intra-host communication that will
take place:

• One-to-many communication, as in the case of
the transceiver sending a message to several
agents.

• Many-to-one communication, as when the agents
send information to the transceiver.

Keeping these needs in mind, we have considered
several different intra-host communication schemes:

Message queues. This mechanism makes use of the
System-V IPC facilities for establishing message
queues. Message queues provide a method of do-
ing asynchronous message passing between pro-
cesses and are a effective method for transferring
small amounts of data or messages between pro-
cesses. When one process sends another a mes-
sage, the kernel copies the data to a pool of mem-
ory that the kernel has allocated to hold the mes-
sages. When the receiving process requests to re-
trieve the message the kernel copies the message
into the receiver’s address space. Therefore, each
message transfer requires two data copy opera-
tions, which may result in reduced performance
when the messages being passed are large.

The primary shortcoming of message queues is
that there is a limited amount of kernel mem-
ory that is available to use. For this reason the
maximum number of messages (message queues
times messages per queue) that can exist at a
given time is usually fairly low. For Solaris 2.5
and later the default number is 40. A conse-
quence of this resource limitation is that this
method is vulnerable to a denial-of-service at-
tack because any process that is running on the
same system could create a message queue, fill it
with messages and never read from it. This act
would stop the agents from communicating with
the transceiver. Additionally, these restrictions
place a practical limit on the number of agents
that may be running simultaneously in the sys-
tem.

These problems can be partially solved by us-
ing message queues until their limits are reached,
and then switching to another (possibly slower)

method of communication. However, we do not
think this solves the scalability problem.

An advantage of this approach is that this is
fairly straightforward to implement and it also
provides a mechanism to prioritize the messages
so that agent messages can be processed imme-
diately.

Although this approach was used for the first
prototype, it will most likely not be used in fu-
ture versions of our system, mainly because of
the lack of scalability and its vulnerability to at-
tacks.

Shared memory. This scheme provides an efficient
means of sharing data between two processes
because data is not actually copied between
processes. This is because, as the name sug-
gests, multiple processes share the same mem-
ory pages. Each process has a mapping to the
same physical space and can reference the space
through pointers in the code.

Although this method would be a significant im-
provement over message queues for agents that
pass large messages, the advantages and disad-
vantages are similar. Like the message queue
scheme this scheme requires that an adequate
block of kernel memory is allocated to hold all of
the data that will be shared between processes.
For example, in Solaris 2.5 and later, the kernel
attempts to prevent the allocation of a signifi-
cant portion of kernel memory by not allowing
more than 25% of the available kernel memory
to be allocated. Because of this hard limit, this
scheme is also vulnerable to the same flavor of
denial-of-service as the message queues although
the attack would have to be more sophisticated.
Finally, this scheme also introduces a practical
limit on the number of agents that can be run
simultaneously in a system.

Looking at our communication needs, the shared
memory scheme seems to be adequate for one-
to-many communication, where the transceiver
would write to the shared memory and the
agents would have read-only access to it. Given
this perspective, a new problem would be how to
implement reliable signaling for the transceiver
to notify the agents that there is new informa-
tion that they should receive.

Pipes. In traditional Unix implementations , a pipe
is a unidirectional, first-in first-out, unstructured
data stream of fixed maximum size [27]. Data is
written to the end of the pipe and read from
the front of the pipe. The data is removed from

11



the pipe after it is read. The read and write file
descriptors that are returned by the pipe sys-
tem call are inherited by any child processes.
This feature allows multiple processes reading
and writing to the same pipe.

Another common type of pipe available in Sys-
tem V UNIX and variants is a named pipe or
FIFO (first-in, first-out) file. Although they be-
have very similar to a traditional pipe they differ
in the way that they are created and accessed.
SVR4 uses a STREAMS mechanism to imple-
ment named pipes. One major difference is that
a SRV4 pipe is bidirectional.

Either type of pipe could be used for commu-
nication between entities running on the same
host. One of the disadvantages of either type of
pipe is that there is an internal limit on the vol-
ume of data that can be put into a pipe if the
reading process does not extract it. If this limit
is reached, the writing process blocks or fails.
Similarly, the reader process will block or fail if
it attempts to read from an empty pipe.

Using pipes as a communication device also has
several benefits. They are relatively simple to
implement and every modern version of UNIX
implements both types of pipes. Because pipes
are accessed through file handles they have ex-
treme flexibility in how the components of a
distributed system can be used and intercon-
nected. This also helps in isolating the compo-
nents themselves from the specifics of the com-
munication mechanisms used.

Other operating systems (such as Windows NT)
also provide support for pipes, although the spe-
cific mechanisms for setting up and accessing
them are likely to be different and will have to be
investigated when porting a program that uses
pipes to those systems.

Independently of the communication scheme used,
the IDS needs access control in the communication
channels. All the mechanisms mentioned have the
ability of performing access control by the following
means:

• For message queues and shared memory, the pro-
cess that sets up the queue or the shared memory
area establishes the access modes of the structure
in a manner similar to Unix file system access
modes.

• For regular Unix pipes, the pipe is only accessible
to the process that creates it and its children,
and it is by definition inaccessible to any other
processes.

• For named pipes, the access control is performed
by the Unix file permissions because both mech-
anisms are accessed through entries in the Unix
file system.

In conclusion, although some of the schemes show
some promise, they still have to be studied carefully
before deciding on a particular one. It may be feasible
to use more than one different communication scheme
depending on the situation. The one-to-many and
many-to-one distinctions are clear examples of where
this may be possible.

4.1.2 Inter-host communication

The main characteristics that we would like to
achieve in a communication scheme for an IDS are
performance, reliability and security.

Performance. For the IDS to operate in real time,
messages must be delivered as quickly as possible
from one part of the system to another, but with-
out overloading the network when many agents
are running. Thus, the communication mecha-
nism used has to be able to provide good trans-
mission times, while not incurring much over-
head.

Reliability. Whether the messages sent from one
host to another arrive correctly, in order and on
time may be a major concern in an IDS, or it
may not. The question is: can a single missing
message from an agent make a drastic difference,
such as the one between an intrusion being de-
tected or not? If we can estimate the maximum
amount of lost messages, we might also be able
to give an acceptable estimate of the degrada-
tion in the service. Unfortunately, the meaning
of “acceptable” depends on where the system is
deployed.

Security. Privacy and authentication are important
needs for an IDS because some of the messages
generated by the IDS may contain sensitive data
about the hosts being monitored, and unautho-
rized entities should not be able to generate mes-
sages that are accepted as legitimate by other
elements of the IDS.

Usually, cryptography is the solution to both
problems. However, cryptography comes at a
cost in performance and in overhead imposed to
the systems.

Another security problem is the possibility of
denial-of-service attacks in which an attacker
makes it impossible or difficult for messages to
get delivered. It is important to note that even

12



if the intruder is not able to completely disrupt
the communication, simply delaying it may give
a window of opportunity in which damage can
be done.

Some of the questions that may help in deciding
the best approaches to follow in terms of security
are:

• Is privacy necessary? Although we men-
tioned that many messages will contain sen-
sitive information, it may not be the case if
the components and semantics of the com-
munication are carefully designed.
• Is authentication necessary? This looks, at

first glance, like a more definite “yes,” be-
cause we do not want anybody to be able
to generate fake messages and send them to
the monitors.
• How to implement them? If some form of

cryptography is deemed necessary, there are
many ways to do it. From the selection of
algorithms to the implementation decisions,
they can all affect the end result. For exam-
ple, if encryption is only performed between
transceivers and monitors, and agents only
report to local transceivers, then the en-
cryption could be done in “batches” by pe-
riodically sending many messages in one lot,
instead of individually encrypting and send-
ing each message. This method may pro-
duce an improvement on performance, but
presents the problem that some messages
may be tagged as urgent and thus cannot
wait. All these details have to be resolved
in a working implementation.
Another possibility is to do selective en-
cryption. If only some messages are sensi-
tive, some performance may be gained by
having a mechanism for specifying which
messages should be encrypted and which
not. This, of course, presents technical
problems. For example, all the entities in-
volved in the communication would have to
be able to detect what kind of transmission
is being performed, and act accordingly. A
more difficult issue is the selection of what
has to be encrypted and what not.

The issues mentioned raise a number of questions
on whose answers depend the specific approach that
should be followed. Currently, we see two possible
solutions:

• Use an existing protocol (such as UDP or TCP)
in a way that takes into account its weaknesses

to provide the functionality we need. This has
the advantages that the base protocol already
exists, we already know how to use it, and it is
well supported. The disadvantages are its unre-
liability (in the case of UDP), the overhead for
reliability (in the case of TCP), and the lack of
features such as encryption.

• Design a new protocol with the needs of the IDS
in mind. Such a protocol may provide reliable
transmission, low overhead, and security mecha-
nisms.

The advantages of going this way would be that
the protocol can be tailored and fine-tuned to
our specific needs, making it as specialized as
necessary. The big drawback is that protocol
design is not a trivial task, and there are a lot of
issues from proving its correctness to implement-
ing, fully testing and deploying it that make it a
difficult and time-consuming job..

One of the most difficult aspects of designing
a communication protocol for ID is determining
an appropriate level of compromise between the
different factors (efficiency, security, etc.) such
that the protocol is useful with respect to all of
them. We see this as a field for extensive future
research.

After expressing our concerns regarding inter-host
communication, particularly those related to perfor-
mance and scalability, we come to a more fundamen-
tal question: do we really need to worry? In par-
ticular, will we ever get to a point when we have
thousands of hosts communicating? It can be ar-
gued that if an appropriate hierarchical organization
is used that may never happen. For example, if the
system is structured such that only one subnetwork
reports to a single monitor and those monitors in turn
report to higher level monitors, the problem may not
be as relevant as the previous discussion suggested.
In this case, secure and reliable communication would
be the priority.

Finally, the level of efficiency required from the
communications protocol depends on the level of data
reduction that can be achieved. If the data-reduction
schemes are such that the amount of information that
is actually sent through the network is limited, then
efficiency may become a secondary concern.

4.2 Impact on host performance

In the first implementations of the AAFID architec-
ture, all the entities are implemented as separate pro-
cesses. However, much of the data that are being col-
lected and analyzed are generated in the kernel (for

13



example, user login information, process accounting
and network connection establishment). This means
that every time a system action has to be logged or
analyzed, the information has to be transferred from
kernel space to user space, causing a context switch,
and increasing the load imposed on the system by the
IDS.

As the number of agents running on a host in-
creases, the load overhead caused by them may start
to impact normal use of the host. This is particularly
true if some parts of the IDS are written in scripting
languages such as Perl or Tcl/Tk, which are usually
large consumers of resources.

One approach to reduce the overhead caused by
the IDS is to write all the components in a compiled
language, such as C. This would probably reduce the
memory and CPU usage, but would not solve the
context-switching problem, or the overhead derived
from having many separate processes running.

A further step would be to use a language that sup-
ports multithreading, and implement each agent as a
separate thread instead of a separate process. This
may further reduce the per-agent overhead, but still
would not address the context-switching problem.

The lowest level that we could achieve would be to
integrate some of the components in the Unix kernel.
For example, an agent that monitors network connec-
tions could read the relevant data structures directly,
instead of having to execute the netstat command
repeatedly. The same is true for other aspects such
as process accounting, file accesses, etc.

Integrating the agents in the kernel would reduce
all the problems mentioned:

• A context switch is prevented, because the agent
would be running within the kernel itself.

• The information is registered and processed at
the place (or very close to) where it is produced,
thus reducing the possibility of it being modified
by an attacker before it gets to the agent.

• It becomes harder for an intruder to tamper with
the agents, because now the kernel itself would
have to be modified.

The transceivers could also be built into the ker-
nel. This way, the data would never have to be trans-
ferred outside the kernel until the transceiver decides
to send them to a monitor for further processing, or
for making a notification.

The approach just described also has the following
disadvantages:

• Building entities as kernel components essen-
tially destroys the portability of the agents, be-
cause they must be designed and implemented

with a specific operating system in mind. No
two versions of Unix handle kernel internals in
exactly the same way. The problem is even worse
if we think about porting the IDS to non–Unix
operating systems.

• An entity that misbehaves (either intentionally
or by programming or configuration mistake)
can do much more damage if it is running in the
kernel because it has full access to the system.

• Entities in the kernel can have a large impact in
the host behavior by slowing down fundamental
operations (e.g. accesses to disk, memory and
kernel data structures) or by disrupting timing
in critical low-level operations (such as disk ac-
cesses). Thus, entities that are incorporated into
the kernel have to be carefully designed, imple-
mented and debugged.

• The most crucial issue is that the resources that
are available for entities in the kernel are very
limited and may be insufficient for performing
useful actions. For example, an agent that mon-
itors IP packets may need a large amount of
memory to be able to to keep enough state infor-
mation to monitor all of the events necessary to
detect a SYN-flood attack. Preliminary work in-
dicates that it is probably not possible to develop
distinct independent kernel agents that will per-
form any complex tasks unless they are tightly
coupled into the kernel code itself. This effect
is especially visible if the agents are monitoring
network communications.

Even though the results achieved to date seem to
indicate that kernel agents are not feasible there will
continue to be some exploration in this area because
of the potential payoff (see Section 3).

4.3 Data processing and reduction

To make the agents as lightweight as possible, they
should be little more than a forwarding element that
sends data to the transceiver, which in turn merges
the data coming from all the agents and forwards
them to the appropriate monitor where everything
is processed and the appropriate actions are taken.
This is the approach used in the first prototype. How-
ever, this technique can create a high amount of net-
work traffic, which limits the scalability of the sys-
tem.

The counterpart is to move computation load from
the monitor to the transceivers and agents, so that
the entities local to the host do initial processing
and reduction on the data and report to the monitor

14



only those pieces of information that are relevant.
This can be taken to the extreme of making each
transceiver a local ID system on its own which com-
municates to the monitors as part of a larger global
ID system.

Unfortunately, this has an impact on the hosts be-
ing monitored because local computation will take
away computing cycles from the real applications of
the hosts.

A related problem is to decide where the state of
the IDS is kept. In the centralized approach, all state
is kept in the central monitor. Therefore, if that host
is taken down or somehow compromised or destroyed,
the state of all the hosts that depend on that monitor
may be lost. On the other hand, if each host has its
own processing engine, the state information is dis-
tributed in different hosts, making its complete loss
much more difficult. The disadvantage is that build-
ing a consistent picture of the state of the whole IDS
becomes more difficult.

We think that the best approach is to try to find
a balance between the two extremes. More detailed
performance studies may help in making a decision
about how the computational load can be distributed
between the agents, transceivers, and monitors to
maximize the throughput and scalability of the sys-
tem without imposing and excessive load on the hosts
and the network.

4.4 User interface

Any IDS can be rendered useless if it does not have
good mechanisms to allow users to control and mon-
itor it. In our case, the user interface has to deal
with a common problem: how to interface a high-
speed, distributed, continuous-running computer sys-
tem with the human user, which cannot quickly an-
alyze large volumes of data and cannot be on-guard
24 hours a day, but still has to have control of every-
thing.

Traditional approaches where a window displays a
list of hosts that are being monitored and the user can
view any one of them in more detail provide only a
rudimentary form of control over what is happening
in the elements of the distributed IDS, and do not
scale well.

Underlying this problem there is a much deeper is-
sue: how to make it possible for a human to monitor
and control a system that may be difficult to control
partly because it was designed to a certain extent to
act on its own and take its own decisions as it goes
along. It is a problem that involves issues ranging
from data formats and storage to GUI design, in-
cluding communication, security and consistency.

We think that some of the fundamental issues are:

1. What data do the IDS entities need to provide
to give the user a clear picture of the system.

2. How to efficiently, reliably and consistently get
the information to the user.

3. How to present the information in a useful way.
The interface has to be able to provide the user
with multiple levels of detail (from a high-level
overview down to the parameters of an agent) in
a manner that is as easy to use as possible.

4. How to allow the user to provide feedback and
to control the entities in the system. Ideally, this
has to be done in a way that is efficient (fast),
reliable (resistant to failures), secure (resistant
to attempts at unauthorized access), auditable
(able to monitor who does what) and manage-
able (understandable to the user).

5. How to make the interface responsive. The user
will want to be able to immediately see the ef-
fects of any changes made and to be told imme-
diately when something of interest happens.

6. How to keep enough state to provide meaning-
ful historical information to the user, such as re-
ports, activity traces for a certain period of time,
etc.

The issue of user interface is one that we have not
studied in detail yet, and it is likely to be considered
for future work.

5 Future work

In this section we identify some guidelines for present
and future work. We describe some near-term and
long-term issues that we have identified as relevant.

5.1 Current and near-term work

Work is currently underway in the COAST Labora-
tory in the following specific areas:

Developing agents. We are currently in the pro-
cess of developing a large number of agents cov-
ering a wide range of monitoring activities. This
will allow us to discover limitations and illumi-
nate design decisions in the internal interfaces
and in the services provided by the prototypes
for writing agents.

Low-level implementations: Even though the
preliminary work that was mentioned in Sec-
tion 4.2 has been negative we feel that the po-
tential benefits that can be derived from kernel-
based components merits further study. One

15



promising area to explore is the development
of agents that monitor patterns of system calls
to identify anomalous behavior. It has been
shown [7] that is possible to detect several com-
mon intrusions by performing short-range corre-
lations of a process’s system calls.

High-level implementations: The latest high-
level prototype mentioned in Section 3 is cur-
rently in continuous development and improve-
ment. We expect that experimentation with
this prototype will help us in identifying strong
and weak areas of our design. Additionally,
the lessons we learn with high-level implementa-
tions may be later applied to lower-level, higher-
performance ones.

Communication mechanisms. We intend to fur-
ther explore intra- and inter-host communication
mechanisms both inside and outside the Unix
kernel. Communication interfaces also have to
be defined to allow further modification to the
communication mechanisms without having to
change the programs that make use of them.
Furthermore, security considerations have to be
incorporated into these mechanisms before the
system can be deployed in production settings.

Developing tools. A simple Graphical User Inter-
face (GUI) has been developed for the existing
high-level prototype. The existing version of
the GUI only provides simple access and con-
trol functions, but it is a first step in trying to
identify user-interface issues that may later be
further explored.

Also in development are tools for making it eas-
ier to develop agents. These tools provide semi-
automatic code generation to help in developing
and debugging new agents.

Deployment and testing. The best way to test
our architecture is by having people use it. We
have plans to release our latest prototype to se-
lected testers at first and to the general public
later, to allow them to experiment with the ar-
chitecture, try the system, and provide feedback
that allows us to improve it.

Developing transceivers and monitors. We
would like to experiment with different ap-
proaches to data reduction and reporting, incor-
porating different functionalities in each of these
components, in a search for an adequate balance
between local and central processing. In their
current implementation, the transceivers send all
the information they receive to the monitors, and

the monitors store the information for later pro-
cessing.

5.2 Medium-term work

There are some issues that we have expect to address
once the immediate concerns are satisfied.

Semantics of the communication. So far, we
have focused mostly on the technical and archi-
tectural aspects of the design. However, it is the
semantic aspects of the communication (the con-
tents of the messages) that actually enable the
detection of intrusions. It will probably be the
object of investigation once the basic architec-
ture is settled.

Data reduction. Different approaches may be
taken to control data reduction at the agents, the
transceivers and the monitors. One particular
scheme we have thought of is having each agent
“carry” with itself the necessary data-reduction
code, to be incorporated into the transceivers
and monitors when the agent is deployed. How-
ever, this approach neglects the fact that events
from several different agents may need to be
combined and processed. This issue has to be
further investigated.

Porting to other platforms. We intend to port
our high-level prototypes to other operating sys-
tems such as Windows NT. Additionally, the de-
velopment of kernel components will probably
take place in several operating systems, includ-
ing Solaris, Linux and BSD/OS.

Encryption. We plan to carefully evaluate the use
of encryption for confidentiality and authentica-
tion purposes . The mechanisms that are deemed
necessary will have to be implemented in a way
that reduces their impact on the performance of
the IDS.

Extensions to the architecture. As we test the
AAFID architecture by using our existing pro-
totypes, we will discover aspects of it that could
be changed or extended to provide better or ad-
ditional functionality. For example, a possible
extension of the architecture is to allow the mon-
itors to automatically respond to certain events,
using rule sets, in the absence of a human con-
troller. These aspects will have to be dealt with
as they are encountered.

16



5.3 Long-term future issues

Finally there are some things that we think are im-
portant, and that should be addressed at some point
in the future, but that are not currently in our plans.

Global administration and configuration. As
the IDS grows and the capability to monitor
more hosts increases, configuring and control-
ling everything by hand becomes impractical.
Mechanisms for remotely configuring and ad-
ministrating the entities will be necessary. This
includes:

• Monitor administration: Monitors exert
control over other entities, but they also
have to be controlled in some way. How
to deploy and control the monitors, how to
deploy detection code, whether and how to
react to events detected, and who the mon-
itors should report to, are issues that may
be addressed by future work.

• Agent and host configuration: Agents may
need to be added or removed dynamically
from hosts. For example, if an unusual con-
dition is detected in a host, we may want
to add extra agents to monitor in a more
detailed fashion. This could be done ei-
ther manually or automatically. The mech-
anisms for this could be the topic for some
interesting future work.

Load balancing and failure control. When an
IDS is monitoring networks with hundreds or
thousands of hosts, running tens or hundreds
of agents each, the issues of load balancing and
failure control become important. For example,
having a single monitor controlling a large
number of hosts may be counterproductive,
both in terms of performance and security.
Some of the problems that have to be solved in
this respect are:

• How to do load balancing.

• How to keep a consistent global state. If
there are multiple monitors, how to en-
sure that they all have the capability of de-
tecting an intrusion, based on the current
global state.

• How to communicate among high-level en-
tities. In order to keep global state, some
sort of communication will have to occur
among monitors, and maybe even among
transceivers.

Optimum and maximum size analysis. It is
important to know the limits of the AAFID
architecture. Thus, it would be interesting
to perform analysis to determine what is the
maximum size (in terms of hosts, agents per
host, and monitors) that can be efficiently
supported, for some definition of efficiency.
Knowing the optimum size, at which the IDS
performs best, would also be interesting for
future development.

Reliability. How to reliably keep the state of the
IDS between sessions or across crashes and re-
boots is an important feature for a real-world
IDS. Having good reliability mechanisms ensures
that the IDS will be alert most of the time and
as a result provide better protection.

6 Conclusions

We propose an architecture for Intrusion Detection
Systems called AAFID, which is based on indepen-
dent entities called Autonomous Agents for perform-
ing distributed data collection and analysis. Central-
ized analysis is done on a per-host and per-network
basis by higher-level entities called Transceivers and
Monitors. The architecture allows for computation
to be performed (and thus, for Intrusion Detection
to happen) at the point where enough information is
available. This can be at the agent, transceiver or
monitor level.

We have demonstrated the feasibility of this archi-
tecture by the implementation of working prototypes.
The first such prototype is described in this paper,
while the second is described in detail in [23]

The AAFID architecture allows data to be col-
lected from multiple sources, thus allowing us to com-
bine the best characteristics of traditional host-based
and network-based IDSs. It apparently also allows us
to build IDSs that are more resistant to insertion and
evasion attacks [20] than existing architectures, al-
though no tests have been performed to support this
claim.

Furthermore, the modular characteristics of the ar-
chitecture allow it to be easily extended, configured
and modified, either by adding new components, or
by replacing components when they need to be up-
dated. For example, it should be possible to modify
the system to produce messages in CIDF format [25].

The AAFID architecture faces many of the prob-
lems that have been traditionally in the realm of dis-
tributed systems research, such as scalability, perfor-
mance and security. Tradeoffs between efficiency, re-
source consumption and security have to be made,

17



and although we may be able to use results from
previous research to implement the mechanisms that
AAFID needs, finding the appropriate balance in the
ID context between the different factors is still an
open area for research.

User interface is a big issue for future work. Most
of the work that has been done in Intrusion Detection
over the last few years focuses on how to perform the
detections, but very little has been done in the way
of presenting the information to the user, as well as
how to allow the user to specify policies such that the
IDS can understand and therefore enforce them.

References

[1] Jeffrey M. Bradshaw. An introduction to soft-
ware agents. In Jeffrey M. Bradshaw, editor,
Software Agents, chapter 1, pages 3–46. AAAI
Press/The MIT Press, 1997.

[2] Mark Crosbie, Bryn Dole, Todd Ellis, Ivan Kr-
sul, and Eugene Spafford. IDIOT—users guide.
CSD-TR 96-050, COAST Laboratory, Purdue
University, 1398 Computer Science Building,
West Lafayette, IN 47907-1398, September 1996.

[3] Mark Crosbie and Eugene Spafford. Defending
a computer system using autonomous agents.
In Proceedings of the 18th National Information
Systems Security Conference, pages –, Oct 1995.

[4] Mark Crosbie and Gene Spafford. Active defense
of a computer system using autonomous agents.
Technical Report 95-008, COAST Group, De-
partment of Computer Sciences, Purdue Univer-
sity, West Lafayette, IN 47907-1398, Feb 1995.

[5] Dorothy E. Denning. An Intrusion-Detection
Model. IEEE Transactions on Software Engi-
neering, 13(2):222–232, February 1987.

[6] William M. Farmer, Joshua D. Guttman, and
Vipin Swarup. Security for mobile agents: Issues
and requirements. In Proceedings of the 19th Na-
tional Information Systems Security Conference,
volume 2, pages 591–597. National Institute of
Standards and Technology, October 1996.

[7] Stephanie Forrest, Steven Hofmeyr, Anil So-
mayaji, and Thomas Longstaff. A sense of
self for Unix processes. In Proceedings of the
1996 IEEE Symposium on Security and Privacy.
IEEE Computer Press, 1996.

[8] Stephanie Forrest, Steven A. Hofmeyr, and Anil
Somayaji. Computer Immunology. Communica-
tions of the ACM, 40(10):88–96, October 1997.

[9] R. Heady, G. Luger, A. Maccabe, and
M. Servilla. The Architecture of a Network Level
Intrusion Detection System. Technical report,
University of New Mexico, Department of Com-
puter Science, August 1990.

[10] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee,
J. Wood, and D. Wolber. A Network Security
Monitor. In Proceedings of the IEEE Symposium
on Research in Security and Privacy, May 1990.

[11] Judith Hochberg, Kathleen Jackson, Cathy
Stallings, J. F. McClary, David DuBois, and
Josephine Ford. NADIR: An automated sys-
tem for detecting network intrusion and mis-
use. Computers and Security, 12(3):235–248,
May 1993.

[12] Willian Hunteman. Automated information sys-
tem — (ais) alarm system. In Proceedings of
the 20th National Information Systems Security
Conference. National Institute of Standards and
Technology, October 1997.

[13] IEEE Journal on Selected Areas in Communica-
tions, May 1989. Special issue on Secure Com-
munications.

[14] Brian W. Kernighan and Dennis M. Ritchie. The
C Programming Language. Prentice-Hall, En-
glewood Cliffs, NJ 07632, USA, second edition,
1988.

[15] Sandeep Kumar. Classification and Detection of
Computer Intrusions. PhD thesis, Purdue Uni-
versity, West Lafayette, IN 47907, 1995.

[16] Merriam-Webster. “intrusion”. Merriam-
Webster OnLine: WWWebster Dictionary.
http://www.m-w.com/dictionary, 1998. Ac-
cessed on May 16, 1998.

[17] Biswanath Mukherjee, Todd L. Heberlein, and
Karl N. Levitt. Network intrusion detection.
IEEE Network, 8(3):26–41, May/June 1994.

[18] John K. Ousterhout. Tcl and the Tk Toolkit.
Addison-Wesley, Reading, MA, USA, 1994.

[19] Phillip A. Porras and Peter G. Neumann.
EMERALD: Event monitoring enabling re-
sponses to anomalous live disturbances. In Pro-
ceedings of the 20th National Information Sys-
tems Security Conference, pages 353–365. Na-
tional Institute of Standards and Technology,
1997.

18



[20] Thomas H. Ptacek and Timothy N. Newsham.
Insertion, evasion, and denial of service: Eluding
network intrusion detection. Technical report,
Secure Networks, Inc., January 1998.

[21] Marshall Rose. The Simple Book: an introduc-
tion to management of TCP/IP based internets.
Prentice Hall, NJ, 1993.

[22] S. R. Snapp, J. Brentano, G. V. Dias, T. L.
Goan, L. T. Heberlein, C. Ho, K. N. Levitt,
B. Mukherjee, S. E. Smaha, T. Grance, D. M.
Teal, and D. Mansur. DIDS (Distributed In-
trusion Detection System) - Motivation, Archi-
tecture, and an early Prototype. In Proceedings
of the 14th National Computer Security Confer-
ence, pages 167–176, October 1991.

[23] Eugene Spafford and Diego Zamboni. A frame-
work and prototype for a distributed intru-
sion detection system. Technical Report 98-06,
COAST Laboratory, Purdue University, West
Lafayette, IN 47907-1398, May 1998.

[24] S. Staniford-Chen, S. Cheung, R. Crawford,
M. Dilger, J. Frank, J. Hoagland, K. Levitt,
C. Wee, R. Yip, and D. Zerkle. GrIDS: A graph
based intrusion detection system for large net-
works. In Proceedings of the 19th National Infor-
mation Systems Security Conference, volume 1,
pages 361–370. National Institute of Standards
and Technology, October 1996.

[25] Stuart Staniford-Chen et al. Common intrusion
detection framework. WWW page at http://
seclab.cs.ucdavis.edu/cidf/.

[26] W. Richard Stevens. TCP/IP Illustrated, vol-
ume Volume 1—The Protocols of Professional
Computing Series. Addison-Wesley, 1994.

[27] Uresh Vahalia. UNIX Internals: The New Fron-
tiers. Prentice-Hall, Englewood Cliffs, NJ 07632,
USA, 1996.

[28] Larry Wall, Tom Christiansen, and Randal L.
Schwartz. Programming Perl. O’Reilly & As-
sociates, Inc., second edition edition, September
1996.

[29] Gregory B. White, Eric A. Fisch, and Udo W.
Pooch. Cooperating security managers: A peer-
based intrusion detection system. IEEE Net-
work, pages 20–23, January/February 1996.

19


