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Abstract. In this paper we focus on a total (but non-lexicographic) or-
dering of strings called V-order. We devise a new linear-time algorithm
for computing the V -comparison of two finite strings. In comparison with
the previous algorithm in the literature, our algorithm is both conceptu-
ally simpler, based on recording letter positions in increasing order, and
more straightforward to implement, requiring only linked lists.
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1 Introduction

An important task required in many combinatorial computations is deciding the
relative order of two members of a totally ordered set [KS-98, R-03], for instance
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organizing words in a natural language dictionary. Binary comparison of finite
strings (words) thus arises as a primitive operation, a building block, in more
complex procedures, which therefore requires efficient implementation.

In this paper we first discuss some known techniques for totally ordering sets,
and then introduce our contribution: a new linear string comparison algorithm
using V -order.

Given an integer n ≥ 1 and a nonempty set of symbols Σ (bounded or un-
bounded), a string of length n over Σ takes the form x = x1 . . . xn with each
xi ∈ Σ. The classic and commonly used method for organizing sets of strings
is lexicographic (dictionary) order. Formally, if Σ is a totally ordered alphabet
then lexicographic ordering (lexorder) u < v with u, v ∈ Σ+ is defined if and
only if either u is a proper prefix of v, or u = ras, v = rbt for some a, b ∈ Σ
such that a < b and for some r, s, t ∈ Σ∗.

Lexorder is a very natural method for deciding precedence and organizing
information which also finds many uses in computer science, typically in con-
structing data structures and related applications:

– Building indexes for information retrieval, particularly self-indexes which
replace the text and support almost optimal space and search time [NM-07].

– Constructing suffix arrays, which record string suffix starting positions in
the lexorder of the suffixes, and thus support binary search [KA-03, KSB-06,
NZC-09].

– The Burrows-Wheeler Transform (BWT), which applies suffix sorting, and
exhibits data clustering properties, hence is suitable for preprocessing data
prior to compression activities [ABM-08, CDP-05].

– The application of automata for bioinformatics sequence alignment. The
BWT is extended for finite automata representing the multiple alignment
problem - the paths in the automaton are sorted into lexorder thus extending
the suffix sorting framework related to the classic BWT [SVM-11].

– An important class in the study of combinatorics on words is Lyndon words
[L-83] - strings (words) which are lexicographically least amongst the cyclic
rotations of their letters (characters) – see also [S-03]; furthermore, any string
can be uniquely factored into Lyndon words [CFL-58] - Duval’s algorithm
cleverly detects the lexicographic order between factors in linear time [Du-83,
D-11]. The Lyndon decomposition allows for efficient ‘divide-and-conquer’
of a string into patterned factors; numerous applications include: periodic
musical structures [C-04], string matching [BGM-11, CP-91], and algorithms
for digital geometry [BLPR-09].

– Hybrid Lyndon structures, introduced in [DDS-13], based on two methods
of ordering strings one of which is lexorder.

Naively, lexorder u < v can be decided in time linear in the length of the
shorter string, and space linear in the length of the longer string; various data
structures may be used for enhancing this string comparison. In [DIS-94] the
Four Russians technique [IS-92] is proposed to compare strings of length n on a
bounded alphabet in O(1) time, while for an unbounded alphabet the parallel
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construction of a merged suffix tree using the CRCW PRAM model [IS-92] is
proposed that can be constructed in O(log n log logn) time using O(n/ log n)
processors; using this tree, sequential comparison requires O(log logn) time.

A class of lexorder-type total orders is easily obtained from permuting the
usual order 1, 2, . . . n of pairwise comparison of letters, along with interchanging
< with > and so on; for example relex order (reverse lexicographic) [R-03], and
co-lexorder (lexorder of reversed strings) studied and applied to string factoriza-
tion in [DDS-09].

Non-lexicographic methods include deciding precedence by minimal change
such as Gray’s reflected binary code, where two successive values differ in only one
bit, hence well-suited for error correction in digital communications [G-53, S-97].
A more recent example is V -order [D-85, DaD-96, DaD-97] which is the focus of
this paper: we first introduce this technical method for comparing strings and
then consider it algorithmically.

Let Σ be a totally ordered alphabet, and let u = u1u2...un be a string over Σ.
Define h ∈ {1, . . . , n} by h = 1 if u1 ≤ u2 ... ≤ un; otherwise, by the unique value
such that uh−1 > uh ≤ uh+1 ≤ uh+2 ≤ ... ≤ un. Let u

∗ = u1u2...uh−1uh+1...un,
where the star * indicates deletion of the letter uh. Write us∗ for (...(u∗)∗...)∗

with s ≥ 0 stars 1. Let g = max{u1, u2, ..., un}, and let k be the number of
occurrences of g in u. Then the sequence u,u∗,u2∗, ... ends gk, ..., g2, g1, g0 = ε.
In the star tree each string u over Σ labels a vertex, and there is a directed edge
from u to u∗, with ε as the root.

Definition 1. We define V -order ≺ between distinct strings u,v. First v ≺ u
if v is in the path u,u∗,u2∗, ..., ε. If u,v are not in a path, there exist smallest
s, t such that u(s+1)∗ = v(t+1)∗. Put c = us∗ and d = vt∗; then c �= d but
|c| = |d| = m say. Let j be the greatest i in 1 ≤ i ≤ m such that c[i] �= d[i]. If
c[j] < d[j] in Σ then u ≺ v. Clearly ≺ is a total order.

Example 1. Over the binary alphabet with 0 < 1: in lexorder, 0101 < 01110; in
V -order, 0101 ≺ 01110.
Over the naturally ordered integers: in lexorder, 123456 < 2345; in V -order, 2345
≺ 123456.
Over the naturally ordered Roman alphabet: in lexorder, eabecd < ebaedc; in
V -order, ebaedc ≺ eabecd.

String comparison in V -order ≺ was first considered algorithmically in
[DDS-11, DDS-13] - the dynamic longest matching suffix of the pair of input
strings, together with a doubly-linked list which simulated letter deletions and
hence paths in the star tree, enabled deciding order; these techniques achieved
V -comparison in worst-case time and space proportional to string length - thus
asymptotically the same as naive comparison in lexorder.

Currently known applications of V -order, utilizing linear-time V -comparison,
and generally derived from lexorder or Lyndon cases are as follows:

1 Note that this star operator, as defined in [DaD-96], [DD-03] etc, is distinct from
the Kleene star operator: Kleene star is applied to sets, while this V -star is applied
to strings.
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– A V -order structure, an instance of a hybrid Lyndon word and known as a
V -word [DD-03], similarly to the classic Lyndon case, gives an instance of
an African musical rhythmic pattern [CT-03].

– Linear factorization of a string into factors (V -words) sequentially [DDS-11]
and in parallel [DDIS-13] - yielding factors which are distinct from the Lyn-
don factorization of the given string [DDS-13].

– Modification of a linear suffix array construction [KA-03] from lexorder to
V -order [DS-13] thus allowing efficient V -ordering of the cyclic rotations of
a string.

– Applying the above suffix array modification to compute a novel Burrows-
Wheeler transform (V -BWT) using, not the usual lexorder, but rather V -
order [DS-13] - achieving instances of enhanced data clustering.

These initial avenues suggest that further uses of V -order, analogous to the
practical functions listed for lexorder and Lyndon words, will continue to arise,
including for instance those for suffix trees - thus necessitating efficient imple-
mentations of the primitive V -comparison.

We introduce here a new algorithm for computing the V -comparison of two
finite strings - the advantage is that it is both conceptually simpler, based
on recording letter positions in increasing order, and more straightforward
to implement, requiring only linked lists. The time complexity is O(n + |Σ|)
and similarly the space complexity is O(n + |Σ|). However, in computational
practice the alphabet, like the input, can be assumed to be finite - at most O(n)
- and so the algorithm runs in essentially linear time.

2 V -Order String Comparison Algorithm

In this section, we present a novel linear-time algorithm for V -order string com-
parison. Before going into the algorithmic details, we present relevant definitions
and results from the literature useful in describing and analyzing our algorithm,
starting with a unique representation of a string.

Definition 2. ([DD-03, DDS-11, DDS-13]) The V-form of a string x is de-
fined as

Vk(x) = x = x0gx1g · · ·xk−1gxk

for possibly empty xi, i = 0, 1, . . . , k, where g is the largest letter in x – thus we
suppose that g occurs exactly k times.

The following lemma is the key to our algorithm.

Lemma 1. ([DaD-96, DD-03, DDS-11, DDS-13]) Suppose we are given distinct
strings v and x with the corresponding V-forms as follows:

v = v0Lvv1Lvv2 · · ·vj−1Lvvj

x = x0Lxx1Lxx2 · · ·xk−1Lxxk
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Let h ∈ {0 . . .max(j, k)} be the least integer such that vh �= xh. Then v ≺ x
if, and only if, one of the following is true:

– Lv < Lx

– Lv = Lx and j < k
– Lv = Lx, j = k and vh ≺ xh.

Lemma 2. ([DDS-11, DDS-13]) Suppose we are given distinct strings v and x.
If v (x) is a subsequence of x (v) then v ≺ x (x ≺ v).

We will use some simple data structures, which are initialized by preprocessing
steps. We useMapu(a) to store, in increasing order, the positions of the character
a in a string u. Mapu(Σ) records the ‘maps’ of all a ∈ Σ. To construct Mapu(Σ)
we take an array of size Σ. For each a ∈ Σ, we construct a linked list that stores
the positions i ∈ [1..|u|] in increasing order such that u[i] = a.

Example 2. Suppose we have a string u as follows:
1 2 3 4 5 6 7 8 9 10 11

u = 8 5 8 2 1 8 7 6 5 4 3

Mapu(Σ) is shown below for the string u defined above.
1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
5 4 11 10 2 8 7 1

↓ ↓
9 3

↓
6

This leads to the following lemma.

Lemma 3. Given a string u of length n we can build Mapu(Σ) in O(n + |Σ|)
time and space.

Proof. Proof will be provided in the journal version.

We will now prove a number of new lemmas that will be used in the
string comparison algorithm – first we will introduce some notation. Let
firstMiss(u,v) denote the first mismatch entry between u,v. More formally,
we say � = firstMiss(u,v) if and only if u[�] �= v[�] and u[i] = v[i],
for all 1 ≤ i < �. In what follows, the notion of a global mismatch and
a local mismatch is useful in the context of two strings u,v and their re-
spective substrings u′,v′. In particular, firstMiss(u,v) would be termed
as the global mismatch in this context and firstMiss(u′,v′) would be
termed as a local mismatch, i.e., local to the corresponding substrings. For
this global/local notion, the context C is important and is defined with
respect to the two strings and their corresponding substrings, i.e., the
context here would be denoted by C〈(u,u′), (v,v′)〉. Also, for the V -form
of a string u we will use the following convention: Lu,� denotes the �-th Lu
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in the V -form of u and pos(Lu,�) will be used to denote its index/position in u.
With this extended notation, the V -form of u can be rewritten as follows:

u = u0 Lu,1 u1 Lu,2 u2 · · · uj−1 Lu,j uj .

Moreover, within the context C, the strings u,v are referred to as the superstrings
and u′,v′ as the substrings.

Lemma 4. Suppose we are given distinct strings v and x with the corresponding
V -forms as follows:

v = v0Lvv1Lvv2 · · ·vj−1Lvvj

x = x0Lxx1Lxx2 · · ·xk−1Lxxk

Assume that Lv = Lx and j = k. Let h ∈ {0 . . .max(j, k)} be the least
integer such that vh �= xh. Now assume that �h = firstMiss(vh,xh) and
�f = firstMiss(v,x). In other words, �h is the index of the first mismatch entry
between the substrings vh,xh, whereas �f is the index of the first mismatch entry

between the two strings v and x. Then we must have �f =
∑h−1

i=0 (|vi|+ 1) + �h.

(Or equivalently, �f =
∑h−1

i=0 (|xi|+ 1) + �h.)

Proof. Proof will be provided in the journal version.

Corollary 1. If in Case 2 of Lemma 4 we have �f = pos(Lv,�), then vh is a
proper prefix of xh.

Interestingly, we can extend Lemma 4 further if we consider the (inner) con-
texts within (outer) contexts as the following lemma shows. In other words V -
form can be applied recursively and independently as shown in [DDS-11]. In
what follows, for given distinct strings v and x with corresponding V -forms, the
condition that Lv = Lx, j = k will be referred to as Cond-I(v,x).

Lemma 5. Suppose we are given distinct strings v and x with corresponding
V -forms, and assume that Cond-I(v,x) holds. Now consider the (outer) context
C0〈(v,vh0), (x,xh0)〉, where h0 is the least integer such that vh0 �= xh0 .

Now similarly consider the V -forms of vh0 and xh0 and assume
that Cond-I(vh0 ,xh0) holds. Further, consider the (inner) context
C1〈(vh0 ,vh1), (xh0 ,xh1)〉, where h1 is the least integer such that vh1 �= xh1 .

Then the global mismatch of the context C0 coincides with the local mismatch
of the context C1.

Proof. Proof will be provided in the journal version.

Corollary 2. Given nested contexts Ci, 0 ≤ i ≤ k satisfying the hypotheses of
Lemma 5, the global mismatch of context C0 coincides with the local mismatch
of context Ck.
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Corollary 2 establishes that the first global mismatch will always be the first
mismatch as we go further within inner contexts through the chain of outer and
inner contexts.

Now we can focus on the string comparison algorithm: Algorithm CompareV .
Suppose we are given two distinct strings p and q, then the algorithm performs
the following steps.

Step 1: Preprocessing Step. ComputeMapp(Σ) andMapq(Σ). We also
compute the first mismatch position �f between p and q. This
will be referred to as the global mismatch position and will be
independent of any context within the iterations of the algorithm.
Then we repeat the following sub-steps in Step 2. During dif-
ferent iterations of the execution of these stages we will be
considering different contexts by proceeding from outer to in-
ner contexts. Initially, we will start with the outermost context,
i.e., C0〈(p,ph0), (q, qh0)〉, where h0 is the least integer such that
ph0 �= qh0 . At each iteration, we will be considering the largest
α ∈ Σ that is present within one of the superstrings in the context.
In other words, if the current context is C0, as is the case during
the initial iteration, we will consider the largest α such that α ∈ p
or α ∈ q.

Step 2: Throughout this step we will assume that the current context is
C〈(v,vh), (x,xh)〉, where h is the least integer such that vh �= xh.
So, initially we have C = C0. Suppose we are now considering
α ∈ Σ, then it must be the largest α ∈ Σ such that either α ∈ v
or α ∈ x. We proceed to the following sub-steps:

Step 2.a: We compute Mapv(α) from Mapp(α) where Mapv(α) contains
the positions that are only within the range of v in the current
context C. Similarly, we compute Mapx(α) from Mapq(α) where
Mapx(α) contains the positions that are only within the range
of x in the current context C. Now we compare Mapv(α) and
Mapx(α), which yields two cases.

Step 2.a.(i): In this case, Mapv(α) = Mapx(α).
This means that within the current context C, considering the V -
form of the superstrings v and x, we must have Lv = Lx and
j = k. So, we need to check Condition 3 of Lemma 1. We identify
h such that h is the least integer with vh �= xh. By Lemmas 4,
5 and Corollary 2 we know that this h can be easily identified
because it is identical to the global mismatch position �f .
Then we iterate to Step 2 again with the inner context
C1〈(vh,vh1), (xh,xh1)〉, where h1 is the least integer such that
vh1 �= xh1 . In other words, we assign C = C1 and then repeat Step
2 for β ∈ Σ where β < α.

Step 2.a.(ii): In this case, Mapv(α) �= Mapx(α).
[C1] If Mapv(α) = ∅ (Mapx(α) = ∅), we have Condition 1 of
Lemma 1 satisfied (ε is the least string in V -order) and hence
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we return v ≺ x (x ≺ v). Note that this effectively decides p ≺
q (q ≺ p) and the algorithm terminates.
[C2] If |Mapv(α)| < |Mapx(α)| (|Mapx(α)| < |Mapv(α)|), we
have Condition 2 of Lemma 1 satisfied and hence we return v ≺
x (x ≺ v). Similarly, this effectively decides p ≺ q (q ≺ p) and
the algorithm terminates.
[C3] Otherwise, we have Lv = Lx and j = k. So, we need to check
Condition 3 of Lemma 1, and identify h such that h is the least in-
teger such that vh �= xh. By Lemmas 4, 5 and Corollary 2 we know
that h can be easily identified because it is identical to the global
mismatch position �f . Now we do a final check as to whether vh is
a subsequence (in fact, a prefix ) of xh according to Corollary 1.
If so, then by Lemma 2 we return v ≺ x (x ≺ v), which decides
that p ≺ q (q ≺ p) and the algorithm terminates. Otherwise, we
return to Step 2 with the inner context C1〈(vh,vh1), (xh,xh1)〉,
where h1 is the least integer such that vh1 �= xh1 . In other words,
we assign C = C1 and then repeat Step 2 again.

To prove the correctness of the algorithm we need the following lemmas.

Lemma 6. Step 2 of Algorithm CompareV can be realized through a loop that
considers each character α ∈ Σ in decreasing order, skipping the ones that are
absent in both v and x or in the current context.

Proof. Proof will be provided in the journal version.

Lemma 7. Algorithm CompareV terminates at some point.

Proof. Note that Algorithm CompareV can terminate only by conditions [C1]
and [C2] of Step 2.a.(ii). Also recall that the input of the algorithm is two
distinct strings. Furthermore, we have computed a global mismatch position �f .
Hence, clearly at some point we will reach either [C1] or [C2] of Step 2.a.(ii).
Therefore, the algorithm will definitely terminate.

The correctness of the algorithm follows immediately from Lemmas 1, 2, 6
and 7. Finally we analyze the running time of Algorithm CompareV as follows.

Lemma 8. Algorithm CompareV runs in O(n + |Σ|) time and space.

Proof. Proof will be provided in the journal version.

Note that a naive O(n2) rendition of this algorithm was proposed by a reviewer
in [DDS-13].
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3 Conclusion

Lexicographic orderings have also been considered in the case of parallel com-
putations: for instance, an optimal algorithm for lexordering n integers is given
in [I-86], and parallel Lyndon factorization in [DIS-94, DDIS-13]. Analogously,
we propose future research into parallel forms of V -ordering strings.
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