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Abstract
Invariance is of paramount importance in programming languages
and in physics. In programming languages, John Reynolds’ theory
of relational parametricity demonstrates that parametric polymor-
phic programs are invariant under change of data representation, a
property that yields “free” theorems about programs just from their
types. In physics, Emmy Noether showed that if the action of a
physical system is invariant under change of coordinates, then the
physical system has a conserved quantity: a quantity that remains
constant for all time. Knowledge of conserved quantities can reveal
deep properties of physical systems. For example, the conservation
of energy, which by Noether’s theorem is a consequence of a sys-
tem’s invariance under time-shifting.

In this paper, we link Reynolds’ relational parametricity with
Noether’s theorem for deriving conserved quantities. We propose
an extension of System Fω with new kinds, types and term con-
stants for writing programs that describe classical mechanical sys-
tems in terms of their Lagrangians. We show, by constructing a re-
lationally parametric model of our extension of Fω, that relational
parametricity is enough to satisfy the hypotheses of Noether’s the-
orem, and so to derive conserved quantities for free, directly from
the polymorphic types of Lagrangians expressed in our system.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms term1, term2

Keywords keyword1, keyword2

1. Introduction
Reynolds’ theory of relational parametricity [17] tells us that para-
metrically polymorphic programs automatically satisfy invariance
properties. Such invariance properties are often called Free Theo-
rems, after Wadler [21], since they follow “for free” from the types
of programs, rather than through detailed study of the program text
itself. An illustrative example is the free theorem for programs f
with the following type:

f : ∀α. List α→ Nat

Such programs takes lists of αs, for any type α, to natural numbers.
Using Reynolds’ theory of relational parametricity, Wadler showed
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that any f with this type satisfies the following property:

∀α, β, g : α→ β, l : List α. f [α] l = f [β] (map g l)

Thus, any f with the type given above is invariant under mapping
some arbitrary function g over its input. Thinking in terms of ab-
stract data types and change of data representation, this free theo-
rem states that f is invariant under change of data representation
from an arbitrary type α to another arbitrary type β, via g.

The use of invariance under change to derive useful conse-
quences is a technique much older than programming languages. In
physics, Noether’s theorem [13] provides a general way to derive
conservation laws for physical systems from invariance properties.
Informally speaking, Noether’s theorem states that every continu-
ous symmetry of a physical system implies the existence of a cor-
responding conserved quantity. A conserved quantity is a function
of the state of the system that is constant for all time. We illustrate
the use of Noether’s theorem with a simple example of a classical
system consisting of two particles of equal mass m connected by a
spring with spring constant k, such that the particles are constrained
to move one-dimensionally.

Noether’s theorem applies to systems described in terms of
Lagrangians. For classical mechanics, a Lagrangian is a function
of time, and the positions and velocities of all the particles in
the system, to the difference between the kinetic energy and the
potential energy of the system. For our system with two particles at
positions x1 and x2 with velocities ẋ1 and ẋ2 the Lagrangian is:

L(t, x1, x2, ẋ1, ẋ2) =
1

2
m(ẋ1

2 + ẋ2
2)− 1

2
k(x1 − x2)2 (1)

The first summand represents the total kinetic energy of the system
in terms of the mass and velocities, while the second summand
represents the potential energy contained within the spring due to
the distance between the particles.

From the Lagrangian (1), using the principle of stationary ac-
tion, we can derive the following two equations of motion for this
system. (We describe the principle of stationary action, and the pro-
cess for deriving the equations of motion fully in Section 2.) For
this system, the equations of motion are a pair of ordinary differen-
tial equations (ODEs) that describe how the positions and velocities
of the particles evolve over time (the second deivative with respect
to time, ẍi, denotes the acceleration of the ith particle):

mẍ1 = −k(x1 − x2) mẍ2 = −k(x2 − x1)

We could now proceed to solve these ODEs to further analyse the
behaviour of this system. However, Noether’s theorem gives us a
powerful way of gaining insight into properties of these ODEs “for
free”, without necessarily having to find solutions to them. This is
accomplished by finding invariance properties of the Lagrangian.

The Lagrangian (1) does not refer to any fixed point in space;
only the relative distance between the two particles, along with their
velocities, is relevant. Therefore, the Lagrangian (1) is invariant
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under translation in space by some arbitrary displacement y:

L(t, x1, x2, ẋ1, ẋ2) = L(t, x1 + y, x2 + y, ẋ1, ẋ2) (2)

By Noether’s theorem, invariance under spatial translation implies
that the linear momentum of the whole system is constant for all
time. For this system, conservation of linear momentum is stated
mathematically as the vanishing of the derivative with respect to
time of the total linear momentum of the system:

d

dt
m(ẋ1 + ẋ2) = 0 (3)

In general, Noether’s theorem gives us a way of deriving conserved
properties like (3) from invariance properties like (2). In this case,
we have used invariance under translation in space to derive con-
servation of linear momentum. Other common examples include
invariance under translation in time, yielding conservation of en-
ergy, and invariance under rotation, yielding conservation of an-
gular momentum. We will see examples of each of these kinds of
invariance, and their consequent conservation laws, in Section 5.

The invariance property stated in Equation (2) is highly remi-
niscent of the free theorem we stated for the polymorphic program
at the start of this introduction. A change in representation in the
input, whether a change in data representation from a type α to a
type β, or a change in where time zero is counted from, results in
no change in the output. Since Reynolds’ relational parametricity
was allowed us to derive the invariance properties for the program
f just by looking at its type, we ask the following question:

Question: Is it possible to use Reynolds’ theory of relational para-
metricity to derive the invariance properties of Lagrangians re-
quired for Noether’s theorem to derive conservation laws?

In this paper, we answer this question positively. We show that
it is indeed the case that we can use a generalised version of
Reynolds’ theory of relational parametricity to prove the geometric
invariance properties required for the hypotheses of Noether’s the-
orem. We construct an extension of System Fω suitable for writing
invariant Lagrangians, with a relationally parametric model that al-
lows us to prove invariance properties as free theorems. In our sys-
tem, the Lagrangian (1) we gave above for describing a system of
two particles coupled by a spring will have the type:

∀y:T(1).
C∞(R〈1, 0〉 × R〈1, y〉 × R〈1, y〉 × R〈1, 0〉 × R〈1, 0〉,R〈1, 0〉)

We explain this type by breaking it down from left to right. The
quantifier ∀x:T(1) indicates that we are quantifying over all trans-
lations y in one-dimensional space, just as we did implicity in
Equation (2). The notation C∞(−,−) denotes the type of smooth
functions between spaces. (A smooth function is a function that is
infinitely differentiable.) All the functions that we wish to use as
Lagrangians must be smooth (at least up to second order) for the
theory to work. The type R〈g, x〉 denotes real numbers that vary
with some linear transformation g and translation x. In this case,
all the linear transformations are 1, indicating no transformation.
Likewise, when the translation component is 0, there is no transla-
tion. Thus a value of type R〈1, 0〉 is invariant, but a value of type
R〈1, y〉 varies with the translation y. In the smooth function type
above, in domain space consists of vectors of five real numbers: the
time, the two particle positions, which vary with the translation y,
and the two particle velocities.

Atkey, Johann and Kennedy [4], building on older work by
Kennedy [10], have already presented a polymorphic type system
for expressing geometric invariance properties similar to the trans-
lation invariance property in Equation (2). In the present work, we
extend their type system by embedding it within System Fω. The
benefits of this embedding are twofold. Firstly, by using the richer
type-level structure of System Fω, we can easily add useful indexed

types like length indexed vectors and smooth function types, both
of which would have required special treatment in the special pur-
pose type system presented by Atkey et al.. Secondly, by using Sys-
tem Fω as our base, we are able to reuse the reflexive graph-based
relationally parametric semantics presented by Atkey [3], extend-
ing it as appropriate for our geometric setting.

Contributions Our core contributions are threefold:

1. We reformulate the type system for geometric invariance of
Atkey, Johann and Kennedy [4] as an extension of System
Fω. This shows that the special status of the group-indexed
types in Atkey et al.’s work can be incorporated into a standard
framework for presenting indexed types.

2. We present a relationally parametric semantics of our extension
of System Fω. In this model, following Atkey’s model for ba-
sic System Fω [3], each kind is interpreted as a reflexive graph.
Our key technical contribution is to note that the many geo-
metric groups that we wish to incorporate are expressible as
groupoids, and hence as reflexive graphs. We therefore show
that Reynolds’ theory of relational parametricity, suitably gen-
eralised to indexed types by considering reflexive graphs, al-
ready accomodates geometric invariance properties.

3. Finally, we connect the free theorems derivable from our rela-
tionally parametric semantics with Noether’s theorem for deriv-
ing conservation laws. We present many examples of invariant
Lagrangians expressible in our type system, along with the con-
sequent conservation laws for physical systems. In each case,
the necessary invariance property is derived from the type we
assign to the Lagrangian.

Outline
• In the next section, Section 2, we describe the necessary back-

ground to understand Noether’s theorem and the conservation
laws it generates. We briefly introduce the Lagrangian formula-
tion of classical mechanics, define precisely what it means for a
physical system to be invariant under transformations, and state
Noether’s theorem.
• Having shown how invariance generates conservation laws in

Section 2, in Section 3, we show how to derive invariance prop-
erties from indexed types. We present a relationally parametric
semantics for System Fω, and show how geometric invariance
properties can be accomodated within this semantics.
• In Section 4, we construct a type system for classical mechan-

ics, by extending System Fω with the necessary constants for
smooth function types and combinators for constructing smooth
functions. Programming directly with our combinators in raw
System Fω is awkward, due to the point-free style required, so
in Section 4.2 we define a surface syntax for defining smooth
functions that is translated into our applied System Fω.
• In Section 5 we present several examples of using our extension

of System Fω for writing invariant Lagrangians that describe
physical systems.
• Section 6 concludes, and offers directions for further work.

2. Conservation Laws from Invariance
Noether’s theorem applies to systems described using the formal-
ism of Lagrangian mechanics, a reformulation of Newtonian clas-
sical mechanics. In this section we can only offer a very brief in-
troduction to the concepts of Lagrangian mechanics. The reader
is referred to other sources, such as Landau and Lifschitz [11] or
Arnol’d [2] for the necessary background in the mathematical the-
ory of classical mechanics. Lagrangian mechanics, and Noether’s
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theorem, make crucial use of the Calculus of Variations. Gelfand
and Fomin [6] provide a good introduction to this topic.

In this section, we will endeavour to keep the presentation rel-
atively elementary. However, some knowledge of differential and
integral calculus will be required. Knowledge of basic Newtonian
mechanics will also be helpful. We will use standard notation from
physics and mathematics for integrals and (partial) derivatives. In
particular, when discussing derivatives with respect to time, we use
dot notation: ẋ for the first derivative of x with respect to time, and
ẍ for the second derivative.

2.1 Lagrangian Mechanics
Lagrangian mechanics is a branch of analytical mechanics, along
with Hamiltonian mechanics [2, 11]. Analytical mechanics seeks to
discover the underlying structure of Newtonian classical mechanics
by reformulating it in different terms.

Lagrangian and Action For Lagrangian mechanics, classical me-
chanical systems are described in terms of Lagrangians L = T −
V , where T is the total kinetic energy of the system, and V is the
total potential energy. The Lagrangian is a function of time, the po-
sitions of all the particles in the system, and their velocities. This
is usually written like so, with abuse of notation for q̇ which is a
variable here, not a derivative of a function:

L(t, q, q̇) = T − V

In this expression, q and q̇ are actually vectors containing the
components of the position and velocity vectors for each particle. A
key feature of Lagrangian mechanics is that the coordinate system
used to describe the system need not necessarily be the usual
cartesian coordinates. For example, one of the components of q
might be the angle of swing of a pendulum. This use of generalised
coordinates is one of the advantages of Lagrangian mechanics over
the Newtonian presentation in terms of positions and forces.

The Lagrangian for a particular system is used to define the
action of that system. For a particular path q : R → Rn and
endpoints a < b in time, the action of the Lagrangian L over this
path is defined by the following integral:

S[q; a; b] =

∫ b

a

L(t, q(t), q̇(t))dt

Below, we will use the principle of stationary action to select the
physically realisable paths from all the possible paths q : R→ Rn.

Example 1. We have already seen an example of a Lagrangian,
in the introduction, describing a system of two particles coupled
by a spring. Another example of a Lagrangian describes a system
consisting of a single particle of mass m acted upon by a constant
downward gravitational field with gravitational potential g:

L(t, x, y, ẋ, ẏ) =
1

2
m(ẋ2 + ẏ2)−mgy (4)

Again, the left summand represents the kinetic energy of the system
in terms of the mass and horizontal and vertical velocities of the
particle. The right summand represents the potential energy of the
system due to the gravitational field’s strength determined by the
particle’s distance from a fixed baseline at y = 0.

The Principle of Stationary Action The principle of stationary
action states that the physically realisable paths q are the paths
that yield stationary points (i.e., either minima or maxima) of the
action S[q; a; b], for all a and b. Defining what is exactly meant by a
stationary point of the action is beyond the scope of this paper, and
can be found in standard references on the calculus of variations,
such as Gelfand and Fomin [6]. The key point for our purposes is
that a path q satisfies the principle of stationary action if and only if

it satisfies a system of ODEs derived from the Lagrangian L, called
the Euler-Lagrange equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (5)

The ODEs derived from the Lagrangian for a classical mechanical
system are called the equations of motion for the system.

The notation in the Euler-Lagrange equation, while standard, is
not exactly clear, especially to a programming language theorist
used to a more careful treatment of variables. The two partial
derivatives ∂L

∂q̇i
and ∂L

∂qi
take partial derivatives of L with respect to

q̇i and qi as variables. The derivative with respect to time, d
dt

then
treats q̇i as a function of time, hence the appearance of the second
derivatives q̈i in the equations of motion. Sussman and Wisdom
[19] criticise the standard presentation of Lagrangian mechanics for
this kind of confusing notation, and define a clearer notation based
on the Scheme programming language. We elect to stick with the
standard notation as used in physics textbooks just for familiarity.

Example 2. Computing the Euler-Lagrange equations for the La-
grangian (4), above, yields a pair of ODEs, one each for the x and
y coordinates of the single particle of the system:

mẍ = 0 mÿ = −mg
Note that both these ODEs have the form F = mẍ, just as
in Newton’s second law. Lagrangian mechanics allows, from the
principle of stationary action, the derivation of Newton’s second
law, instead of postulating it as an axiom.

2.2 Noether’s Theorem
As we described in the introduction, Noether’s theorem provides us
with deep insights into the properties of the solutions of the Euler-
Lagrange equations. Formally, Noether’s theorem requires the in-
variance of the action S, rather than invariance of the Lagrangian
itself. We therefore first define what is meant by invariance of the
action, and then state Noether’s theorem.

Invariance of the Action Let

S[q; a; b] =

∫ b

a

L(t, q(t), q̇(t))dt

be the action of some physical system described by the Lagrangian
L. Assume a differentiable invertible function Φ : R → R that
transforms time in some way and a function Ψ : Rn → Rn that
transforms the vector of generalised coordinates ~q to another vector
of generalised coordinates Ψ(~q).

The action S is invariant between the endpoints a and b, under
the transformations Φ and Ψ, if it is the case that for all paths q:∫ b

a

L(t, q(t), q̇(t))dt =

∫ Φ(b)

Φ(a)

L(s, q∗(s), q̇∗(s))ds (6)

where q∗(s) = (Ψ ◦ q ◦ Φ−1)(s) is the path q transformed by Φ
and Ψ. By change of variables, the right hand integral in the above
equation is equal to the following integral:∫ b

a

L(Φ(t), q∗(Φ(t)), q̇∗(Φ(t))) · Φ̇(t)dt

For our application to classical mechanics, the endpoints a and b are
arbitrary, so we can rewrite Equation (6) to the following equation
between applications of the Lagrangian:

L(t, q(t), q̇(t)) = L(Φ(t), q∗(Φ(t)), q̇∗(Φ(t))) · Φ̇(t) (7)

For most examples, it will be the case that Φ has the form Φ(t) =
t + t′ and Ψ is an affine transformation Ψ(q) = Gq + x, where
G is an n×n real matrix and x ∈ Rn. In this case, Equation (7)
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simplifies further, using the definition of q∗ and the chain rule of
differentiation, to:

L(t, q(t), q̇(t)) = L(t+ t′, Gq(t) + x,Gq̇(t)) (8)

Equation (8) is obviously implied by the following equation, where
we treat q and q̇ as universally quantified variables, instead of as
functions of time:

L(t, q, q̇) = L(t+ t′, Gq + x,Gq̇) (9)

Equation (9) is the form of invariance that the free theorems we
derive from the types of our typed language for classical mechanics
will usually take. We define our type system for classical mechanics
in Sections 3 and 4 below.

Example 3. In the introduction, we stated that the Lagrangian (1)
describing the spring-coupled system is invariant under translation
in space. Our running example in this section, the Lagrangian (4)
for the single particle under gravity, is not invariant under all spatial
translations, due to the reference in the potential energy term to the
distance from the fixed baseline at y = 0. It is invariant under
translations along the x-axis, however. Both Lagrangians are also
invariant in translations in time, a special case of Equation (9):

L(t, q, q̇) = L(t+ t′, q, q̇)

This invariance property is simply a consequence of the fact that
neither Lagrangian explicitly mentions the time t.

Noether’s Theorem Noether’s theorem applies to actions that are
continuously invariant. Being continuously invariant means that,
instead of having fixed transformations Φ and Ψ, we have two
families of transformations, Φε and Ψε, differentiably indexed by a
real parameter ε, such that Φ0 and Ψ0 are the identity function.

Theorem 1 (Noether). If the action

S[q; a; b] =

∫ b

a

L(t, q(t), q̇(t)) dt

is invariant under ε-indexed families of transformations Φε and Ψε,
then the equation

d

dt

(
n∑
i=1

∂L

∂q̇i
ψi +

(
L−

n∑
i=1

q̇i
∂L

∂q̇i

)
φ

)
= 0 (10)

holds for all paths q satisfying the Euler-Lagrange equations (5),
where ψ = ∂Ψ

∂ε

∣∣
ε=0

and φ = ∂Φ
∂ε

∣∣
ε=0

.

Proof. E.g., Gelfand and Fomin [6], Section 20.

Example 4. In Example 3, we noted that the Lagrangians (1) and
(4) are both invariant under arbitrary translations in time. In terms
of continuous invariance, their corresponding actions are invariant
under the families Φε(t) = t + ε and Ψε(q) = q. Plugging these
definitions into Equation (10), we learn that, for these systems:

d

dt

(
L−

2∑
i=1

q̇i
∂L

∂q̇i

)
= 0

For the spring-coupled particles Lagrangian, (1), we obtain:

d

dt

(
1

2
m(ẋ1

2 + ẋ2
2) +

1

2
k(x1 − x2)2

)
= 0

and for the single particle under gravity Lagrangian (4), we obtain:

d

dt

(
1

2
m(ẋ2 + ẏ2) +mgy

)
= 0

In both cases, we have discovered that, as a consequence of in-
variance under translation in time, the total energy of the system is
conserved (note that the − signs in the original Lagrangians have

turned into +s). In general, invariance under translation in time im-
plies, via Noether’s theorem, conservation of energy.

This finishes our short introduction to Lagrangian mechanics
and Noether’s theorem. We have shown how Noether’s theorem
can be used to derive conservation laws from invariance properties.
We now go on to showing how suitable invariance properties can be
derived from types, building towards Section 4, where we construct
a type system for writing Lagrangians that expresses invariance
properties directly in the types. In Section 5, we give examples of
invariant Lagrangians and their consequent conservation laws.

3. Invariance from Types
We derive invariance properties from types by constructing a re-
lationally parametric model of System Fω, which we then extend
with suitable kind-, type-, and term-level constants for writing in-
variant Lagrangians. Our relationally parametric model is based on
the reflexive graph model presented by Atkey [3] (based on previ-
ous work on reflexive graph models of relational parametricity by
Robinson and Rosolini [18] and Hasegawa [8]). In reflexive graph
models of relational parametricity, the kinds of System Fω are in-
terpreted as reflexive graphs, while types are interpreted as mor-
phisms of reflexive graphs. As demonstrated by Atkey, uniformly
interpreting kinds as reflexive graphs allows for a straightforward
interpretation of higher kinds like ∗ → ∗. In the present setting,
reflexive graphs will allow us to accomodate arbitrary groupoids as
kinds (Section 3.3). Groupoid kinds are the key technical tool that
we need to derive the kinds of geometric invariance properties we
need for Noether’s theorem.

3.1 System Fω: Syntax and Relationally Parametric Model
We now present the syntax and relationally parametric semantics
of System Fω. Since we will incrementally extend the syntax of the
system throughout this section and the next, we do not state a final
triple of theorems stating that we have correctly interpreted kinds,
types and terms. Rather, we state the necessary properties of the
interpretation as three separate properties (Properties 1, 2, and 3,
below), and maintain them as we extend the system.

We deviate from the standard presentation of System Fω in
that we distinguish between large and small kinds, and only allow
quantification over small kinds. In particular, the kind of types ∗ is
not small. The reason for this is that we desire a simple set-theoretic
model. However, requiring that we have a set of sets closed under
large products, in order to interpret quantification over the kind ∗,
would force us to use an intuitionistic metatheory [16]. The basic
results of the calculus of variations that we are relying on, such
as the derivation of the Euler-Lagrange equations, use excluded
middle in their proofs, so an intuitionistic metatheory is not an
option. We therefore just assume that we have a set of “small”
sets, which includes the real numbers and is closed under subsets,
products, function space and comprehension.

Syntax The kinds of System Fω include at least the base kind
of types, ∗, and function and product kinds, as generated by the
following grammar:

κ ::= ∗ | κ1 → κ2 | κ1 × κ2 | · · ·
We will extend the collection of kinds in Section 3.2 with type-level
natural numbers, and in Section 3.3

We use the judgement κ small to denote when the kind κ will
be interpreted by a small reflexive graph (to be defined below). The
kind ∗ is not small, but the construction of function and product
kinds preserves smallness:

κ1 small κ2 small

κ1 → κ2 small

κ1 small κ2 small

κ1 × κ2 small

4 2013/7/15



α : κ ∈ Θ

Θ ` α : κ

Θ, α : κ1 ` A : κ2

Θ ` λα : κ1. A : κ1 → κ2

Θ ` F : κ1 → κ2 Θ ` A : κ1

Θ ` FA : κ2

Θ ` A : κ1 Θ ` B : κ2

Θ ` 〈A,B〉 : κ1 × κ2

Θ ` A : κ1 × κ2

Θ ` πi A : κi
i ∈ {1, 2}

Θ ` A : ∗ Θ ` B : ∗
Θ ` A×B : ∗

Θ ` A : ∗ Θ ` B : ∗
Θ ` A→ B : ∗

Θ, α : κ ` A : ∗ κ small
Θ ` ∀α:κ. A : ∗

Figure 1. Types and their Kinds

Θ, α : κ1 ` A : κ2 Θ ` B : κ1

Θ ` (λα : κ1.A) B ≡ A{B/α} : κ2
β

Θ ` A : κ1 → κ2

Θ ` (λα : κ1.A α) ≡ A : κ1 → κ2
η

Θ ` A1 : κ1 Θ ` A2 : κ2

Θ ` πi 〈A1, A2〉 ≡ Ai : κi
β

Θ ` A : κ1 × κ2

Θ ` 〈π1A, π2A〉 ≡ A : κ1 × κ2
η

plus: reflexivity, symmetry, transitivity and congruence

Figure 2. Type equality

The additional kinds we introduce below will all be small.
The well-kinded types, type equalities, and well-typed terms of

System Fω are shown in Figures 1, 2 and 3, respectively. Note that
typing contexts Γ only contain well-kinded types of kind ∗. Terms
also have an equational theory, with βη-laws for functions, prod-
ucts, and universal quantification, which we omit. Our presentation
of System Fω is entirely standard (see, e.g., Pierce [15]), except
for the restriction to small kinds in the formation of universal kinds
∀α:κ.A. As is the case for kinds, we will extend the types, type
equalities and terms in Sections 3.2, 3.3 and 4, below.

Reflexive Graphs and the Interpretation of Kinds We will inter-
pret every kind κ is as a reflexive graph, which we now define. A
reflexive graph is a triple (O,R, id), where O is a large set of ob-
jects, R : O × O → Set assigns a small set of directed ‘edges’
to each pair of objects, and id : ∀o ∈ O. R(o, o) assigns a dis-
tinguished ‘identity’ edge from every object to itself. We think of
the edges of a reflexive graph as abstract “relations” between the
objects. Indeed, in the interpretation of the kind of types, ∗, below,
the edges will be exactly relations.

A small reflexive graph is a reflexive graph (O,R, id) where
O is a small set of objects. We use small reflexive graphs as the
semantic interpretation of small kinds.

The interpretation of kinds as reflexive graphs, and small kinds
as small reflexive graphs is a key property of our semantics that we
will maintain as we add additional kinds in Sections 3.2 and 3.3,
below. We state this as Property 1 of our semantics:

x : A ∈ Γ

Θ | Γ ` x : A

Θ | Γ ` e : A Θ ` A ≡ B : ∗
Θ | Γ ` e : B

Θ | Γ ` e1 : A1

Θ | Γ ` e2 : A2

Θ | Γ ` (e1, e2) : A1 ×A2

Θ | Γ ` e : A1 ×A2

Θ | Γ ` πie : Ai
i ∈ {1, 2}

Θ | Γ, x : A ` e : B

Θ | Γ ` λx : A. e : A→ B

Θ | Γ ` e1 : A→ B Θ | Γ ` e2 : A

Θ | Γ ` e1e2 : B

Θ, α : κ | Γ ` e : A α 6∈ fv(Γ)

Θ | Γ ` Λα:κ. e : ∀α:κ.A

Θ | Γ ` e : ∀α:κ.A Θ ` B : κ

Θ | Γ ` e [B] : A{B/α}

Figure 3. Terms and their Types

Property 1. Each kind κ is interpreted as a reflexive graph JκK. If
κ small, then JκK is a small reflexive graph.

An appealing interpretation of reflexive graphs is as “categories
without composition”. Following this intuition, we define mor-
phisms of reflexive graphs as “functors”, without the preserva-
tion of composition condition. A morphism of reflexive graphs
(O1, R1, id1) and (O2, R2, id2) is a pair of mappings f : O1 →
O2 and r : ∀o, o′ ∈ O1. R1(o, o′)→ R2(f o, f o′) such that iden-
tities are preserved: r o o (id1 o) = id2 (f o). We use morphisms
of reflexive graphs below to interpret well-kinded types.

We will use the notation −O , −R and −id for the first, second
and third projections out of tuples representing reflexive graphs.
Similarly, we use −f and −r for the first and second projections
out of tuples representing reflexive graph morphisms.

We now define the interpretations of the basic kinds of System
Fω we defined above, making sure that we maintain Property 1. At
base kind, the collection of objects is simply the type of all small
sets; edges between A and B are binary relations on A and B (i.e.,
subsets of A × B); and the distinguished identity edge is exactly
the equality relation:

J∗K = (Set,Rel,≡)

The reflexive graph J∗K is not small, due to the collection of all
small sets Set not forming a small set.

For higher kinds κ1 → κ2, the collection of objects consists of
reflexive graph morphisms from the interpretation of κ1 to the in-
terpretation of κ2; the edges between morphisms (f, r) and (f ′, r′)
are edge transformers; and the distinguished identity relation for
(f, r) is just r:

Jκ1 → κ2K =
({(f, r) | (f, r) : Jκ1K→ Jκ2K},
((f, r), (f ′, r′)) 7→ ∀o, o′.Jκ1KR(o, o′)→ Jκ2KR(f o, f ′ o′),
(f, r) 7→ r )

By the assumption that our collection of small sets is closed under
the formation of function spaces and set comprehension, if Jκ1K
and Jκ2K are small reflexive graphs, then so is Jκ1 → κ2K.
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Product kinds are interpreted by taking the product of their
interpretations as reflexive graphs:

Jκ1 × κ2K =
(Jκ1KO × Jκ2KO,
((o1, o2), (o′1, o

′
2)) 7→ Jκ1KR(o1, o

′
1)× Jκ2KR(o2, o

′
2),

(o1, o2) 7→ (Jκ1Kid(o1), Jκ2Kid(o2)))

The collection of objects of the interpretation of a product kind is
the product of the underlying collections of objects of the two parts,
and the relational component is simply the product of the relational
components. This naturally leads to the identity component being
defined as the tuple of the identity components of the two parts.
Again, by assumption that our collection of small sets is closed
under products, if Jκ1K and Jκ2K are small reflexive graphs, then
so is Jκ1 × κ2K. Product kinds generalise to the interpretation of
kinding contexts Θ = α1 : κ1, ..., αn : κn, which are interpreted
as the product of the reflexive graph interpretations of κ1, ..., κn:

Jα1 : κ1, ..., αn : κnK =
(Jκ1KO × ...× JκnKO,
(θ, θ′) 7→ Jκ1KR(π1θ, π1θ

′)× ...× JκnKR(πnθ, πnθ
′),

θ 7→ (Jκ1Kid(π1θ), ..., JκnKid(πnθ)))

In Sections 3.2 and 3.3 below, we will extend System Fω with
additional kinds, and assign them reflexive graph interpretations,
making sure that we maintain Property 1.

Interpretation of Types Well-kinded types Θ ` A : κ from
Figure 1 are interpreted as reflexive graph morphisms JAK : JΘK→
JκK. We sum this up as a property of our semantics:

Property 2. Each well-kinded type Θ ` A : κ is interpreted
as a reflexive graph morphism JAK : JΘK → JκK, such that if
Θ ` A ≡ B : κ, then JAK = JBK.

The interpretation of the λ-calculus fragment (i.e., variables,
λ-abstraction and application, and products) of the language of
well-kinded types is displayed in Figure 4. The interpretations are
unsurprising given the reflexive graph interpretation of the kinds
κ1 → κ2 and κ1 × κ2 we gave above.

Figure 5 shows the interpretations of the basic type constructors
for function and product types, and universal quantification. Each
of these constructs builds an object of kind ∗, so the object-level
interpretation is a small set in Set, and the relation-level interpre-
tation is an actual relation. In the cases of the function and product
types, the object-level interpretation is just as set-theoretic func-
tion and product respectively, and the relation-level interpretation
uses the standard logical relations interpretations of these type con-
structors. Universal quantification, ∀α:κ. A, is interpreted at the
object level by taking the dependent product over the objects of
the interpretation of κ (this product exists because we have stipu-
lated that κ must be small), and then restricting to those elements
of the dependent product that preserve relations. This restriction is
required for this interpretation to preserve identity edges, and so
be a reflexive graph morphism. The relation-level interpretation of
universal quantification is the standard relational interpretation of
such types, albeit here generalised to kinds interpreted as arbitrary
reflexive graphs.

Well-kinded typing contexts Θ ` Γ are interpreted as reflexive
graph morphisms JΓK : JΘK→ J∗K by taking the product of the in-
terpretations of their constituent types, similar to the interpretation
of the product types A×B.

We will extend basic System Fω with additional types and type
equalities in Sections 3.2, 3.3, and 4, below. These new types will
also be assigned interpretations as reflexive graph morphisms, and
we will ensure that Property 2 is maintained.

Interpretation of Terms We omit the straightforward and rela-
tively uninteresting interpretation of well-typed terms Θ | Γ ` e :
A, and just state that there is a well-defined function interpreting
each well-typed term, with the property that it takes related en-
vironments to related results, this is the fundamental theorem of
logical relations for System Fω:

Property 3. For all well-typed terms Θ | Γ ` e : A there is a
function JeK ∈ (∀θ ∈ JΘKO. JΓKfθ → JAKfθ), such that, for all
θ, θ′ ∈ JΘKO , ρ ∈ JΘKR(θ, θ′), γ ∈ JΓKfθ and γ′ ∈ JΓKfθ′, if
(γ, γ′) ∈ JΓKrθθ′ρ then (JeKθγ, JeKθ′γ′) ∈ JAKrθθ′ρ. Moreover,
this interpretation is sound for the βη equational theory of terms.

3.2 Discrete Kinds
In Section 3.1, we only had a single base kind: the kind ∗ of proper
types, with a specific interpretation as the reflexive graph of sets
and relations. We now describe two families of base kinds with
interpretations that are particular sorts of reflexive graph. In this
section, we look at discrete kinds; kinds whose reflexive graph
interpretations are such that the reflexive edges are the only edges
between objects. In the following section (Section 3.3), we look at
groupoid kinds, where edges are composable and invertible.

Discrete kinds can be seen as the natural way of lifting types up
to the kind level. For our purposes, we will only require a kind of
natural numbers, which we will use for constructing n-ary vectors
of positions and velocities when we use our type system for writing
Lagrangians in Section 4. The kind of natural numbers is small:

κ ::= · · · | nat nat small

The interpretation of this kind as a reflexive graph goes as follows:

JnatK = (N, (n1, n2) 7→ {∗ | n1 = n2}, n 7→ ∗)
The collection of objects of this reflexive graph is simply the set of
natural numbers. The only edges in the graph are unique edges be-
tween equal numbers. Since we have assumed that our collection of
small sets contains the natural numbers, we have clearly maintained
Property 1 of our semantics.

We add new type-level constructs for the kind Nat of natural
numbers, representing zero and successor, and a kind-generic re-
cursion operator:

Θ ` zero : nat

Θ ` A : nat

Θ ` succ A : nat

Θ ` A : nat Θ ` B : κ Θ ` C : κ→ κ

Θ ` natrecκ A B C : κ

These three constructs all have the evident interpretations in terms
of the inductive structure of the natural numbers, and satisfy the
following β-laws, maintaining Property 2 of our semantics:

natrecκ zero B C ≡ B
natrecκ (succ A) B C ≡ C (natrecκ A B C)

3.3 Groupoid Kinds
Discrete kinds are useful for lifting types up to the kind level, but
they do not really exploit the flexibility of reflexive graphs. More-
over, they do not provide us with the invariance properties we re-
quire to apply Noether’s theorem. By considering kinds whose in-
terpretations are groupoids, we will be able to derive the invariance
properties that we need.

Recall that a groupoid is a category in which all morphisms
have inverses [14]. Functors between categories always preserve
isomorphisms, so morphisms of groupoids are just functors. Every
group is a groupoid with one object and a morphism for every
element of the group: composition is the group operation, inverses
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JΘ ` αi : κiKfθ = πiθ
JΘ ` αi : κiKrθθ′ρ = πiρ

JΘ ` λα:κ1. A : κ1 → κ2Kfθ = (λo ∈ Jκ1KO. JAKf (θ, o), λo, o′ ∈ Jκ1KO, r ∈ Jκ1KR(o, o′). JAKr(θ, o)(θ, o′)(JΘKidθ, r))
JΘ ` λα:κ1. A : κ1 → κ2Krθθ′ρ = λo, o′ ∈ Jκ1KO, r ∈ Jκ1KR(o, o′). JAKr(θ, o)(θ′, o′)(ρ, r)

JΘ ` FA : κ2Kfθ = π1(JF Kf θ) (JAKf θ)
JΘ ` FA : κ2Krθθ′ρ = JF Krθθ′ρ (JAKfθ)(JAKfθ′)(JAKrθθ′ρ)

JΘ ` 〈A,B〉 : κ1 × κ2Kfθ = (JAKfθ, JBKfθ)
JΘ ` 〈A,B〉 : κ1 × κ2Krθθ′ρ = (JAKrθθ′ρ, JBKrθθ′ρ)

JΘ ` πiA : κiKfθ = πi(JAKfθ)
JΘ ` πiA : κiKrθθ′ρ = πi(JAKrθθ′ρ)

Figure 4. Interpretation of type-level λ-calculus as reflexive graph morphisms

JΘ ` A→ B : ∗Kfθ = JAKfθ → JBKfθ
JΘ ` A→ B : ∗Krθθ′ρ = {(f, f ′) | ∀(a, a′) ∈ JAKrθθ′ρ. (f a, f ′ a′) ∈ JBKrθθ′ρ}

JΘ ` A×B : ∗Kfθ = JAKfθ × JBKfθ
JΘ ` A×B : ∗Krθθ′ρ = {((a, b), (a′, b′)) | (a, a′) ∈ JAKrθθ′ρ, (b, b′) ∈ JBKrθθ′ρ}

JΘ ` ∀α:κ. A : ∗Kfθ = {x ∈ (∀o ∈ JκKO. JAKf (θ, o)) | ∀o, o′, r ∈ JκKR(o, o′). (x o, x o′) ∈ JAKr(θ, o)(θ, o′)(JΘKidθ, r)}
JΘ ` ∀α:κ. A : ∗Krθθ′ρ = {(x, x′) | ∀o, o′, r ∈ JκKR(o, o′). (x o, x′ o′) ∈ JAKr(θ, o)(θ′, o′)(ρ, r)}

Figure 5. Interpretation of basic types as reflexive graph morphisms

are given by the group inverses, and the identity morphism is given
by the group unit. Homomorphisms between groups are in one-
to-one correspondence with functors between the corresponding
groupoids. An example of a groupoid that is not a group is given
by the collection of cartesian spaces (i.e., Rn for some n), with all
diffeomorphisms (smooth invertible functions) as the morphisms.

Trivially, every groupoid is a reflexive graph, simply by for-
getting the composition and inverses. Likewise, every functor be-
tween groupoids is a morphism of reflexive graphs, by forgetting
the preservation of composition. Therefore, given any groupoid,
we can add a new kind to System Fω that is interpreted by that
groupoid, and given any functor f : JG1K → JG2K between
groupoids interpreting kinds G1 and G2, we obtain a type constant
of kind G1 → G2, with interpretation f .

Integers Our first groupoid kind is Z, interpreted by additive
group of integers. We will use this kind to state the types of the
trigonometric functions sin and cos in Section 4.1, which are peri-
odic with period 2π. The kind Z is small:

κ ::= · · · | Z Z small

The kind Z has the following interpretation as a reflexive graph:

JZK = ({∗}, λ∗, ∗. Z, λ∗. 0)

Note the difference between this interpretation, and the interpreta-
tion of the kind Nat in the previous section. In the interpretation of
Nat, the objects were complex and the relations were trivial. The
reflexive graph interpreting Z has a trivial collection of objects, but
a rich structure at the relation level, given by the group of integers.
This structure means that we can add the following type-level con-

stants to our system:

Θ ` 0 : Z

Θ ` A : Z Θ ` B : Z

Θ ` A+B : Z

Θ ` A : Z

Θ ` −A : Z

Each of these constants has a trivial object-level interpretation, due
to the trivial collection of objects in the reflexive graph JZK. At the
relation-level, the interpretations are simply given using the group
structure of the integers. These interpretations satisfy the abelian
group axioms, so we add these axioms to the type-level equations.

Translation and Matrix Groups The group of integers is not
suitable for stating the invariance properties we require to apply
Noether’s theorem. To do so, we require groups of translations
and invertible linear transformations. We extend our type system
with small kinds representing n-dimensional (n ≥ 0) translations,
invertible linear transformations, and orthogonal transformations:

κ ::= · · · | T(n) | GL(n) | O(n) T(n),GL(n),O(n) small

The interpretations of these kinds follow the same pattern as for the
kind Z above. Each interpretation is a reflexive graph with a triv-
ial collection of objects, and relations taken from the appropriate
group:

JT(n)K = ({∗}, λ∗, ∗. Rn, λ∗. ~0)
JGL(n)K = ({∗}, λ∗, ∗. GL(n), λ∗.I)
JO(n)K = ({∗}, λ∗, ∗. O(n), λ∗.I)

We add the group operations and group axioms for each of these
groupoid kinds in the same way as we did for the kind Z above,
except that we use multiplicative notation for the kinds GL(n) and
O(n). Note that, except for GL(1), the groups GL(n) and O(n) are
not abelian.

We also extend our type system with the following type-level
constants. Each of these is interpreted by the correspondingly
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named homomorphism between the groups involved. For exam-
ple, scalen is interpreted by the homomorphism GL(1)→ GL(n)
that takes a non-zero real number s to the matrix with ss along the
diagonal and zeros elsewhere.

exp : T(1)→ GL(1)
orthon : O(n)→ GL(n)
scalen : GL(1)→ GL(n)
c ∗ − : Z→ T(1)

In the last of these c stands for an arbitrary real constant. Since each
of these is interpreted by a group homomorphism, we are justified
in adding the group homomorphism laws as axioms to our type-
level equational theory, maintaining Property 2.

The Groupoid of Cartesian Spaces Finally in this section, we
introduce the groupoid kind of cartesian spaces, which we will use
for the configuration spaces of the classical mechanical systems
we describe in our system. As we noted above, the collection
of cartesian spaces is a groupoid with a non-trivial collection of
objects. We extend our system with a kind of cartesian spaces:

κ ::= · · · | CartSp
with the following interpretation:

JCartSpK =
(N, λm, n. {f : Rm → Rn | f a diffeomorphism}, λn. idRn)

We have chosen to represent cartesian spaces of dimension n just
as the natural number n. This gives us a canonical representation
of n-dimensional space for each n, avoids tricky problems with
isomorphic constructions of the same space.

Cartesian spaces are closed under taking their product:

Θ ` X : CartSp Θ ` Y : CartSp

Θ ` X × Y : CartSp

with the following interpretation, where the cartesian product of
cartesian spaces adds their dimensions, and composes diffeomor-
phisms “in parallel”:

JX × Y Kfθ = JXKfθ + JY Kfθ
JX × Y Krθθ′ρ = λ(~x, ~y). (JXKrθθ′ρ~x, JY Krθθ′ρ~y)

Cartesian spaces are generated by the following construct that
yields the n-dimensional cartesian space (n ≥ 0) that varies with
the given invertible linear transformation and translation:

Θ ` G : GL(n) Θ ` T : T(n)

Θ ` Rn〈G,T 〉 : CartSp

As a notational convenience, we write R1〈G,T 〉 as just R〈G,T 〉
and R0〈G,T 〉 as just R0.

The type Rn〈G,T 〉 has the following interpretation as a reflex-
ive graph morphism:

JRn〈G,T 〉Kfθ = n
JRn〈G,T 〉Krθθ′ρ = λ~x. (JGKrθθ′ρ)~x+ JT Krθθ′ρ

Note that JRn〈G,T 〉Krθθ′(JΘKidθ) is the identity diffeomorphism,
so this interpretation preserves identity edges, exactly as required
in the definition of reflexive graph morphisms. Consequently, the
interpretation of Rn〈G,T 〉, and also the interpretation for products
of cartesian spaces, preserves Property 2.

Using the type-level natural numbers and their recursion opera-
tor, we can define a type of n-ary products of a cartesian space:

vec = λn:Nat, x:CartSp. natrec n R0 (λx. X × x)

n-ary products of cartesian spaces will be useful in Section 5 when
we define Lagrangians describing systems that are generic in the
number of particles involved.

Finally, we include an operator that takes any cartesian space to
its corresponding proper type:

Θ ` X : CartSp

Θ ` *X+ : ∗

with the following straightforward interpretation:

J*X+Kfθ = RJXKf θ

J*X+Krθθ′ρ = {(~x, ~x′) | (JXKrθθ′ρ)~x = ~x′}

4. A Type System for Classical Mechanics
In the previous section we constructed a way to derive invariance
properties from types. In Section 2, we saw that Noether’s theorem
is a method for deriving conservation laws for classical mechanical
systems from their invariance properties. In this section, we con-
struct a type system for constructing invariant Lagrangians. In the
following section, Section 5, we present several uses of our type
system for defining invariant Lagrangians that describe many dif-
ferent kinds of classical mechanical systems.

4.1 Extending System Fω with Smooth Functions
The Type of Smooth Functions Given a pair of cartesian spaces
X and Y we provide a way to construct the type of smooth invariant
smooth functions from X to Y :

Θ ` X : CartSp Θ ` Y : CartSp

Θ ` C∞(X,Y ) : ∗

with the following interpretation. Since C∞(X,Y ) is a proper
type, the relational interpretation in this case is a genuine relation.
We relate functions that are invariant under the diffeomorphism
interpretations of X and Y in the current relational context ρ:

JC∞(X,Y )Kfθ = {f : RJXKf θ → RJY Kf θ | f smooth}
JC∞(X,Y )Kfθθ′ρ = {(f, f ′) | ∀~x ∈ RJXKf θ.

(JY Krθθ′ρ)(f ~x) = f ′ (JXKrθθ′ρ~x)}

An Example Free Theorem We are now in a position to formally
show how we can use the relationally parametric model we have
defined to derive invariance properties. Consider a closed term with
the following type:

e : ∀o : O(n). C∞(Rn〈orthon(o), 0〉,R〈1, 0〉)

We can deduce, from Property 3 and the relational interpretations of
all the types involved, that the denotation of e satisfies the following
free theorem:

∀O ∈ O(n). ∀~x ∈ Rn. JeK(O~x) = JeK(~x)

This free theorem is exactly the kind of invariance property we re-
quire to apply Noether’s theorem. Compare the form of the state-
ment here, with the mildly more general statement of Equation 9,
back in Section 2. Moreover, JeK is a smooth function from Rn to
R, just we require to for Lagrangian mechanics.

Combinators for Smooth Functions Of course, such free theo-
rems are pointless without ways to build elements of the smooth
function spaces. We now extend our type system, for the last time,
with a set of term-level constants for constructing smooth func-
tions, invariant under linear transformations and translations.

Our first set of combinators constructs constant and identity
smooth functions, and composes smooth functions between carte-
sian spaces. We also have combinators for pairing and projection
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for the product of cartesian spaces.

const : *Y +→ C∞(X,Y )
id : C∞(X,X)
(>>>) : C∞(X,Y )→ C∞(Y,Z)
pair : C∞(X,Y )→ C∞(X,Z)→ C∞(X,Y × Z)
proj1 : C∞(X × Y,X)
proj2 : C∞(X × Y, Y )

Next, we include combinators for constant, invariant, vectors,
the zero vector, vector addition, subtraction and scaling. We also
include the Euclidean dot product of vectors. The type dot product
operation is where the orthogonal group kind O(n) is used: the dot
product of vectors is invariant under orthogonal transformations.

~c : *Rn〈1, 0〉+
0 : ∀g:GL(n). * Rn〈g, 0〉+
(+) : ∀g:GL(n), t1, t2:T(n).

C∞(Rn〈g, t1〉 × Rn〈g, t2〉,Rn〈g, t1 + t2〉)
(−) : ∀g:GL(n), t1, t2:T(n).

C∞(Rn〈g, t1〉 × Rn〈g, t2〉,Rn〈g, t1 − t2〉)
(∗) : ∀g1:GL(1), g2:GL(n).

C∞(R〈g1, 0〉 × Rn〈g2, 0〉,R〈scalen(g1)g2, 0〉)
(·) : ∀g:GL(1), o:O(n).

C∞(Rn〈(scalen g)(orthon o), 0〉×
Rn〈(scalen g)(orthon o), 0〉,R〈(scalen g)n, 0〉)

Each of these combinators has a straightforward interpretation as
a smooth function, and the proof that the fundamental theorem of
logical relations is maintained for our system (i.e., that Property 3
is maintained), follows directly from elementary facts about linear
algebra.

It will be useful for our examples to have the following trigono-
metric functions, exponential function and division operation. The
types of each of these functions describes some of their invariance
properties, for example the periodicity of the sin and cos functions.
A technical problem with our current system is that we do not ac-
count for the non-definedness of division at 0, nor do we account
for the square root of negative numbers. However, division and
square root will be useful in our examples in Section 5, so we take a
pragmatic approach, in common with most physics textbooks, and
informally treat them as total functions.

sin : ∀z:Z. C∞(R〈1, 2π ∗ z〉,R〈1, 0〉)
cos : ∀z:Z. C∞(R〈1, 2π ∗ z〉,R〈1, 0〉)
exp : ∀t:T(1). C∞(R〈1, t〉,R〈exp t, 0〉)
(/) : ∀g1, g2:GL(1). C∞(R〈g1, 0〉 × R〈g2, 0〉,R〈g1g

−1
2 , 0〉)

sqrt : ∀g:GL(1). C∞(R〈g2, 0〉,R〈g, 0〉)
Finally, we include three primitive combinators for dealing with

n-ary products of vectors. These combinators will be useful when
defining Lagrangians that are generic in the number of particles.

sum : ∀n:Nat, g:GL(1).C∞(vec n (R〈g, 0〉),R〈g, 0〉)
map : ∀n:Nat.C∞(Z ×X,Y )→ C∞(Z × vec n X, vec n Y )
cross : ∀m,n:Nat.

C∞(vec mX × vec n Y, vec (m ∗ n) (X × Y ))

The combinator sum sums the list of real numbers it is given,
while cross takes the cartesian product of two vectors of elements
of cartesian spaces, and map maps the given smooth function
over a vector. The multiplication of natural numbers m ∗ n is
straightforwardly defined in terms of the natrec recursion operator.
We will use cross in Section 5 to define Lagrangians in terms of the
interactions between systems of particles.

4.2 A Surface Syntax for Smooth Functions
The combinators we have presented allow the construction of
smooth invariant functions, but doing so is painful due to the point-
free style that they force. In order to be able to actually define

bzc∆ = const z
bxc∆ = project∆(x)
blet ~x = e1 in e2c∆ = pair id be1c∆ >>> be2c∆,~x
b(e1, ..., en)c∆ = pairn(be1c∆, ..., benc∆)
be1(e2)c∆ = be2c∆ >>> e1

b~cc∆ = const ~c
b0c∆ = const 0
be1 + e2c∆ = pair be1c∆ be2c∆ >>> (+)
be1 − e2c∆ = pair be1c∆ be2c∆ >>> (−)
be1e2c∆ = pair be1c∆ be2c∆ >>> (∗)
be1 · e2c∆ = pair be1c∆ be2c∆ >>> (·)
bsin ec∆ = bec∆ >>> sin
bcos ec∆ = bec∆ >>> cos
bexp ec∆ = bec∆ >>> exp
be1/e2c∆ = pair be1c∆ be2c∆ >>> (/)
bsqrt ec∆ = bec∆ >>> sqrt
bsum ec∆ = bec∆ >>> sum
bmap (x. e1) e2c∆ = pair id be2c∆ >>> (map be1c∆,x)
bcross e1 e2c∆ = pair be1c∆ be2c∆ >>> cross

Figure 7. Desugaring of the surface syntax

readable Lagrangians in our calculus, we define a surface syntax
for writing smooth functions that is desugared into our extended
version of System Fω.

We define a typing judgement of smooth terms Θ | Γ; ∆ ` e :
X by the rules in Figure 6, where Θ and Γ are the kinding and
typing contexts of our extension of Fω, and ∆ = x1 : X1, ..., xn :
Xn is a context of cartesian spaces. That is, for each x : X in ∆,
we have Θ ` X : CartSp.

The desugaring of smooth function terms into our extension of
System Fω is via the operation b−c∆, defined in Figure 7. In this
definition, we make use of two derived combinators for projection
and pairing:

projectx:X,∆(x) = proj1

projecty:Y,∆(x) = proj2 >>> project∆(x) (x 6= y)

and
pair1(e) = e
pairn+1(e,~e) = pair e (pairn(~e))

The following theorem follows easily by induction on the typing
derivations of smooth terms, where b∆c = bx1 : X1, ..., xn :
Xnc = X1 × ...×Xn:

Theorem 2. If Θ|Γ; ∆ ` e : X then Θ|Γ ` bec∆ : C∞(b∆c, X).

5. Examples of Conservation Laws from Types
We now present a number of examples of classical mechanical sys-
tems expressible in the type system we constructed in the previ-
ous section, and derive the free theorems and consequent conserved
properties for each one. These examples are all standard examples
demonstrating the application of Lagrangian mechanics (see, for
example, Landau and Lifschitz [11]). Our contribution here is to
express them in a type system that makes clear their invariance
properties.

5.1 Single Particles
Free Particle Our first example is of a simple Lagrangian for a
single free particle in 3-dimensional space, with no external forces.
We define the Lagrangian using the syntax for smooth terms we
defined in the previous section, in the following kinding, typing
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Administrative rules
z : *X+ ∈ Γ

Θ | Γ; ∆ ` z : X

x : X ∈ ∆

Θ | Γ; ∆ ` x : X

Θ | Γ; ∆ ` e1 : X1 × ...×Xn Θ | Γ; ∆, x1 : X1, ..., xn : Xn ` e2 : Y

Θ | Γ; ∆ ` let x1, ..., xn = e1 in e2 : Y

Θ | Γ ` e1 : C∞(X,Y )
Θ | Γ; ∆ ` e2 : X

Θ | Γ; ∆ ` e1(e2) : Y

Θ | Γ; ∆ ` e1 : X ... Θ | Γ; ∆ ` en : Xn

Θ | Γ; ∆ ` (e1, ..., en) : X1 × ...×Xn

Vector space operations, and dot product

~c ∈ Rn

Θ | Γ; ∆ ` ~c : Rn〈1, 0〉
Θ ` G : GL(n)

Θ | Γ; ∆ ` 0 : Rn〈G, 0〉
Θ | Γ; ∆ ` e1 : Rn〈G,T1〉 Θ | Γ; ∆ ` e2 : Rn〈G,T2〉

Θ | Γ; ∆ ` e1 + e2 : Rn〈G,T1 + T2〉

Θ | Γ; ∆ ` e1 : Rn〈G,T1〉 Θ | Γ; ∆ ` e2 : Rn〈G,T2〉
Θ | Γ; ∆ ` e1 − e2 : Rn〈G,T1 − T2〉

Θ | Γ; ∆ ` e1 : R〈G1, 0〉 Θ | Γ; ∆ ` e2 : Rn〈G2, 0〉
Θ | Γ; ∆ ` e1e2 : Rn〈scalen(G1)G2, 0〉

Θ | Γ; ∆ ` e1 : Rn〈scalen(G)orthon(O), 0〉 Θ | Γ; ∆ ` e2 : Rn〈scalen(G)orthon(O), 0〉
Θ | Γ; ∆ ` e1 · e2 : R〈scalen(G)n, 0〉

Transcendental functions
Θ | Γ; ∆ ` e : R〈1, T 〉

Θ | Γ; ∆ ` exp e : R〈exp T, 0〉
Θ | Γ; ∆ ` e : R〈1, 2π ∗ Z〉
Θ | Γ; ∆ ` sin e : R〈1, 0〉

Θ | Γ; ∆ ` e : R〈1, 2π ∗ Z〉
Θ | Γ; ∆ ` cos e : R〈1, 0〉

Division, square root, sum, and cross

Θ | Γ; ∆ ` e1 : R〈G1, 0〉 Θ | Γ; ∆ ` e2 : R〈G2, 0〉
Θ | Γ; ∆ ` e1

e2
: R〈G1G

−1
2 , 0〉

Θ | Γ; ∆ ` e : R〈G2, 0〉
Θ | Γ; ∆ ` sqrt e : R〈G, 0〉

Θ | Γ; ∆ ` e : vec N (R〈G, 0〉)
Θ | Γ; ∆ ` sum e : R〈G, 0〉

Θ | Γ; ∆, x : X ` e1 : Y Θ | Γ; ∆ ` e2 : vec N X

Θ | Γ; ∆ ` map (x. e1) e2 : vec N Y

Θ | Γ; ∆ ` e1 : vec M X Θ | Γ; ∆ ` e2 : vec N Y

Θ | Γ; ∆ ` cross e1 e2 : vec (M ∗N) (X × Y )

Figure 6. A surface syntax for smooth functions

and cartesian space contexts:

Θ = tt : T(1), tx : T(3), o : O(3)
Γ = m : *R〈1, 0〉+
∆ = t : R〈1, tt〉, x : R3〈ortho3(o), tx〉, ẋ : R3〈ortho3(o), 0〉

where o represents an arbitrary orthogonal transformation of the
space, tt represents a translation in time, tx represents a 3-
dimensional translation in space, m is the constant mass of the
free particle, t is the current time, x is the current position of the
particle, and ẋ is the current velocity.

We write the Lagrangian like so, which in the absence of exter-
nal forces just consists of the kinetic energy term:

L =
1

2
m(ẋ · ẋ) : R〈1, 0〉

By the fundamental theorem of logical relations for our calculus
(Property 3), we can derive the following free theorems, one each
for the three group parameters tt, tx and o. Quantifying over trans-
lations in time, tt, gives us invariance under translation in time:

∀tt ∈ R. JLK(t+ tt, ~x, ~̇x) = JLK(t, ~x, ~̇x)

As we saw in Example 4, Noether’s theorem tells us that invariance
under translation in time yields conservation of energy. Likewise,
quantifying over translations in space, tx, gives us invariance under
translation in space:

∀~tx ∈ R3. JLK(t, ~x+ ~tx, ~̇x) = JLK(t, ~x, ~̇x)

Similar to the example of the spring-coupled particles in the intro-
duction, invariance under translations in space yields conservation
of linear momentum.

Quantification over orthogonal transformations o : O(3) yields
the following free theorem, which states that the Lagrangian is in-
variant under modification of the positions and velocities by arbi-
trary orthogonal transformations O:

∀O ∈ O(3). JLK(t, O~x,O~̇x) = JLK(t, ~x, ~̇x)

We are particularly interested in the orthogonal transformations
derived from rotations, since these will give us the continuous
transformations we need to apply Noether’s theorem. For example,
rotation by an angle ε around the x3-axis is given by the following
ε-indexed family of orthogonal matricies:

Oε =

 cos ε sin ε 0
− sin ε cos ε 0

0 0 0


This leads to the following ε-indexed family of transformations,
suitable for Noether’s theorem:

Ψε

x1

x2

x3

 = Oε

x1

x2

x3

 =

 x1 cos ε+ x2 sin ε
−x1 sin ε+ x2 cos ε

x3


Plugging this into Equation 10, and using the definition of L above,
we obtain the following conservation law:

d

dt
(mẋx2 −mẋx1) = 0
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This is exactly conservation of angular momentum around the x3-
axis [11]. By considering the families of orthogonal matrices for
rotation around other axes, we can also derive conservation laws
for angular momentum around arbitrary axes.

Particle in a Potential Field If we now extend the typing context
of our example with a arbitrary potential energy term, depending
on the position of the particle, we can define the Lagrangian for
a single particle acted upon by a potential field that depends on
the position of the particle. The invariance properties of the whole
system will depend upon the invariance properties of the potential
field. If we assume the following contexts:

Θ = tt : T(1), o : O(3)
Γ = m : *R〈1, 0〉+,

V : ∀o:O(3). C∞(R3〈ortho3(o), 0〉,R〈1, 0〉)
∆ = t : R〈1, tt〉, x : R3〈ortho3(o), 0〉, ẋ : R3〈ortho3(o), 0〉

where everything is as in the previous example, except for the addi-
tion of the polymophic potential energy function V . We incorporate
this into our Lagrangian like so:

L =
1

2
m(ẋ · ẋ)− V (x) : R〈1, 0〉

Even though V is left abstract, the types of t, x, ẋ and L tell us that
this Lagrangian is invariant under translations in time and also un-
der all orthogonal transformations. Hence, by Noether’s theorem,
the system this Lagrangian describes has energy and angular mo-
mentum as conserved quantities.

5.2 The n-Body Problem
Using the constructs of our calculus for dealing with n-ary vectors
of positions and velocities, we can compactly write Lagrangians
that describe systems of n particles interacting through Newtonian
gravitational attraction. We use the following kinding, typing and
cartesian space contexts, where the type-level parameter n repre-
sents the number of particles that we are considering. For simplic-
ity, we assume that all the bodies involved in the system have equal
mass m.

Θ = n : Nat, tt : T(1), tx : T(3), o : O(3)
Γ = m : *R〈1, 0〉+
∆ = t : R〈1, tt〉,

x : vec n (R3〈ortho3(o), tx〉),
ẋ : vec n (R3〈ortho3(o), 0〉)

The Lagrangian for this system is defined as follows in our surface
syntax for smooth terms. The kinetic energy component is the
sum of the kinetic energies of all the particles in the system. The
potential energy components sums up all the gravitational potential
energies due to the interactions between each pair of bodies, where
G is the gravitational constant.

L = 1
2
m(sum (map (ẋi. ẋi · ẋi)) ẋ)−
sum (map ((xi, xj). Gm

2/|xi − xj |) (cross x x)) : R〈1, 0〉
We have used the notation |e| as shorthand for sqrt (e · e), i.e., the
norm of the vector e.

Again, just by looking at the types of t, x, ẋ, and L, we can
determine via free theorems that this Lagrangian is invariant under
translation in time and space, and under all orthogonal transfor-
mations. Hence, by Noether’s theorem, this system has energy and
linear and angular momentum as conserved quantities.

5.3 Pendulum
All our examples above have used rectangular coordinate systems.
Part of the power of the Lagrangian formulation of classical me-
chanics is the ability to use appropriate generalised coordinates to
describe systems in simple terms. A standard example is that of a

pendulum, where we take the angle of swing from the vertical, θ as
the coordinate.

We use the following kinding, typing and cartesian space con-
texts:

Θ = tt : T(1), z : Z
Γ = m : *R〈1, 0〉+, l : *R〈1, 0〉+
∆ = t : R〈1, tt〉, θ : R〈1, 2π ∗ z〉.θ̇ : R〈1, 0〉

wherem is the mass at the end of the pendulum (we assume the rod
of the pendulum to be massless), l is the length of the pendulum, θ
is the angle of swing and θ̇ is the current rate of change of the angle
of swing.

Defining the Lagrangian for this system is a matter of simple
trigonometry and differential calculus:

L = let y = l sin θ in
let ẋ = lθ̇ cos θ in
let ẏ = −lθ̇ sin θ in

1
2
m(ẋ2 + ẏ2)−mgy : R〈1, 0〉

From the type of t, we can easily determine that this Lagrangian is
invariant under translation in time, and hence the total energy is a
conserved quantity of this system. We can also derive another free
theorem due to the quantification over the group of integers via the
variable z. However, this does not yield a continuous invariance
of the Lagrangian, and hence no conserved quantity via Noether’s
theorem.

5.4 Oscillators
Coupled Particles Our first example of a Lagrangian in the intro-
duction was of a pair of particles of equal mass coupled by a spring,
for which we derived conservation of linear momentum and energy.
In terms of our type system, we have the following kinding, typing
and cartesian space contexts, where m is the individual mass of the
two particles, and k is the spring constant:

Θ = tt : T(1), tx : T(1)
Γ = m : *R〈1, 0〉+, k : *R〈1, 0〉+
∆ = t : R〈1, tt〉, x1 : R〈1, tx〉, x2 : R〈1, tx〉,

ẋ1 : R〈1, 0〉, ẋ2 : R〈1, 0〉
In our surface syntax for smooth terms, the Lagrangian is written
just as it was in the introduction:

L =
1

2
m(ẋ1

2 + ẋ2
2)− 1

2
k2(x1 − x2)2 : R〈1, 0〉

The free theorems for this term state the invariance in time and
space translation:

∀tt : R. JLK(t+ tt, x1, x2, ẋ1, ẋ2) = JLK(t, x1, x2, ẋ1, ẋ2)
∀tx : R. JLK(t, x1 + tx, x2 + tx, ẋ1, ẋ2) = JLK(t, x1, x2, ẋ1, ẋ2)

As we saw in Section 2, these invariance properties allow us to de-
duce conservation of energy and linear momentum for this system.

Damped Oscillator All of the example Lagrangians we have
looked at so far have had no dependence on time, and so they
have all described systems with total energy as a conserved quan-
tity. A system with a single particle attached to a damped spring
(whose other endpoint is fixed at position 0) provides an example
of system that does not have energy as a conserved quantity. This
example is taken from Neuenschwander’s book [12]. We use the
following kinding, typing and cartesian space contexts:

Θ = tt : T(1)
Γ = k : *R〈1, 0〉+
∆ = t : R〈1, tt + tt〉, x : R〈exp(−tt), 0〉, ẋ : R〈exp(−tt), 0〉

Here, the position and velocity of the single particle scale with the
exponential of the translation in time. This will account for the
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exponential damping we apply to the system. For simplicity, we
assume that the mass of the particle and the spring constant are
both 1. The Lagrangian for this system looks similar to the coupled
pair above, except for an additional damping factor:

L =

(
1

2
ẋ2 − 1

2
x2

)
exp(t) : R〈1, 0〉

From the types of t, x and ẋ, we learn that this system is invariant
under the families of transformations Φε(t) = t+ 2ε and Ψε(x) =
eεx. This leads to the following conservation law for this system,
linking energy and linear momentum:

d

dt

[(
1

2
xẋ+

1

2
ẋ2 +

1

2
x2

)
et
]

= 0

6. Conclusions
We have presented a type system for writing invariant Langrangians,
with a relationally parametric semantics that allows the derivation
of free theorems that can be used with Noether’s theorem to dis-
cover conservation laws for classical mechanical systems. Our key
technical contribution has been the observation that relationally
parametric models of System Fω admit kinds that are interpreted
as groupoids, allowing geometric invariance properties to be inte-
grated directly into the model.

Related Work We are not aware of any other work linking type
systems or relational parametricity with invariance properties for
classical mechanics, or with Noether’s theorem. We have already
mentioned the work of Atkey, Johann and Kennedy [4] that uses
relational parametricity with a specialised type system to derive
geometric invariance properties, albeit in a setting without smooth
functions, and without an application to Noether’s theorem. In this
paper, we have placed Atkey et al.’s work in a more general setting
by framing it as an extension of System Fω, which allows us to
(a) incorporate type-level computation, as we used to define the
n-ary vectors of coordinates; and (b) to reuse previous work on
relationally parametric models of System Fω by Atkey [3].

Sussman and Wisdom [19] reformulate Lagrangian and Hamil-
tonian mechanics in a more programming language style so that it
can be implemented within the programming language Scheme. In
doing so, they clear up some of the ambiguous syntax common in
the standard presentations of classical mechanics. However, they
do not attempt to incorporate invariance properties into types, as
we have done here.

There has been prior work on programming languages inspired
by theoretical physics. Quantum programming languages, which
hope to exploit the properties of quantum computation in an under-
standable way have been the subject of study for several years now.
We cite Abramsky [1] as an introduction to this field.

Future Work We have barely scratched the surface of the appli-
cability of Noether’s theorem to theoretical physics. Conservation
laws for classical and quantum field theories are derivable from
generalisations of Noether’s theorem. Neuenschwander’s book [12]
describes in an easy to read way how Noether’s theorem applies to
field theories, allowing for relativistic and quantum systems to be
studied, and how it naturally leads to the notion of Gauge invari-
ance, an important principle in modern theories of particle physics.

From the type system point of view, it seems clear that greater
expressiveness will be required in order to accomodate more de-
tailed physical theories. Study of relational parametricity for de-
pendent types, as done for example by Bernardy et al. [5] may be
useful here. Also, recent work on homotopy type theory and, in
particular ∞-groupoid models of type theory is almost certainly
relevant [20].

For each of the examples in Section 5, we computed the neces-
sary typing derivations by hand. Type inference for the system was
have presented here, or some variant of it, is a key item of future
work. Ideally, the user would enter the description of a Lagrangian,
and the system would be able to tell them the free theorems, and
consequent conservation laws that hold. Kennedy [9] and Gundry
[7] have studied type inference for the related, but simpler, setting
of dimension types.

References
[1] S. Abramsky. High-Level Methods for Quantum Computation and

Information. Proceedings, LICS, 2004.
[2] V. I. Arnol’d. Mathematical Methods of Classical Mechanics.

Springer, 1989.
[3] R. Atkey. Relational Parametricity for Higher Kinds. Proceedings,

CSL, 2012.
[4] R. Atkey, P. Johann, and A. J. Kennedy. Abstraction and Invariance

for Algebraically Indexed Types. Proceedings, POPL, 2013.
[5] J.-P. Bernardy, P. Jansson, R. Paterson. Proofs for Free: Parametricity

for Dependent Types. Journal of Functional Programming 22(2), pp.
107-152, 2012.

[6] I. M. Gelfand and S. V. Fomin, R. A. Silverman (ed.). Calculus of
Variations. Dover Publications, 2000.

[7] A. Gundry. Type Inference for Units of Measure. Technical Report,
University of Strathclyde, 2011.

[8] R. Hasegawa. Relational Limits in General Polymorphism. Publi-
cations of the Research Institute for Mathematical Sciences 30, pp.
535–576, 1994.

[9] A. J. Kennedy. Dimension Types. Proceedings, ESOP, 1994.
[10] A. J. Kennedy. Relational Parametricity and Units of Measure.

Proceedings, POPL, pp. 442-455, 1997.
[11] L. D. Landau and E. M. Lifschitz. Mechanics. Pergamon Press. 1967.
[12] D. E. Neuenschwander. Emmy Noether’s Wonderful Theorem. The

John Hopkins University Press, 2011.
[13] E. Noether, M. Tavel (translator). Invariant Variation Problems.

Transport Theory and Statistical Physics 1(3), pp. 186-207, 1971.
Original in Gott. Nachr., 1918:235-257, 1918.

[14] S. Mac Lane. Categories for the Working Mathematician, 2nd edition.
Springer, 1998.

[15] B. Pierce. Types and Programming Languages. MIT Press, 2002.
[16] A. M. Pitts. Polymorphism is Set Theoretic, Constructively. Proc.,

Category Theory and Computer Science, pp. 12–39, 1987.
[17] J. C. Reynolds. Types, Abstraction and Parametric Polymorphism.

Information Processing 83, pp. 513-523, 1983.
[18] E. Robinson and G. Rosolini. Reflexive Graphs and Parametric

Polymorphism. Proc., Logic in Computer Science, pp. 364–371, 1994.
[19] G. J.Sussman and J. Wisdom. Structure and Interpretation of Classical

Mechanics. MIT Press, 2001
[20] The Univalent Foundations Program. Homotopy Type Theory. Institute

for Advanced Study, 2013.
[21] P. Wadler. Theorems for Free!. Proceedings, FPCA, pp. 347-359,

1989.

12 2013/7/15


