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Abstract

We examine the impact of adding either a VaR or a CVaR constraint to the mean–variance model
when security returns are assumed to have a discrete distribution with finitely many jump points.
Three main results are obtained. First, portfolios on the VaR-constrained boundary exhibit
(K + 2)-fund separation, where K is the number of states for which the portfolios suffer losses equal
to the VaR bound. Second, portfolios on the CVaR-constrained boundary exhibit (K + 3)-fund sep-

aration, where K is the number of states for which the portfolios suffer losses equal to their VaRs.
Third, an example illustrates that while the VaR of the CVaR-constrained optimal portfolio is close
to that of the VaR-constrained optimal portfolio, the CVaR of the former is notably smaller than
that of the latter. This result suggests that a CVaR constraint is more effective than a VaR constraint
to curtail large losses in the mean–variance model.
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1. Introduction

The mean–variance model of Markowitz (1952, 1959) is a cornerstone of modern
portfolio theory. Markowitz’s seminal idea is that agents optimally select mean–variance
efficient (hereafter, MV-efficient) portfolios. In practice, this model is extensively utilized
to manage portfolio risk. Specific applications include determining optimal asset alloca-
tions, measuring gains from international diversification, and evaluating portfolio
performance.

Over the past decade, the idea of using a measure of downside risk has been rediscov-
ered with Value-at-Risk (VaR) becoming one of the most popular measures among prac-
titioners (see, e.g., Hull, 2006, p. 435). Some researchers, however, criticize the use of VaR
since it is not subadditive (see Artzner et al., 1999).1 Furthermore, the use of Conditional
Value-at-Risk (CVaR) instead of VaR has been suggested in the literature (see, e.g., Rock-
afellar and Uryasev, 2000, 2002).

Our article examines the impact of adding either a VaR or a CVaR constraint to the
mean–variance model. Doing so is of particular interest for several reasons. First, while
previous research examines this impact assuming that security returns have an elliptical
distribution, we assume that they have a discrete distribution with finitely many jump
points. The latter assumption is often imposed in practice when using historical simulation
to estimate VaR and CVaR (see, e.g., Hull, 2006, pp. 438–440).

Second, there is an extensive literature recognizing that the mean–variance model is, at
least as an approximation, consistent with expected utility maximization even when secu-
rity returns are not assumed to have an elliptical distribution (see, e.g., Markowitz, 1987,
pp. 52–70).2 The addition of a VaR constraint to this model is motivated by the fact that
the fund management industry is increasingly using it to set risk limits (see, e.g., Pearson,
2002; Jorion, 2007). While CVaR is less popular than VaR among practitioners, the addi-
tion of a CVaR constraint to the mean–variance model is motivated by the fact that the
literature has noted advantages of using CVaR instead of VaR to control risk.

Third, the mean–variance model has been extensively used in the banking literature
(see, e.g., Hart and Jaffee, 1974; Francis, 1978; Koehn and Santomero, 1980; Kim and
Santomero, 1988; Rochet, 1992).3 Hence, the addition of a VaR constraint to this model
is motivated by the fact that banks now use VaR in calculating minimum capital require-
ments associated with their exposures to market risk (see, e.g., Berkowitz and O’Brien,
2002). The addition of a CVaR constraint to the mean–variance model is motivated by
the fact that basing bank capital regulation on CVaR is, under certain conditions, more
effective than basing it on VaR (see, e.g., Alexander and Baptista, 2006).

The VaR-constrained boundary consists of portfolios that, given a VaR constraint, min-
imize variance for some level of expected return. We show that when the constraint binds,
portfolios on this boundary exhibit locally (K + 2)-fund separation, where K is the number
1 That is, the VaR of a portfolio with two securities can be larger than the sum of their VaRs.
2 Berk (1997) provides joint conditions on utility functions and distributions of security returns that lead to

mean–variance objective functions. For arbitrary distributions, the mean–variance model can be motivated with a
quadratic utility function (see, e.g., Huang and Litzenberger, 1988, p. 61). Under certain conditions, Levy and
Levy (2004) show that the mean–variance model can also be used in the context of prospect theory.

3 Furthermore, interest in the mean–variance model is still apparent in the recent literature (see, e.g., Agarwal
and Naik, 2004; Levy and Levy, 2004).
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of states for which the portfolios suffer losses equal to the VaR bound. This result is of
interest for two reasons. First, it simplifies the portfolio selection problem involving a
VaR constraint into a (K + 2)-fund allocation exercise that can be solved in two steps:
(1) identifying the K + 2 funds, and (2) allocating wealth among them. Second, it implies
that portfolios on the VaR-constrained boundary at which the constraint binds are mean–
variance inefficient (hereafter, MV-inefficient).

The CVaR-constrained boundary consists of portfolios that, given a CVaR constraint,
minimize variance for some level of expected return. We show that when the constraint
binds, portfolios on this boundary exhibit locally (K + 3)-fund separation, where K is
the number of states for which the portfolios suffer losses equal to their VaRs. Similar
to the case of a VaR constraint, this result simplifies the portfolio selection problem
involving a CVaR constraint into a (K + 3)-fund allocation exercise. Furthermore, it
implies that portfolios on the CVaR-constrained boundary at which the constraint binds
are MV-inefficient.

We also provide an example that illustrates the implications of the constrained bound-
aries for portfolio selection. This example involves a sample of US stocks and uses histor-
ical data to estimate VaR and CVaR. Our main results regarding the VaR-constrained
boundary are as follows. First, the expected return, standard deviation, VaR, and CVaR
of an agent’s VaR-constrained optimal portfolio are smaller than those of his or her
unconstrained optimal portfolio. Second, the distance of the VaR-constrained optimal
portfolio from the unconstrained boundary is higher for smaller VaR bounds and less
risk-averse agents.4

Our results regarding the CVaR-constrained boundary are qualitatively similar to those
obtained for the VaR-constrained boundary, but a quantitative difference is noteworthy.
While the VaR of the CVaR-constrained optimal portfolio is close to that of the VaR-con-
strained optimal portfolio, the CVaR of the former is notably smaller than that of the lat-
ter. This result suggests that a CVaR constraint is more effective than a VaR constraint to
curtail large losses in the mean–variance model.

The advantages of CVaR over VaR as a measure of risk have lead to the development
of an extensive literature that explores the use of CVaR in portfolio optimization. For
example, Rockafellar and Uryasev (2000) compare portfolios with minimum variance
and CVaR given an expected return constraint. Krokhmal et al. (2002) characterize port-
folios with maximum expected return for various CVaR constraints. Rockafellar and
Uryasev (2002) show that CVaR constraints can be used to control risk when tracking
a benchmark. Agarwal and Naik (2004) and Bertsimas et al. (2004) compare portfolios
on the mean–variance and mean-CVaR boundaries.5 Our work differs from this literature
in that we explore the impact of adding either a VaR or a CVaR constraint to the mean–
variance model, while in this literature CVaR replaces variance as a measure of risk.6

Sentana (2003) and Alexander and Baptista (2004) examine the impact of VaR and
CVaR constraints in the mean–variance model by assuming that security returns have
4 A portfolio’s distance from the unconstrained boundary refers to the difference between its standard deviation
and the standard deviation of the portfolio on the unconstrained boundary with the same expected return.

5 For a comparison of the mean–variance, mean-VaR, and mean-CVaR boundaries when security returns have
an elliptical distribution, see Alexander and Baptista (2002, 2004).

6 A motivation for using CVaR instead of variance as a measure of risk is that while the former is consistent
with second-order stochastic dominance, in general the latter is not (see, e.g., Ogryczak and Ruszczyński, 2002).
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an elliptical distribution.7 Our work differs from these papers in two respects. First, as
noted earlier, we do not impose such a distributional assumption. Second, in their papers
portfolios on the constrained boundaries exhibit two-fund separation even when the con-
straints bind, while in this paper we show that these portfolios require more than two
funds when the constraints bind.

Our paper proceeds as follows. Section 2 introduces the model and characterizes the
constrained boundaries. Section 3 presents an example that illustrates these boundaries
and their portfolio selection implications. Section 4 concludes.8
2. The model

We examine the impact of adding either a VaR or a CVaR constraint to the mean–var-
iance model of Markowitz (1952, 1959). We begin by describing our assumptions and
basic notation. There are J securities, where J > 2. The uncertainty about security returns
is described by a finite set of equally likely states X � {1, . . . ,S}, where S > J. Security
returns are given by a J · S matrix R. Let R be the J · 1 vector of expected returns and
V be the J · J variance–covariance matrix associated with R. Let Rs � R1s � � � RJs½ �>,
where Rjs is the return of security j in state s. Suppose that: (i) there is no arbitrage9;
(ii) rank(V) = J so that there are no redundant securities nor a riskfree security10; and
(iii) rank 1 R Rs1

� � � RsJ�2

� �� �
¼ J for any set of J � 2 distinct states {s1, . . . , sJ�2},

where 1 is the J · 1 vector 1 � � � 1½ �>.11

A portfolio is a J · 1 vector w with w>1 = 1. Note that short-sales are allowed.12 Let eRw

denote the random return of w. The expected return and variance of w are denoted by,
respectively, Rw and r2

w.
2.1. The unconstrained boundary

We now review the problem examined by Markowitz. A portfolio is on the uncon-
strained boundary if it solves

min
w2fbw2RJ :bw>1¼1g

r2
w

s:t: Rw ¼ E

for some level of expected return E. Let a � 1>V�1R, b � R>V�1R, and c � 1>V�11. Mer-
ton (1972) shows that the portfolio on this boundary with expected return E is given by
7 Alexander and Baptista (2004) provide an example with uniform distributions to illustrate that a CVaR
constraint may be a more effective risk management tool than a VaR constraint. However, they do not
characterize the constrained boundaries when security returns are assumed to have a discrete distribution with
finitely many jump points.

8 An Appendix containing the proofs of the theorems in our paper and a description of the numerical procedure
used in our example can be downloaded at: http://home.gwu.edu/~alexbapt/JBF2Appendix.pdf.

9 For a characterization of absence of arbitrage, see Duffie (2001, Chapter 1).
10 See Huang and Litzenberger (1988, pp. 62–63). Section 2.4 addresses the case when there is a riskfree security.
11 The set of return matrices such that condition (iii) does not hold has zero Lebesgue measure in R J�S . Hence,

this condition is not particularly restrictive.
12 There are important reasons for doing so. For example, some money managers (e.g., hedge funds) hold large

short positions.

http://home.gwu.edu/~alexbapt/JBF2Appendix.pdf
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wE ¼ bwr þ ð1� bÞwa; ð1Þ
where b ¼ E�b=a

a=c�b=a; wr � V�11
c and wa � V�1R

a are, respectively, the minimum variance portfo-
lio and the portfolio on the boundary with an expected return of b/a. Using Eq. (1), port-
folios on the unconstrained boundary exhibit two-fund separation. The efficient frontier

consists of portfolios on this boundary with expected returns greater than or equal to
a/c.

2.2. The VaR-constrained boundary

We now explore the impact of adding a VaR constraint to Markowitz’s problem. In
defining VaR, we follow Rockafellar and Uryasev (2002, Proposition 8). Fix a confidence
level a such that a = s/S for some integer s with S/2 < s < S. Let z1;w < z2;w < � � � < zNw ;w

denote the ordered values that ezw � �eRw can take where Nw 6 S is the number of these
values. Define na,w as the unique index number withXna;w

n¼1

pn;w P a >
Xna;w�1

n¼1

pn;w; ð2Þ

where pn;w � P ½ezw ¼ zn;w�. Portfolio w’s VaR at the 100a% confidence level is given by13

V a;w ¼ zna;w : ð3Þ

Eqs. (2) and (3) imply that

P ½eRw P �V a;w� ¼ P ½ezw 6 zna;w �P a; ð4Þ
P ½eRw > �V a;w� ¼ P ½ezw < zna;w � < a: ð5Þ

Consider the VaR constraint Va,w 6 V where V is the bound. A portfolio is on the VaR-
constrained boundary if it solves

min
w2fbw2RJ :bw>1¼1g

r2
w

s:t: Rw ¼ E;

V a;w 6 V

for some level of expected return E. For any s 2 X, let ws � V�1Rs
cs

, where cs � 1>V�1Rs.
Portfolios {ws}s2X are useful in our characterization of the VaR-constrained boundary.

Theorem 1. Suppose that the portfolio on the VaR-constrained boundary with expected

return E exists. Then, this portfolio is given by

wE;a;V ¼ b1wr þ b2wa þ
XKþ2

k¼3

bkwsk ð6Þ

for some weights b1, . . . ,bK+2, where K is the number of states where the return on wE,a,V is

equal to �V, and s3, . . . , sK+2 are these states.
13 Note that this definition of VaR is based on the upper quantile; see Acerbi and Tasche (2002).
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Theorem 1 says that portfolios on the VaR-constrained boundary result from combina-
tions of K + 2 funds: wr, wa, and ws3

; . . . ;wsKþ2
. While the latter K funds may depend on E,

they do not depend locally on E. More precisely, there exists an open interval ðE1;E2Þ � R

such that the same K funds are used in Eq. (6) for any E 2 (E1,E2). Hence, portfolios on the
VaR-constrained boundary exhibit locally (K + 2)-fund separation. Also, the sum of the
weights of funds ws3

; . . . ;wsKþ2
in a portfolio on the VaR-constrained boundary is non-zero

if and only if the VaR constraint binds. Thus, Eqs. (1) and (6) imply that any portfolio on
this boundary at which the constraint binds does not belong to the unconstrained boundary.

The intuition of Theorem 1 is as follows. If the portfolio on the unconstrained bound-
ary with a given expected return does not satisfy the VaR constraint, then the constraint
holds with equality for the portfolio on the constrained boundary with the same expected
return. Otherwise, it would have been possible to find a portfolio with a smaller variance
by combining portfolios on the unconstrained and constrained boundaries with the weight
of the unconstrained portfolio being arbitrarily small. Let S(wE,a,V) denote the number of
states where the return on wE,a,V is less than �V. Since the constraint holds with equality,
it is equivalent to: (i) K restrictions that the portfolio’s return is equal to �V in states
s3, . . . , sK+2; (ii) S(wE,a,V) restrictions that the portfolio’s return is less than or equal to
�V in the S(wE,a,V) ‘bad’ states; and (iii) S � K � S(wE, a,V) restrictions that the portfolio’s
return is greater than or equal to �V in the ‘good’ states.14 By definition, the ‘less than or
equal to’ and ‘greater than or equal to’ restrictions do not bind. Thus, the VaR constraint
can be simplified into K binding restrictions from which the K funds arise.
2.3. The CVaR-constrained boundary

We now explore the impact of adding a CVaR constraint to Markowitz’s problem. In
defining CVaR, we follow Rockafellar and Uryasev (2002, Proposition 8). Portfolio w’s
CVaR at the 100a% confidence level is given by

Ca;w ¼
1

1� a

Xna;w

n¼1

pn;w � a

 !
zna;w þ

XNw

n¼na;wþ1

pn;wzn;w

" #
: ð7Þ

Consider the CVaR constraint Ca,w 6 C where C is the bound. A portfolio is on the
CVaR-constrained boundary if it solves

min
w2fbw2RJ :bw>1¼1g

r2
w

s:t: Rw ¼ E;

Ca;w 6 C

for some level of expected return E. Let RU�
P

s2U
Rs

SðUÞ , where U � X is a set of S(U) 6 (1 � a)S

distinct states. Suppose that rank 1 R RU Rs1
� � � RsJ�3

� �� �
¼ J for any U · {s1, . . . , sJ�3} �

X · X with U \ {s1, . . . , sJ�3} = ;.15 For any U � X, let wU � V�1RU
cU

where cU �
14 A ‘good’ (‘bad’) state is a state for which the portfolio’s return is greater (less) than minus its VaR.
15 Note that the set of return matrices such that this condition does not hold has zero Lebesgue measure in RJ�S .

Hence, the condition is not particularly restrictive.



G.J. Alexander et al. / Journal of Banking & Finance 31 (2007) 3761–3781 3767
1>V�1RU. Portfolios {wU}U�X are useful in our characterization of the CVaR-constrained
boundary.

Theorem 2. Suppose that the portfolio on the CVaR-constrained boundary with expected

return E exists. Let U ¼ fs 2 X : w>E;a;CRs < �V a;wE;a;Cg.16 (i) If P[U] = 1 � a, then this
portfolio is given by

wE;a;C ¼ b1wr þ b2wa þ b3wU ð8Þ
for some weights b1, b2, and b3. (ii) If P[U] < 1 � a, then

wE;a;C ¼ b1wr þ b2wa þ b3wU þ
XKþ3

k¼4

bkwsk ð9Þ

for some weights b1, . . . ,bK+3, where K is the number of states where the return on wE,a,C

is equal to �V a;wE;a;C , and s4, . . . , sK+3 are these states.

Theorem 2 says that the funds required for a portfolio on the CVaR-constrained
boundary depend on the set of states for which the portfolio suffers losses larger than
its VaR (i.e., U). First, suppose that P[U] = 1 � a. Then, the portfolio results from a com-
bination of funds wr, wa, and wU. While the latter fund may depend on E, it does not
depend locally on E. More precisely, there exists an open interval ðE1;E2Þ � R such that
the same fund wU is used in Eq. (8) for any E 2 (E1,E2). Hence, portfolios on the
CVaR-constrained boundary exhibit locally three-fund separation. Also, the weight of fund
wU in a portfolio on the CVaR-constrained boundary is non-zero if and only if the CVaR
constraint binds. Thus, Eqs. (1) and (8) imply that portfolios on this boundary at which
the constraint binds do not belong to the unconstrained boundary.

Second, suppose that P[U] < 1 � a. Then, the portfolio on the CVaR-constrained
boundary results from a combination of funds wr, wa, wU, and ws4

; . . . ;wsKþ3
. While the

latter K + 1 funds may depend on E, they do not depend locally on E. More precisely,
there exists an open interval ðE1;E2Þ � R such that the same funds wU;ws4

; . . . ;wsKþ3
are

used in Eq. (9) for any E 2 (E1, E2). Hence, portfolios on the CVaR-constrained boundary
exhibit locally (K + 3)-fund separation. Also, the sum of the weights of funds
wU;ws4

; . . . ;wsKþ3
in a portfolio on the CVaR-constrained boundary is non-zero if and only

if the CVaR constraint binds. Thus, Eqs. (1) and (9) imply that portfolios on this bound-
ary at which the constraint binds do not belong to the unconstrained boundary.

The intuition of Theorem 2 is as follows. If the portfolio on the unconstrained bound-
ary with a given expected return does not satisfy the CVaR constraint, then the constraint
holds with equality for the portfolio on the constrained boundary with the same expected
return. Otherwise, it would have been possible to find a portfolio with a smaller variance
by combining portfolios on the unconstrained and constrained boundaries with the weight
of the unconstrained portfolio being arbitrarily small. First, suppose that P[U] = 1 � a.
Note that U contains S(1 � a) states where the return on wE,a,C is less than �V. Since
the constraint holds with equality, it is equivalent to: (i) one restriction that the portfolio’s
CVaR is equal to C; (ii) S(1 � a) restrictions that the portfolio’s return is less than or equal

to �V in the S(1 � a) ‘bad’ states; and (iii) S � S(1 � a) restrictions that the portfolio’s
return is greater than or equal to �V in the ‘good’ states. By definition, the ‘less than or
16 While here U is a particular subset of X, in the previous paragraph U is used to denote subsets of X with
S(U) 6 (1 � a)S distinct states.
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equal to’ and ‘greater than or equal to’ restrictions do not bind. Thus, the CVaR
constraint can be simplified into a single binding restriction from which fund wU arises.

Second, suppose that P[U] < 1 � a. Let S(wE,a,C) denote the number of states where the
return on wE,a,C is less than �V a;wE;a;C . Since the constraint holds with equality, it is equiv-
alent to: (i) one restriction that the portfolio’s CVaR is equal to C; (ii) K restrictions that
the portfolio’s return is equal to �V in states s4, . . . , sK+3; (iii) S(wE,a,C) restrictions that the
portfolio’s return is less than or equal to �V in the S(wE,a,C) ‘bad’ states; and (iv)
S � K � S(wE,a,C) restrictions that the portfolio’s return is greater than or equal to �V

in the ‘good’ states. By definition, the ‘less than or equal to’ and ‘greater than or equal
to’ restrictions do not bind. Thus, the CVaR constraint can be simplified into K + 1 bind-
ing restrictions from which funds wU;ws4

; . . . ;wsKþ3
arise.

2.4. Introducing a riskfree security

Suppose that there is a riskfree security with return Rf > 0. Merton (1972) shows that

wE ¼ hwf þ ð1� hÞwt; ð10Þ
where h ¼ E�Rwt

Rf�Rwt
; wf � 0 � � � 0 1½ �> and wt � ½V�1ðR�1Rf Þ�>

a�cRf
0

h i>
denote, respectively,

the riskfree and tangency portfolios. Using Eq. (10), portfolios on the unconstrained
boundary exhibit two-fund separation as in the absence of a riskfree security. The efficient
frontier consists of portfolios on this boundary with expected returns greater than or equal
to Rf.

Let ws � ½V�1ðRs�1Rf Þ�>

cs�cRf
0

h i>
for any s 2 X. Portfolios {ws}s2X are useful in our charac-

terization of the VaR-constrained boundary.

Theorem 3. Suppose that the portfolio on the VaR-constrained boundary with expected

return E exists. Then, this portfolio is given by

wE;a;V ¼ h1wf þ h2wt þ
XKþ2

k¼3

hkwsk ð11Þ

for some weights h1, . . . ,hK+2, where K is the number of states where the return on wE,a,V is

equal to �V, and s3, . . . , sK+2 are these states.

As in Theorem 1, Theorem 3 indicates that portfolios on the VaR-constrained bound-
ary exhibit locally (K + 2)-fund separation with these funds being wf, wt, and ws3

; . . . ;wsKþ2
.

Also, the sum of the weights of the latter K funds in a portfolio on the VaR-constrained
boundary is non-zero if and only if the VaR constraint binds. Thus, Eqs. (10) and (11)
imply that portfolios on this boundary at which the constraint binds do not belong to
the unconstrained boundary.

Let wU � ½V�1ðRU�1Rf Þ�>

cU�cRf
0

h i>
for any U � X. Portfolios {wU}U�X are useful in our char-

acterization of the CVaR-constrained boundary.

Theorem 4. Suppose that the portfolio on the CVaR-constrained boundary with expected

return E exists. Let U ¼ fs 2 X : w>E;a;CRs þ ð1� w>E;a;C1ÞRf < �V a;wE;a;Cg.17 (i) If
P[U] = 1 � a, then this portfolio is given by
17 Footnote 16 also applies here.
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wE;a;C ¼ h1wf þ h2wt þ h3wU ð12Þ
for some weights h1, h2, and h3. (ii) If P[U] < 1 � a, then this portfolio is given by

wE;a;C ¼ h1wf þ h2wt þ h3wU þ
XKþ3

k¼4

hkwsk ð13Þ

for some weights h1, . . . ,hK+3, where K is the number of states where the return on wE,a,C

is equal to �V a;wE;a;C , and s4, . . . , sK+3 are these states.

As in Theorem 2, Theorem 4 indicates that the funds required for a portfolio on the
CVaR-constrained boundary depend on the set of states for which the portfolio suffers
losses larger than its VaR (i.e., U). First, when P[U] = 1 � a, portfolios on the CVaR-con-
strained boundary exhibit locally three-fund separation with these funds being wf, wt, and
wU. Also, the weight of the latter fund in a portfolio on the CVaR-constrained boundary is
non-zero if and only if the CVaR constraint binds. Thus, Eqs. (10) and (12) imply that
portfolios on this boundary at which the constraint binds do not belong to the uncon-
strained boundary.

Second, when P[U] < 1 � a, portfolios on the CVaR-constrained boundary exhibit
locally (K + 3)-fund separation with these funds being wf, wt, wU, and ws4

; . . . ;wsKþ3
. Also,

the sum of the weights of the latter K + 1 funds in a portfolio on the CVaR-constrained
boundary is non-zero if and only if the CVaR constraint binds. Thus, Eqs. (10) and (13)
imply that portfolios on this boundary at which the constraint binds do not belong to the
unconstrained boundary.

3. An example

Next, we derive the unconstrained and constrained boundaries for a sample of US
stocks. We select a sample of 10 NYSE- and Nasdaq-listed stocks with weekly return data
available in CRSP during the period March 2, 1999–December 31, 2002 in order to have
200 observations. Their sample means, standard deviations, and correlation coefficients
were used as optimization inputs.18 We estimated the VaRs and CVaRs of the stocks
(and all portfolios) using historical data. For example, since S = 200, the VaR at the
99% confidence level of a portfolio with different returns in different states is given by
minus its third worst weekly return. Table 1 presents summary statistics.

We now proceed to examine the constrained boundaries when the confidence level is
a = 99%. The case when no riskfree security exists is considered in detail next; the case
when there exists a riskfree security is briefly discussed afterwards.

3.1. The VaR-constrained boundary

Three VaR bounds are considered: V = 7%, 7.5%, and 8%.

3.1.1. Comparison with the unconstrained boundary

Fig. 1 illustrates the VaR-constrained boundary when V = 7%. Note that only portfo-
lios on the unconstrained boundary with moderate expected returns satisfy the constraint.
18 Michaud (1998, p. 12) points out that these sample statistics are sometimes used as optimization inputs. For
simplicity, no adjustment for estimation risk is made in this example.



Table 1
Optimization inputs used in the example

1 2 3 4 5 6 7 8 9 10

Mean 0.25 0.79 0.19 0.23 0.20 0.22 0.20 0.44 0.29 0.26
Std. Dev. 4.88 5.33 5.36 6.43 4.11 5.42 19.32 5.20 6.60 5.32
VaR99% 10.48 14.97 11.71 12.77 8.24 13.95 23.29 13.82 13.89 14.81
CVaR99% 12.57 15.52 12.98 17.19 13.79 15.98 58.42 15.12 23.08 15.93

Correlation matrix

1 1 0.13 0.27 0.16 0.31 0.24 0.09 0.31 0.12 0.34
2 1 0.23 0.16 0.15 0.06 0.15 0.14 0.09 0.16
3 1 0.07 0.42 0.37 �0.07 0.41 0.20 0.36
4 1 �0.17 0.07 0.09 0.12 0.08 0.15
5 1 0.23 0.04 0.28 0.10 0.22
6 1 0.08 0.33 0.32 0.40
7 1 0.00 0.03 0.05
8 1 0.31 0.28
9 1 0.23
10 1

We use a sample of 10 NYSE- and Nasdaq-listed stocks with weekly return data available in CRSP during the
period March 2, 1999–December 31, 2002 in order to have 200 observations. Sample means, standard deviations,
and correlation coefficients associated with these stocks were computed and then used as optimization inputs. The
VaRs and CVaRs of the stocks were estimated using historical data. The means, standard deviations, VaRs, and
CVaRs are reported in percentage points.
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Thus, the VaR-constrained boundary consists of portfolios on the unconstrained bound-
ary with moderate expected returns and portfolios not on it with small and large ones.19

Portfolio w’s distance from the unconstrained boundary, denoted by Dw, is the difference
between its standard deviation and that of the portfolio on the unconstrained boundary
with the same expected return. As Fig. 1 shows, the distance of portfolios on the VaR-con-
strained boundary from the unconstrained boundary increases for smaller and larger
expected returns.

Fig. 2 displays properties of portfolios on the VaR-constrained boundary. Panels
(a)–(c) show the relation between the number of funds required for these portfolios and
their expected returns. Four main results can be seen. First, the vertical segments illustrate
that the number of funds is locally constant. Second, the steps illustrate that this number is
not globally constant. Third, the number is equal to two for moderate values of E (since
the constraint does not bind), and greater than two for small and large ones (since the con-
straint binds). Fourth, for a fixed E that is either small or large, the number of funds
depends on V.

Panels (d)–(f) show the relative reduction in VaR arising from selecting the portfolio on
the VaR-constrained boundary instead of the portfolio on the unconstrained boundary
with the same expected return (i.e., 1� V a;wE;a;V =V a;wE ).20 Two results are worth noting.
First, while VaR decreases for small and large values of E, VaR is unchanged for moderate
values of E. Second, the reduction in VaR is notable for very large values of E.
19 The qualifiers ‘small,’ ‘moderate,’ and ‘large’ are used with reference to the expected return of the minimum
variance portfolio, which lies roughly in the middle of the moderate range.
20 Note that a positive (negative) value indicates a decrease (increase) in VaR.
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Fig. 1. Unconstrained and VaR-constrained boundaries and optimal portfolios in the absence of a riskfree
security. The dotted (solid) line represents the unconstrained (VaR-constrained) boundary. The confidence level is
a = 99%, the number of states is S = 200, and the VaR bound is V = 7%. There is no riskfree security. The panel
also shows the optimal portfolios of an agent with the objective function UðE;rÞ ¼ E � q

2
r2, where q = 3, 4, and

6. The dots (‘�’) represent the unconstrained optimal portfolios, while the circles (‘	’) represent the VaR-
constrained optimal portfolios. Note that when q = 6 the unconstrained and VaR-constrained portfolios
coincide. The expected returns and standard deviations are reported in percentage points.
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Panels (g)–(i) show the relative reduction in CVaR arising from selecting the portfolio
on the VaR-constrained boundary instead of the portfolio on the unconstrained boundary
with the same expected return (i.e., 1� Ca;wE;a;V =Ca;wE ). While there is a decrease (increase)
in CVaR for small (most large) values of E, CVaR is unchanged for moderate values of E.

3.1.2. Portfolio selection implications

Of particular interest is the impact of a VaR constraint on an agent’s optimal portfolio.
For simplicity, consider an agent with the objective function U : R� Rþ ! R defined by
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Fig. 2. Properties of portfolios on the VaR-constrained boundary in the absence of a riskfree security. Panels
(a)–(c) report the number of funds required to span the portfolios on the VaR-constrained boundary. Panels
(d)–(f) report the relative reduction in VaR arising from selecting a portfolio on the VaR-constrained boundary
instead of the portfolio on the unconstrained boundary with the same expected return. Panels (g)–(i) report the
relative reduction in CVaR arising from selecting a portfolio on the VaR-constrained boundary instead of the
portfolio on the unconstrained boundary with the same expected return. The expected returns and relative
reductions in VaR and CVaR are reported in percentage points. There is no riskfree security.
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UðE; rÞ ¼ E � q
2
r2, where q = 3, 4, and 6.21 Fig. 1 shows the location of the agent’s opti-

mal portfolio: (i) in the absence of any constraint (‘unconstrained optimal portfolio’), rep-
resented by a dot (‘�’), and (ii) in the presence of a VaR constraint (‘VaR-constrained
optimal portfolio’), represented by a circle (‘	’). Panel (a) of Table 2 presents quantitative
21 These are reasonable values of q as noted by, for example, Sharpe (1987, Chapter 2).



Table 2
Unconstrained and constrained optimal portfolios

q V Absence of a riskfree security Presence of a riskfree security

Rw rw Dw Va,w Ca,w Rw rw Dw Va,w Ca,w

(a) VaR constraint

3 7 0.64 3.84 0.06 7.00 12.53 0.64 3.86 0.05 7.00 12.20
7.5 0.67 4.06 0.05 7.50 13.10 0.68 4.07 0.04 7.50 12.77
8 0.71 4.28 0.04 8.00 13.49 0.70 4.24 0.03 8.00 13.23
Unconstrained 0.78 4.76 0.00 9.82 14.41 0.81 4.94 0.00 10.24 15.08

4 7 0.61 3.68 0.02 7.00 11.62 0.60 3.49 0.00 7.00 10.75
7.5 0.64 3.81 0.01 7.50 11.90 0.62 3.65 0.00 7.50 11.17
8 0.66 3.92 0.00 8.00 12.14 0.63 3.70 0.00 7.66 11.29
Unconstrained 0.67 3.99 0.00 8.28 12.29 0.63 3.70 0.00 7.66 11.29

6 7 0.55 3.34 0.00 6.75 10.17 0.45 2.47 0.00 5.08 7.50
7.5 0.55 3.34 0.00 6.75 10.17 0.45 2.47 0.00 5.08 7.50
8 0.55 3.34 0.00 6.75 10.17 0.45 2.47 0.00 5.08 7.50
Unconstrained 0.55 3.34 0.00 6.75 10.17 0.45 2.47 0.00 5.08 7.50

(b) CVaR constraint

3 8 0.61 3.87 0.25 8.00 8.00 0.59 3.64 0.17 7.68 8.00
8.5 0.63 3.99 0.23 8.40 8.50 0.61 3.72 0.15 7.86 8.50
9 0.64 4.04 0.20 8.58 9.00 0.62 3.79 0.12 8.03 9.00
Unconstrained 0.78 4.76 0.00 9.82 14.41 0.81 4.94 0.00 10.24 15.08

4 8 0.56 3.50 0.14 7.29 8.00 0.53 3.06 0.04 6.46 8.00
8.5 0.57 3.53 0.11 7.41 8.50 0.54 3.16 0.03 6.66 8.50
9 0.58 3.58 0.08 7.53 9.00 0.56 3.25 0.02 6.83 9.00
Unconstrained 0.67 3.99 0.00 8.28 12.29 0.63 3.70 0.00 7.66 11.29

6 8 0.50 3.12 0.04 6.25 8.00 0.45 2.47 0.00 5.08 7.50
8.5 0.51 3.16 0.02 6.37 8.50 0.45 2.47 0.00 5.08 7.50
9 0.52 3.21 0.01 6.49 9.00 0.45 2.47 0.00 5.08 7.50
Unconstrained 0.55 3.34 0.00 6.75 10.17 0.45 2.47 0.00 5.08 7.50

Consider an agent with the objective function UðE; rÞ ¼ E � q
2 r2, where q = 3, 4, and 6. Panel (a) reports the

expected return ðRwÞ, standard deviation (rw), distance from the unconstrained boundary (Dw), VaR (Va,w), and
CVaR (Ca,w) of the unconstrained and VaR-constrained optimal portfolios. Panel (b) reports these statistics for
the unconstrained and CVaR-constrained optimal portfolios. In the presence of a riskfree security, we assume
that its annualized return is Rf = 4.16%. The confidence level is a = 99%, the VaR bound is V = 7%, 7.5%, and
8%, the CVaR bound is C = 8%, 8.5%, and 9%, and the number of states is S = 200. All numbers are reported in
percentage points.
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results. Two results are worth noting when the constraint binds. First, VaR-constrained
optimal portfolios have smaller expected returns, standard deviations, VaRs, and CVaRs
than those of unconstrained optimal portfolios. Second, the distance of VaR-constrained
optimal portfolios from the unconstrained boundary decreases when either q increases or
V increases.

3.2. The CVaR-constrained boundary

Note that (a) Ca,w P Va,w for any portfolio w; and (b) Ca,w > Va,w if P ½eRw < �V a;w� > 0.
Since it is therefore natural to assume that C P V, three CVaR bounds are considered:
C = 8%, 8.5%, and 9%.
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3.2.1. Comparison with the unconstrained boundary

Fig. 3 illustrates the CVaR-constrained boundary when C = 8%. The results are qual-
itatively similar to those obtained when a VaR constraint is imposed. Fig. 4 displays prop-
erties of portfolios on the CVaR-constrained boundary. Panels (a)–(c) show the relation
between the number of funds required for these portfolios and their expected returns.
The results are similar to those obtained for portfolios on the VaR-constrained boundary.

Panels (d)–(f) show the relative reduction in VaR arising from selecting the portfolio on
the CVaR-constrained boundary instead of the portfolio on the unconstrained boundary
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Fig. 3. Unconstrained and CVaR-constrained boundaries and optimal portfolios in the absence of a riskfree
security. The dotted (solid) line represents the unconstrained (CVaR-constrained) boundary. The confidence level
is a = 99%, the number of states is S = 200, and the CVaR bound is C = 8%. There is no riskfree security. The
panel also shows the optimal portfolios of an agent with the objective function UðE;rÞ ¼ E � q

2
r2, where q = 3, 4,

and 6. The dots (‘�’) represent the unconstrained optimal portfolios, while the circles (‘	’) represent the CVaR-
constrained optimal portfolios. The expected returns and standard deviations are reported in percentage points.
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Fig. 4. Properties of portfolios on the CVaR-constrained boundary in the absence of a riskfree security. Panels
(a)–(c) report the number of funds required to span the portfolios on the CVaR-constrained boundary. Panels
(d)–(f) report the relative reduction in VaR arising from selecting a portfolio on the CVaR-constrained boundary
instead of the portfolio on the unconstrained boundary with the same expected return. Panels (g)–(i) report the
relative reduction in CVaR arising from selecting a portfolio on the CVaR-constrained boundary instead of the
portfolio on the unconstrained boundary with the same expected return. The expected returns and relative
reductions in VaR and CVaR are reported in percentage points. There is no riskfree security.
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with the same expected return (i.e., 1� V a;wE;a;C=V a;wE ). While there is an increase in VaR
for most small and large values of E, VaR is unchanged for moderate values of E.

Panels (g)–(i) show the relative reduction in CVaR arising from selecting the portfolio
on the CVaR-constrained boundary instead of the portfolio on the unconstrained bound-
ary with the same expected return (i.e., 1� Ca;wE;a;C=Ca;wE ). Two results are worth noting.
First, while CVaR decreases for small and large values of E, CVaR is unchanged for
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moderate values of E. Second, the reduction in CVaR is notable for very small and very
large values of E.
3.2.2. Portfolio selection implications

Next, we address the question of how the agent’s optimal portfolio is affected by a
CVaR constraint. Fig. 3 shows the location of the unconstrained optimal portfolio, repre-
sented by a dot, and the agent’s optimal portfolio in the presence of a CVaR constraint
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Fig. 5. Unconstrained and VaR-constrained boundaries and optimal portfolios in the presence of a riskfree
security. The dotted (solid) line represents the unconstrained (VaR-constrained) boundary. The confidence level is
a = 99%, the number of states is S = 200, and the VaR bound is V = 7%. There is a riskfree security with an
annualized return of Rf = 4.16%. The panel also shows the optimal portfolios of an agent with the objective
function UðE; rÞ ¼ E � q

2
r2, where q = 3, 4, and 6. The dots (‘�’) represent the unconstrained optimal portfolios,

while the circles (‘	’) represent the VaR-constrained optimal portfolios. Note that when q = 6 the unconstrained
and VaR-constrained portfolios coincide. The expected returns and standard deviations are reported in
percentage points.
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(‘CVaR-constrained optimal portfolio’), represented by a circle. Panel (b) of Table 2 pre-
sents quantitative results. Our results regarding the implications of a CVaR constraint are
qualitatively similar to those obtained for a VaR constraint, but a quantitative difference is
noteworthy. While the VaR of the CVaR-constrained optimal portfolio is close to that of
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Fig. 6. Properties of portfolios on the VaR-constrained boundary in the presence of a riskfree security. Panels
(a)–(c) report the number of funds required to span the portfolios on the VaR-constrained boundary. Panels
(d)–(f) report the relative reduction in VaR arising from selecting a portfolio on the VaR-constrained boundary
instead of the portfolio on the unconstrained boundary with the same expected return. Panels (g)–(i) report the
relative reduction in CVaR arising from selecting a portfolio on the VaR-constrained boundary instead of the
portfolio on the unconstrained boundary with the same expected return. The expected returns and relative
reductions in VaR and CVaR are reported in percentage points. There is a riskfree security with an annualized
return of Rf = 4.16%.
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the VaR-constrained optimal portfolio, the CVaR of the former is notably smaller than
that of the latter. This result suggests that a CVaR constraint is more effective than a
VaR constraint to curtail large losses in the mean–variance model.

Table 2 is also useful to compare the implications of binding CVaR and VaR con-
straints when C = V. Note that CVaR-constrained optimal portfolios have smaller
expected returns, standard deviations, VaRs, and CVaRs than those of VaR-constrained
optimal portfolios. Also, the distance of CVaR-constrained optimal portfolios from the
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Fig. 7. Unconstrained and CVaR-constrained boundaries and optimal portfolios in the presence of a riskfree
security. The dotted (solid) line represents the unconstrained (CVaR-constrained) boundary. The confidence level
is a = 99%, the number of states is S = 200, and the CVaR bound is C = 8%. There is a riskfree security with an
annualized return of Rf = 4.16%. The panel also shows the optimal portfolios of an agent with the objective
function UðE; rÞ ¼ E � q

2
r2, where q = 3, 4, and 6. The dots (‘�’) represent the unconstrained optimal portfolios,

while the circles (‘	’) represent the CVaR-constrained optimal portfolios. Note that when q = 6, the
unconstrained and CVaR-constrained optimal portfolios coincide. The expected returns and standard deviations
are reported in percentage points.
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unconstrained boundary are larger than those of VaR-constrained optimal portfolios. The
reason why these results hold is that a CVaR constraint is more restrictive than a VaR
constraint when C = V.
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Fig. 8. Properties of portfolios on the CVaR-constrained boundary in the presence of a riskfree security. Panels
(a)–(c) report the number of funds required to span the portfolios on the CVaR-constrained boundary. Panels
(d)–(f) report the relative reduction in VaR arising from selecting a portfolio on the CVaR-constrained boundary
instead of the portfolio on the unconstrained boundary with the same expected return. Panels (g)–(i) report the
relative reduction in CVaR arising from selecting a portfolio on the CVaR-constrained boundary instead of the
portfolio on the unconstrained boundary with the same expected return. The expected returns and relative
reductions in VaR and CVaR are reported in percentage points. There is a riskfree security with an annualized
return of Rf = 4.16%.
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3.3. Introducing a riskfree security

Suppose now that there is a riskfree security with a return of Rf = 4.16%.22 As Table 2
and Figs. 5–8 show, the results are similar to those in the absence of a riskfree security with
one exception. In the presence of a riskfree security, the portfolios on the constrained
boundaries with small expected returns are also on the unconstrained boundary.

4. Conclusion

This article examines the impact of adding either a VaR or a CVaR constraint to the
mean–variance model. While previous research involving this model assumes that security
returns have an elliptical distribution, we assume that they have a discrete distribution
with finitely many jump points. The latter assumption is often imposed in practice when
using historical simulation to estimate VaR and CVaR. Our main results are as follows.
First, portfolios on the VaR-constrained boundary exhibit (K + 2)-fund separation, where
K is the number of states for which the portfolios suffer losses equal to the VaR bound,
and thus are MV-inefficient when the constraint binds. Second, portfolios on the
CVaR-constrained boundary exhibit (K + 3)-fund separation, where K is the number of
states for which the portfolios suffer losses equal to their VaRs, and thus are also MV-inef-
ficient when the constraint binds. Third, an example illustrates that while the VaR of the
CVaR-constrained optimal portfolio is close to that of the VaR-constrained optimal port-
folio, the CVaR of the former is notably smaller than that of the latter. This result suggests
that a CVaR constraint is more effective than a VaR constraint to curtail large losses in the
mean–variance model.

Our results are in stark contrast with previous work, which assumes that security
returns have an elliptical distribution. Under this assumption, portfolios on the con-
strained boundaries exhibit two-fund separation even when the constraints bind. Hence,
constrained boundaries consist solely of subsets of the unconstrained boundary. Thus, it
is important to assess which assumption regarding security returns is appropriate when
implementing the mean–variance model with VaR or CVaR constraints.
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